django-vue3-admin-web/node_modules/astronomia/lib/interpolation.cjs
2025-10-20 21:21:14 +08:00

550 lines
15 KiB
JavaScript

'use strict';
Object.defineProperty(exports, '__esModule', { value: true });
var base = require('./base.cjs');
/**
* @copyright 2013 Sonia Keys
* @copyright 2016 commenthol
* @license MIT
* @module interpolation
*/
const int = Math.trunc;
/**
* Error values returned by functions and methods in this package.
* Defined here to help testing for specific errors.
*/
const errorNot3 = new Error('Argument y must be length 3');
const errorNot4 = new Error('Argument y must be length 4');
const errorNot5 = new Error('Argument y must be length 5');
const errorNoXRange = new Error('Argument x3 (or x5) cannot equal x1');
const errorNOutOfRange = new Error('Interpolating factor n must be in range -1 to 1');
const errorNoExtremum = new Error('No extremum in table');
const errorExtremumOutside = new Error('Extremum falls outside of table');
const errorZeroOutside = new Error('Zero falls outside of table');
const errorNoConverge = new Error('Failure to converge');
/**
* Len3 allows second difference interpolation.
*/
class Len3 {
/**
* NewLen3 prepares a Len3 object from a table of three rows of x and y values.
*
* X values must be equally spaced, so only the first and last are supplied.
* X1 must not equal to x3. Y must be a slice of three y values.
*
* @throws Error
* @param {Number} x1 - is the x value corresponding to the first y value of the table.
* @param {Number} x3 - is the x value corresponding to the last y value of the table.
* @param {Number[]} y - is all y values in the table. y.length should be >= 3.0
*/
constructor (x1, x3, y) {
if (y.length !== 3) {
throw errorNot3
}
if (x3 === x1) {
throw errorNoXRange
}
this.x1 = x1;
this.x3 = x3;
this.y = y;
// differences. (3.1) p. 23
this.a = y[1] - y[0];
this.b = y[2] - y[1];
this.c = this.b - this.a;
// other intermediate values
this.abSum = this.a + this.b;
this.xSum = x3 + x1;
this.xDiff = x3 - x1;
}
/**
* InterpolateX interpolates for a given x value.
*/
interpolateX (x) {
const n = (2 * x - this.xSum) / this.xDiff;
return this.interpolateN(n)
}
/**
* InterpolateXStrict interpolates for a given x value,
* restricting x to the range x1 to x3 given to the constructor NewLen3.
*/
interpolateXStrict (x) {
const n = (2 * x - this.xSum) / this.xDiff;
const y = this.interpolateNStrict(n);
return y
}
/**
* InterpolateN interpolates for (a given interpolating factor n.
*
* This is interpolation formula (3.3)
*
* @param n - The interpolation factor n is x-x2 in units of the tabular x interval.
* (See Meeus p. 24.)
* @return {number} interpolation value
*/
interpolateN (n) {
return this.y[1] + n * 0.5 * (this.abSum + n * this.c)
}
/**
* InterpolateNStrict interpolates for (a given interpolating factor n.
*
* @param {number} n - n is restricted to the range [-1..1] corresponding to the range x1 to x3
* given to the constructor of Len3.
* @return {number} interpolation value
*/
interpolateNStrict (n) {
if (n < -1 || n > 1) {
throw errorNOutOfRange
}
return this.interpolateN(n)
}
/**
* Extremum returns the x and y values at the extremum.
*
* Results are restricted to the range of the table given to the constructor
* new Len3.
*/
extremum () {
if (this.c === 0) {
throw errorNoExtremum
}
const n = this.abSum / (-2 * this.c); // (3.5), p. 25
if (n < -1 || n > 1) {
throw errorExtremumOutside
}
const x = 0.5 * (this.xSum + this.xDiff * n);
const y = this.y[1] - (this.abSum * this.abSum) / (8 * this.c); // (3.4), p. 25
return [x, y]
}
/**
* Len3Zero finds a zero of the quadratic function represented by the table.
*
* That is, it returns an x value that yields y=0.
