django-vue3-admin-web/node_modules/astronomia/lib/eqtime.cjs
2025-10-20 21:21:14 +08:00

84 lines
2.5 KiB
JavaScript

'use strict';
Object.defineProperty(exports, '__esModule', { value: true });
var base = require('./base.cjs');
var coord = require('./coord.cjs');
var nutation = require('./nutation.cjs');
var solar = require('./solar.cjs');
/**
* @copyright 2013 Sonia Keys
* @copyright 2016 commenthol
* @license MIT
* @module eqtime
*/
const { cos, sin, tan } = Math;
/**
* e computes the "equation of time" for the given JDE.
*
* Parameter planet must be a planetposition.Planet object for Earth obtained
* with `new planetposition.Planet('earth')`.
*
* @param {Number} jde - Julian ephemeris day
* @param {planetposition.Planet} earth - VSOP87 planet
* @returns {Number} equation of time as an hour angle in radians.
*/
function e (jde, earth) {
const τ = base["default"].J2000Century(jde) * 0.1;
const L0 = l0(τ);
// code duplicated from solar.ApparentEquatorialVSOP87 so that
// we can keep Δψ and cε
const { lon, lat, range } = solar["default"].trueVSOP87(earth, jde);
const [Δψ, Δε] = nutation["default"].nutation(jde);
const a = -20.4898 / 3600 * Math.PI / 180 / range;
const λ = lon + Δψ + a;
const ε = nutation["default"].meanObliquity(jde) + Δε;
const eq = new coord["default"].Ecliptic(λ, lat).toEquatorial(ε);
// (28.1) p. 183
const E = L0 - 0.0057183 * Math.PI / 180 - eq.ra + Δψ * cos(ε);
return base["default"].pmod(E + Math.PI, 2 * Math.PI) - Math.PI
}
/**
* (28.2) p. 183
*/
const l0 = function (τ) {
return base["default"].horner(τ, 280.4664567, 360007.6982779, 0.03032028,
1.0 / 49931, -1.0 / 15300, -1.0 / 2000000) * Math.PI / 180
};
/**
* eSmart computes the "equation of time" for the given JDE.
*
* Result is less accurate that e() but the function has the advantage
* of not requiring the V87Planet object.
*
* @param {Number} jde - Julian ephemeris day
* @returns {Number} equation of time as an hour angle in radians.
*/
function eSmart (jde) {
const ε = nutation["default"].meanObliquity(jde);
const t = tan(ε * 0.5);
const y = t * t;
const T = base["default"].J2000Century(jde);
const L0 = l0(T * 0.1);
const e = solar["default"].eccentricity(T);
const M = solar["default"].meanAnomaly(T);
const [sin2L0, cos2L0] = base["default"].sincos(2 * L0);
const sinM = sin(M);
// (28.3) p. 185
return y * sin2L0 - 2 * e * sinM + 4 * e * y * sinM * cos2L0 -
y * y * sin2L0 * cos2L0 - 1.25 * e * e * sin(2 * M)
}
var eqtime = {
e,
eSmart
};
exports["default"] = eqtime;
exports.e = e;
exports.eSmart = eSmart;