'use strict'; Object.defineProperty(exports, '__esModule', { value: true }); var base = require('./base.cjs'); var nutation = require('./nutation.cjs'); var planetposition = require('./planetposition.cjs'); /** * @copyright 2013 Sonia Keys * @copyright 2016 commenthol * @license MIT * @module jupiter */ /** * Physical computes quantities for physical observations of Jupiter. * * All angular results in radians. * * @param {number} jde - Julian ephemeris day * @param {Planet} earth * @param {Planet} jupiter * @return {Array} * {number} DS - Planetocentric declination of the Sun. * {number} DE - Planetocentric declination of the Earth. * {number} ω1 - Longitude of the System I central meridian of the illuminated disk, * as seen from Earth. * {number} ω2 - Longitude of the System II central meridian of the illuminated disk, * as seen from Earth. * {number} P - Geocentric position angle of Jupiter's northern rotation pole. */ function physical (jde, earth, jupiter) { // (jde float64, earth, jupiter *pp.V87Planet) (DS, DE, ω1, ω2, P float64) // Step 1.0 const d = jde - 2433282.5; const T1 = d / base["default"].JulianCentury; const p = Math.PI / 180; const α0 = 268 * p + 0.1061 * p * T1; const δ0 = 64.5 * p - 0.0164 * p * T1; // Step 2.0 const W1 = 17.71 * p + 877.90003539 * p * d; const W2 = 16.838 * p + 870.27003539 * p * d; // Step 3.0 const pos = earth.position(jde); let [l0, b0, R] = [pos.lon, pos.lat, pos.range]; const fk5 = planetposition["default"].toFK5(l0, b0, jde); l0 = fk5.lon; b0 = fk5.lat; // Steps 4-7. const [sl0, cl0] = base["default"].sincos(l0); const sb0 = Math.sin(b0); let Δ = 4.0; // surely better than 0.0 let l = 0; let b = 0; let r = 0; let x = 0; let y = 0; let z = 0; const f = function () { const τ = base["default"].lightTime(Δ); const pos = jupiter.position(jde - τ); l = pos.lon; b = pos.lat; r = pos.range; const fk5 = planetposition["default"].toFK5(l, b, jde); l = fk5.lon; b = fk5.lat; const [sb, cb] = base["default"].sincos(b); const [sl, cl] = base["default"].sincos(l); // (42.2) p. 289 x = r * cb * cl - R * cl0; y = r * cb * sl - R * sl0; z = r * sb - R * sb0; // (42.3) p. 289 Δ = Math.sqrt(x * x + y * y + z * z); }; f(); f(); // Step 8.0 const ε0 = nutation["default"].meanObliquity(jde); // Step 9.0 const [sε0, cε0] = base["default"].sincos(ε0); const [sl, cl] = base["default"].sincos(l); const [sb, cb] = base["default"].sincos(b); const αs = Math.atan2(cε0 * sl - sε0 * sb / cb, cl); const δs = Math.asin(cε0 * sb + sε0 * cb * sl); // Step 10.0 const [sδs, cδs] = base["default"].sincos(δs); const [sδ0, cδ0] = base["default"].sincos(δ0); const DS = Math.asin(-sδ0 * sδs - cδ0 * cδs * Math.cos(α0 - αs)); // Step 11.0 const u = y * cε0 - z * sε0; const v = y * sε0 + z * cε0; let α = Math.atan2(u, x); let δ = Math.atan(v / Math.hypot(x, u)); const [sδ, cδ] = base["default"].sincos(δ); const [sα0α, cα0α] = base["default"].sincos(α0 - α); const ζ = Math.atan2(sδ0 * cδ * cα0α - sδ * cδ0, cδ * sα0α); // Step 12.0 const DE = Math.asin(-sδ0 * sδ - cδ0 * cδ * Math.cos(α0 - α)); // Step 13.0 let ω1 = W1 - ζ - 5.07033 * p * Δ; let ω2 = W2 - ζ - 5.02626 * p * Δ; // Step 14.0 let C = (2 * r * Δ + R * R - r * r - Δ * Δ) / (4 * r * Δ); if (Math.sin(l - l0) < 0) { C = -C; } ω1 = base["default"].pmod(ω1 + C, 2 * Math.PI); ω2 = base["default"].pmod(ω2 + C, 2 * Math.PI); // Step 15.0 const [Δψ, Δε] = nutation["default"].nutation(jde); const ε = ε0 + Δε; // Step 16.0 const [sε, cε] = base["default"].sincos(ε); const [sα, cα] = base["default"].sincos(α); α += 0.005693 * p * (cα * cl0 * cε + sα * sl0) / cδ; δ += 0.005693 * p * (cl0 * cε * (sε / cε * cδ - sα * sδ) + cα * sδ * sl0); // Step 17.0 const tδ = sδ / cδ; const Δα = (cε + sε * sα * tδ) * Δψ - cα * tδ * Δε; const Δδ = sε * cα * Δψ + sα * Δε; const αʹ = α + Δα; const δʹ = δ + Δδ; const [sα0, cα0] = base["default"].sincos(α0); const tδ0 = sδ0 / cδ0; const Δα0 = (cε + sε * sα0 * tδ0) * Δψ - cα0 * tδ0 * Δε; const Δδ0 = sε * cα0 * Δψ + sα0 * Δε; const α0ʹ = α0 + Δα0; const δ0ʹ = δ0 + Δδ0; // Step 18.0 const [sδʹ, cδʹ] = base["default"].sincos(δʹ); const [sδ0ʹ, cδ0ʹ] = base["default"].sincos(δ0ʹ); const [sα0ʹαʹ, cα0ʹαʹ] = base["default"].sincos(α0ʹ - αʹ); // (42.4) p. 290 let P = Math.atan2(cδ0ʹ * sα0ʹαʹ, sδ0ʹ * cδʹ - cδ0ʹ * sδʹ * cα0ʹαʹ); if (P < 0) { P += 2 * Math.PI; } return [DS, DE, ω1, ω2, P] } /** * Physical2 computes quantities for physical observations of Jupiter. * * Results are less accurate than with Physical(). * All angular results in radians. * * @param {number} jde - Julian ephemeris day * @return {Array} * {number} DS - Planetocentric declination of the Sun. * {number} DE - Planetocentric declination of the Earth. * {number} ω1 - Longitude of the System I central meridian of the illuminated disk, * as seen from Earth. * {number} ω2 - Longitude of the System II central meridian of the illuminated disk, * as seen from Earth. */ function physical2 (jde) { // (jde float64) (DS, DE, ω1, ω2 float64) const d = jde - base["default"].J2000; const p = Math.PI / 180; const V = 172.74 * p + 0.00111588 * p * d; const M = 357.529 * p + 0.9856003 * p * d; const sV = Math.sin(V); const N = 20.02 * p + 0.0830853 * p * d + 0.329 * p * sV; const J = 66.115 * p + 0.9025179 * p * d - 0.329 * p * sV; const [sM, cM] = base["default"].sincos(M); const [sN, cN] = base["default"].sincos(N); const [s2M, c2M] = base["default"].sincos(2 * M); const [s2N, c2N] = base["default"].sincos(2 * N); const A = 1.915 * p * sM + 0.02 * p * s2M; const B = 5.555 * p * sN + 0.168 * p * s2N; const K = J + A - B; const R = 1.00014 - 0.01671 * cM - 0.00014 * c2M; const r = 5.20872 - 0.25208 * cN - 0.00611 * c2N; const [sK, cK] = base["default"].sincos(K); const Δ = Math.sqrt(r * r + R * R - 2 * r * R * cK); const ψ = Math.asin(R / Δ * sK); const dd = d - Δ / 173; let ω1 = 210.98 * p + 877.8169088 * p * dd + ψ - B; let ω2 = 187.23 * p + 870.1869088 * p * dd + ψ - B; let C = Math.sin(ψ / 2); C *= C; if (sK > 0) { C = -C; } ω1 = base["default"].pmod(ω1 + C, 2 * Math.PI); ω2 = base["default"].pmod(ω2 + C, 2 * Math.PI); const λ = 34.35 * p + 0.083091 * p * d + 0.329 * p * sV + B; const DS = 3.12 * p * Math.sin(λ + 42.8 * p); const DE = DS - 2.22 * p * Math.sin(ψ) * Math.cos(λ + 22 * p) - 1.3 * p * (r - Δ) / Δ * Math.sin(λ - 100.5 * p); return [DS, DE, ω1, ω2] } var jupiter = { physical, physical2 }; exports["default"] = jupiter; exports.physical = physical; exports.physical2 = physical2;