*
* Argument strong switches between two strategies for the estimation step.
* when iterating to converge on the zero.
*
* Strong=false specifies a quick and dirty estimate that works well
* for gentle curves, but can work poorly or fail on more dramatic curves.
*
* Strong=true specifies a more sophisticated and thus somewhat more
* expensive estimate. However, if the curve has quick changes, This estimate
* will converge more reliably and in fewer steps, making it a better choice.
*
* Results are restricted to the range of the table given to the constructor
* NewLen3.
*/
zero (strong) {
let f;
if (strong) {
// (3.7), p. 27
f = (n0) => {
return n0 - (2 * this.y[1] + n0 * (this.abSum + this.c * n0)) /
(this.abSum + 2 * this.c * n0)
};
} else {
// (3.6), p. 26
f = (n0) => {
return -2 * this.y[1] / (this.abSum + this.c * n0)
};
}
const [n0, ok] = iterate(0, f);
if (!ok) {
throw errorNoConverge
}
if (n0 > 1 || n0 < -1) {
throw errorZeroOutside
}
return 0.5 * (this.xSum + this.xDiff * n0) // success
}
}
/**
* Len3ForInterpolateX is a special purpose Len3 constructor.
*
* Like NewLen3, it takes a table of x and y values, but it is not limited
* to tables of 3 rows. An X value is also passed that represents the
* interpolation target x value. Len3ForInterpolateX will locate the
* appropriate three rows of the table for interpolating for x, and initialize
* the Len3 object for those rows.
*
* @param {Number} x - is the target for interpolation
* @param {Number} x1 - is the x value corresponding to the first y value of the table.
* @param {Number} xN - is the x value corresponding to the last y value of the table.
* @param {Number[]} y - is all y values in the table. y.length should be >= 3.0
* @returns {Len3} interpolation value
*/
function len3ForInterpolateX (x, x1, xN, y) {
let y3 = y;
if (y.length > 3) {
const interval = (xN - x1) / (y.length - 1);
if (interval === 0) {
throw errorNoXRange
}
let nearestX = int((x - x1) / interval + 0.5);
if (nearestX < 1) {
nearestX = 1;
} else if (nearestX > y.length - 2) {
nearestX = y.length - 2;
}
y3 = y.slice(nearestX - 1, nearestX + 2);
xN = x1 + (nearestX + 1) * interval;
x1 = x1 + (nearestX - 1) * interval;
}
return new Len3(x1, xN, y3)
}
/**
* @private
* @param {Number} n0
* @param {Function} f
* @returns {Array}
* {Number} n1
* {Boolean} ok - if `false` failure to converge
*/
const iterate = function (n0, f) {
for (let limit = 0; limit < 50; limit++) {
const n1 = f(n0);
if (!isFinite(n1) || isNaN(n1)) {
break // failure to converge
}
if (Math.abs((n1 - n0) / n0) < 1e-15) {
return [n1, true] // success
}
n0 = n1;
}
return [0, false] // failure to converge
};
/**
* Len4Half interpolates a center value from a table of four rows.
* @param {Number[]} y - 4 values
* @returns {Number} interpolation result
*/
function len4Half (y) {
if (y.length !== 4) {
throw errorNot4
}
// (3.12) p. 32
return (9 * (y[1] + y[2]) - y[0] - y[3]) / 16
}
/**
* Len5 allows fourth Difference interpolation.
*/
class Len5 {
/**
* NewLen5 prepares a Len5 object from a table of five rows of x and y values.
*
* X values must be equally spaced, so only the first and last are suppliethis.
* X1 must not equal x5. Y must be a slice of five y values.
