'use strict'; Object.defineProperty(exports, '__esModule', { value: true }); var base = require('./base.cjs'); var sexagesimal = require('./sexagesimal.cjs'); /** * @copyright 2013 Sonia Keys * @copyright 2016 commenthol * @license MIT * @module nutation */ // Nutation: Chapter 22, Nutation and the Obliquity of the Ecliptic. /** * Nutation returns nutation in longitude (Δψ) and nutation in obliquity (Δε) * for a given JDE. * * JDE = UT + ΔT, see package. * * Computation is by 1980 IAU theory, with terms < .0003″ neglected. * * Result units are radians. * * @param {number} jde - Julian ephemeris day * @return {number[]} [Δψ, Δε] - [longitude, obliquity] in radians */ function nutation (jde) { const T = base["default"].J2000Century(jde); // Mean elongation of the Moon from the sun const D = base["default"].horner(T, 297.85036, 445267.11148, -0.0019142, 1.0 / 189474) * Math.PI / 180; // Mean anomaly of the Sun (Earth) const M = base["default"].horner(T, 357.52772, 35999.050340, -0.0001603, -1.0 / 300000) * Math.PI / 180; // Mean anomaly of the Moon const N = base["default"].horner(T, 134.96298, 477198.867398, 0.0086972, 1.0 / 56250) * Math.PI / 180; // Moon's argument of latitude const F = base["default"].horner(T, 93.27191, 483202.017538, -0.0036825, 1.0 / 327270) * Math.PI / 180; // Longitude of the ascending node of the Moon's mean orbit on the ecliptic, measured from mean equinox of date const Ω = base["default"].horner(T, 125.04452, -1934.136261, 0.0020708, 1.0 / 450000) * Math.PI / 180; let Δψ = 0; let Δε = 0; // sum in reverse order to accumulate smaller terms first for (let i = table22A.length - 1; i >= 0; i--) { const row = table22A[i]; const arg = row.d * D + row.m * M + row.n * N + row.f * F + row.ω * Ω; const [s, c] = base["default"].sincos(arg); Δψ += s * (row.s0 + row.s1 * T); Δε += c * (row.c0 + row.c1 * T); } Δψ *= 0.0001 / 3600 * (Math.PI / 180); Δε *= 0.0001 / 3600 * (Math.PI / 180); return [Δψ, Δε] // (Δψ, Δε float) } /** * ApproxNutation returns a fast approximation of nutation in longitude (Δψ) * and nutation in obliquity (Δε) for a given JDE. * * Accuracy is 0.5″ in Δψ, 0.1″ in Δε. * * Result units are radians. * * @param {number} jde - Julian ephemeris day * @return {number[]} [Δψ, Δε] - [longitude, obliquity] in radians */ function approxNutation (jde) { const T = (jde - base["default"].J2000) / 36525; const Ω = (125.04452 - 1934.136261 * T) * Math.PI / 180; const L = (280.4665 + 36000.7698 * T) * Math.PI / 180; const N = (218.3165 + 481267.8813 * T) * Math.PI / 180; const [sΩ, cΩ] = base["default"].sincos(Ω); const [s2L, c2L] = base["default"].sincos(2 * L); const [s2N, c2N] = base["default"].sincos(2 * N); const [s2Ω, c2Ω] = base["default"].sincos(2 * Ω); const Δψ = (-17.2 * sΩ - 1.32 * s2L - 0.23 * s2N + 0.21 * s2Ω) / 3600 * (Math.PI / 180); const Δε = (9.2 * cΩ + 0.57 * c2L + 0.1 * c2N - 0.09 * c2Ω) / 3600 * (Math.PI / 180); return [Δψ, Δε] // (Δψ, Δε float) } /** * MeanObliquity returns mean obliquity (ε₀) following the IAU 1980 * polynomial. * * Accuracy is 1″ over the range 1000 to 3000 years and 10″ over the range * 0 to 4000 years. * * Result unit is radians. * * @param {number} jde - Julian ephemeris day * @return {number} mean obliquity (ε₀) */ function meanObliquity (jde) { // (22.2) p. 147 return base["default"].horner( base["default"].J2000Century(jde), new sexagesimal["default"].Angle(false, 23, 26, 21.448).rad(), -46.815 / 3600 * (Math.PI / 180), -0.00059 / 3600 * (Math.PI / 180), 0.001813 / 3600 * (Math.PI / 180) ) } /** * MeanObliquityLaskar returns mean obliquity (ε₀) following the Laskar * 1986 polynomial. * * Accuracy over the range 1000 to 3000 years is .01″. * * Accuracy over the valid date range of -8000 to +12000 years is * "a few seconds." * * Result unit is radians. * * @param {number} jde - Julian ephemeris day * @return {number} mean obliquity (ε₀) */ function meanObliquityLaskar (jde) { // (22.3) p. 147 return base["default"].horner( base["default"].J2000Century(jde) * 0.01, new sexagesimal["default"].Angle(false, 23, 26, 21.448).rad(), -4680.93 / 3600 * (Math.PI / 180), -1.55 / 3600 * (Math.PI / 180), 1999.25 / 3600 * (Math.PI / 180), -51.38 / 3600 * (Math.PI / 180), -249.67 / 3600 * (Math.PI / 180), -39.05 / 3600 * (Math.PI / 180), 7.12 / 3600 * (Math.PI / 180), 27.87 / 3600 * (Math.PI / 180), 5.79 / 3600 * (Math.PI / 180), 2.45 / 3600 * (Math.PI / 180) ) } /** * NutationInRA returns "nutation in right ascension" or "equation of the * equinoxes." * * Result is an angle in radians. * * @param {number} jde - Julian ephemeris day * @return {number} nutation in right ascension */ function nutationInRA (jde) { const [Δψ, Δε] = nutation(jde); const ε0 = meanObliquity(jde); return Δψ * Math.cos(ε0 + Δε) } const table22A = (function () { const PROPS = 'd,m,n,f,ω,s0,s1,c0,c1'.split(','); const tab = [ [0, 0, 0, 0, 1, -171996, -174.2, 92025, 8.9], [-2, 0, 0, 2, 2, -13187, -1.6, 5736, -3.1], [0, 0, 0, 2, 2, -2274, -0.2, 977, -0.5], [0, 0, 0, 0, 2, 2062, 0.2, -895, 0.5], [0, 1, 0, 0, 0, 1426, -3.4, 54, -0.1], [0, 0, 1, 0, 0, 712, 0.1, -7, 0], [-2, 1, 0, 2, 2, -517, 1.2, 224, -0.6], [0, 0, 0, 2, 1, -386, -0.4, 200, 0], [0, 0, 1, 2, 2, -301, 0, 129, -0.1], [-2, -1, 0, 2, 2, 217, -0.5, -95, 0.3], [-2, 0, 1, 0, 0, -158, 0, 0, 0], [-2, 0, 0, 2, 1, 129, 0.1, -70, 0], [0, 0, -1, 2, 2, 123, 0, -53, 0], [2, 0, 0, 0, 0, 63, 0, 0, 0], [0, 0, 1, 0, 1, 63, 0.1, -33, 0], [2, 0, -1, 2, 2, -59, 0, 26, 0], [0, 0, -1, 0, 1, -58, -0.1, 32, 0], [0, 0, 1, 2, 1, -51, 0, 27, 0], [-2, 0, 2, 0, 0, 48, 0, 0, 0], [0, 0, -2, 2, 1, 46, 0, -24, 0], [2, 0, 0, 2, 2, -38, 0, 16, 0], [0, 0, 2, 2, 2, -31, 0, 13, 0], [0, 0, 2, 0, 0, 29, 0, 0, 0], [-2, 0, 1, 2, 2, 29, 0, -12, 0], [0, 0, 0, 2, 0, 26, 0, 0, 0], [-2, 0, 0, 2, 0, -22, 0, 0, 0], [0, 0, -1, 2, 1, 21, 0, -10, 0], [0, 2, 0, 0, 0, 17, -0.1, 0, 0], [2, 0, -1, 0, 1, 16, 0, -8, 0], [-2, 2, 0, 2, 2, -16, 0.1, 7, 0], [0, 1, 0, 0, 1, -15, 0, 9, 0], [-2, 0, 1, 0, 1, -13, 0, 7, 0], [0, -1, 0, 0, 1, -12, 0, 6, 0], [0, 0, 2, -2, 0, 11, 0, 0, 0], [2, 0, -1, 2, 1, -10, 0, 5, 0], [2, 0, 1, 2, 2, -8, 0, 3, 0], [0, 1, 0, 2, 2, 7, 0, -3, 0], [-2, 1, 1, 0, 0, -7, 0, 0, 0], [0, -1, 0, 2, 2, -7, 0, 3, 0], [2, 0, 0, 2, 1, -7, 0, 3, 0], [2, 0, 1, 0, 0, 6, 0, 0, 0], [-2, 0, 2, 2, 2, 6, 0, -3, 0], [-2, 0, 1, 2, 1, 6, 0, -3, 0], [2, 0, -2, 0, 1, -6, 0, 3, 0], [2, 0, 0, 0, 1, -6, 0, 3, 0], [0, -1, 1, 0, 0, 5, 0, 0, 0], [-2, -1, 0, 2, 1, -5, 0, 3, 0], [-2, 0, 0, 0, 1, -5, 0, 3, 0], [0, 0, 2, 2, 1, -5, 0, 3, 0], [-2, 0, 2, 0, 1, 4, 0, 0, 0], [-2, 1, 0, 2, 1, 4, 0, 0, 0], [0, 0, 1, -2, 0, 4, 0, 0, 0], [-1, 0, 1, 0, 0, -4, 0, 0, 0], [-2, 1, 0, 0, 0, -4, 0, 0, 0], [1, 0, 0, 0, 0, -4, 0, 0, 0], [0, 0, 1, 2, 0, 3, 0, 0, 0], [0, 0, -2, 2, 2, -3, 0, 0, 0], [-1, -1, 1, 0, 0, -3, 0, 0, 0], [0, 1, 1, 0, 0, -3, 0, 0, 0], [0, -1, 1, 2, 2, -3, 0, 0, 0], [2, -1, -1, 2, 2, -3, 0, 0, 0], [0, 0, 3, 2, 2, -3, 0, 0, 0], [2, -1, 0, 2, 2, -3, 0, 0, 0] ]; return tab.map((row) => { const o = {}; PROPS.forEach((p, i) => { o[p] = row[i]; }); return o }) })(); var nutation$1 = { nutation, approxNutation, meanObliquity, meanObliquityLaskar, nutationInRA }; exports.approxNutation = approxNutation; exports["default"] = nutation$1; exports.meanObliquity = meanObliquity; exports.meanObliquityLaskar = meanObliquityLaskar; exports.nutation = nutation; exports.nutationInRA = nutationInRA;