*/
constructor (x1, x5, y) {
if (y.length !== 5) {
throw errorNot5
}
if (x5 === x1) {
throw errorNoXRange
}
this.x1 = x1;
this.x5 = x5;
this.y = y;
this.y3 = y[2];
// differences
this.a = y[1] - y[0];
this.b = y[2] - y[1];
this.c = y[3] - y[2];
this.d = y[4] - y[3];
this.e = this.b - this.a;
this.f = this.c - this.b;
this.g = this.d - this.c;
this.h = this.f - this.e;
this.j = this.g - this.f;
this.k = this.j - this.h;
// other intermediate values
this.xSum = x5 + x1;
this.xDiff = x5 - x1;
this.interpCoeff = [ // (3.8) p. 28
this.y3,
(this.b + this.c) / 2 - (this.h + this.j) / 12,
this.f / 2 - this.k / 24,
(this.h + this.j) / 12,
this.k / 24
];
}
/**
* InterpolateX interpolates for (a given x value.
*/
interpolateX (x) {
const n = (4 * x - 2 * this.xSum) / this.xDiff;
return this.interpolateN(n)
}
/**
* InterpolateXStrict interpolates for a given x value,
* restricting x to the range x1 to x5 given to the the constructor NewLen5.
*/
interpolateXStrict (x) {
const n = (4 * x - 2 * this.xSum) / this.xDiff;
const y = this.interpolateNStrict(n);
return y
}
/**
* InterpolateN interpolates for (a given interpolating factor n.
*
* The interpolation factor n is x-x3 in units of the tabular x interval.
* (See Meeus p. 28.)
*/
interpolateN (n) {
return base["default"].horner(n, ...this.interpCoeff)
}
/**
* InterpolateNStrict interpolates for (a given interpolating factor n.
*
* N is restricted to the range [-1..1]. This is only half the range given
* to the constructor NewLen5, but is the recommendation given on p. 31.0
*/
interpolateNStrict (n) {
if (n < -1 || n > 1) {
throw errorNOutOfRange
}
return base["default"].horner(n, ...this.interpCoeff)
}
/**
* Extremum returns the x and y values at the extremum.
*
* Results are restricted to the range of the table given to the constructor
* NewLen5. (Meeus actually recommends restricting the range to one unit of
* the tabular interval, but that seems a little harsh.)
*/
extremum () {
// (3.9) p. 29
const nCoeff = [
6 * (this.b + this.c) - this.h - this.j,
0,
3 * (this.h + this.j),
2 * this.k
];
const den = this.k - 12 * this.f;
if (den === 0) {
throw errorExtremumOutside
}
const [n0, ok] = iterate(0, function (n0) {
return base["default"].horner(n0, ...nCoeff) / den
});
if (!ok) {
throw errorNoConverge
}
if (n0 < -2 || n0 > 2) {
throw errorExtremumOutside
}
const x = 0.5 * this.xSum + 0.25 * this.xDiff * n0;
const y = base["default"].horner(n0, ...this.interpCoeff);
return [x, y]
}
/**
* Len5Zero finds a zero of the quartic function represented by the table.
*
* That is, it returns an x value that yields y=0.
*
* Argument strong switches between two strategies for the estimation step.
* when iterating to converge on the zero.
*
* Strong=false specifies a quick and dirty estimate that works well
* for gentle curves, but can work poorly or fail on more dramatic curves.
*
* Strong=true specifies a more sophisticated and thus somewhat more
* expensive estimate. However, if the curve has quick changes, This estimate
* will converge more reliably and in fewer steps, making it a better choice.
*
* Results are restricted to the range of the table given to the constructor
* NewLen5.
*/
zero (strong) {
let f;
if (strong) {
// (3.11), p. 29
const M = this.k / 24;
const N = (this.h + this.j) / 12;
const P = this.f / 2 - M;
const Q = (this.b + this.c) / 2 - N;
const numCoeff = [this.y3, Q, P, N, M];
const denCoeff = [Q, 2 * P, 3 * N, 4 * M];
f = function (n0) {
return n0 -
base["default"].horner(n0, ...numCoeff) / base["default"].horner(n0, ...denCoeff)
};
} else {
// (3.10), p. 29
const numCoeff = [
-24 * this.y3,
0,
this.k - 12 * this.f,
-2 * (this.h + this.j),
-this.k
];
const den = 12 * (this.b + this.c) - 2 * (this.h + this.j);
f = function (n0) {
return base["default"].horner(n0, ...numCoeff) / den
};
}
const [n0, ok] = iterate(0, f);
if (!ok) {
throw errorNoConverge
}
if (n0 > 2 || n0 < -2) {
throw errorZeroOutside
}
const x = 0.5 * this.xSum + 0.25 * this.xDiff * n0;
return x
}
}
/**
* Lagrange performs interpolation with unequally-spaced abscissae.
*
* Given a table of X and Y values, interpolate a new y value for argument x.
*
* X values in the table do not have to be equally spaced; they do not even
* have to be in order. They must however, be distinct.
*
* @param {Number} x - x-value of interpolation
* @param {Array} table - `[[x0, y0], ... [xN, yN]]` of x, y values
* @returns {Number} interpolation result `y` of `x`
*/
function lagrange (x, table) {
// method of BASIC program, p. 33.0
let sum = 0;
table.forEach((ti, i) => {
const xi = ti[0];
let prod = 1.0;
table.forEach((tj, j) => {
if (i !== j) {
const xj = tj[0];
prod *= (x - xj) / (xi - xj);
}
});
sum += ti[1] * prod;
});
return sum
}
/**
* LagrangePoly uses the formula of Lagrange to produce an interpolating
* polynomial.
*
* X values in the table do not have to be equally spaced; they do not even
* have to be in order. They must however, be distinct.
*
* The returned polynomial will be of degree n-1 where n is the number of rows
* in the table. It can be evaluated for x using base.horner.
*
* @param {Array} table - `[[x0, y0], ... [xN, yN]]`
* @returns {Array} - polynomial array
*/
function lagrangePoly (table) {
// Method not fully described by Meeus, but needed for (numerical solution
// to Example 3.g.
const sum = new Array(table.length).fill(0);
const prod = new Array(table.length).fill(0);
const last = table.length - 1;
for (let i = 0; i < table.length; i++) {
const xi = table[i][0] || table[i].x || 0;
const yi = table[i][1] || table[i].y || 0;
prod[last] = 1;
let den = 1.0;
let n = last;
for (let j = 0; j < table.length; j++) {
if (i !== j) {
const xj = table[j][0] || table[j].x || 0;
prod[n - 1] = prod[n] * -xj;
for (let k = n; k < last; k++) {
prod[k] -= prod[k + 1] * xj;
}
n--;
den *= (xi - xj);
}
}
prod.forEach((pj, j) => {
sum[j] += yi * pj / den;
});
}
return sum
}
/**
* Linear Interpolation of x
*/
function linear (x, x1, xN, y) {
const interval = (xN - x1) / (y.length - 1);
if (interval === 0) {
throw errorNoXRange
}
let nearestX = Math.floor((x - x1) / interval);
if (nearestX < 0) {
nearestX = 0;
} else if (nearestX > y.length - 2) {
nearestX = y.length - 2;
}
const y2 = y.slice(nearestX, nearestX + 2);
const x01 = x1 + nearestX * interval;
return y2[0] + (y[1] - y[0]) * (x - x01) / interval
}
var interp = {
errorNot3,
errorNot4,
errorNot5,
errorNoXRange,
errorNOutOfRange,
errorNoExtremum,
errorExtremumOutside,
errorZeroOutside,
errorNoConverge,
Len3,
len3ForInterpolateX,
iterate,
len4Half,
Len5,
lagrange,
lagrangePoly,
linear
};
exports.Len3 = Len3;
exports.Len5 = Len5;
exports["default"] = interp;
exports.errorExtremumOutside = errorExtremumOutside;
exports.errorNOutOfRange = errorNOutOfRange;
exports.errorNoConverge = errorNoConverge;
exports.errorNoExtremum = errorNoExtremum;
exports.errorNoXRange = errorNoXRange;
exports.errorNot3 = errorNot3;
exports.errorNot4 = errorNot4;
exports.errorNot5 = errorNot5;
exports.errorZeroOutside = errorZeroOutside;
exports.iterate = iterate;
exports.lagrange = lagrange;
exports.lagrangePoly = lagrangePoly;
exports.len3ForInterpolateX = len3ForInterpolateX;
exports.len4Half = len4Half;
exports.linear = linear;