diff --git a/aisenzhecode/沥青/定性模型数据项12-11 - 2025年1月16日备份.xls b/aisenzhecode/沥青/备份/定性模型数据项12-11 - 2025年1月16日备份.xls
similarity index 100%
rename from aisenzhecode/沥青/定性模型数据项12-11 - 2025年1月16日备份.xls
rename to aisenzhecode/沥青/备份/定性模型数据项12-11 - 2025年1月16日备份.xls
diff --git a/aisenzhecode/沥青/定性模型数据项12-11 - 2025年1月2日 备份.xls b/aisenzhecode/沥青/备份/定性模型数据项12-11 - 2025年1月2日 备份.xls
similarity index 100%
rename from aisenzhecode/沥青/定性模型数据项12-11 - 2025年1月2日 备份.xls
rename to aisenzhecode/沥青/备份/定性模型数据项12-11 - 2025年1月2日 备份.xls
diff --git a/aisenzhecode/沥青/定性模型数据项12-11 - 2025年1月8日备份.xls b/aisenzhecode/沥青/备份/定性模型数据项12-11 - 2025年1月8日备份.xls
similarity index 100%
rename from aisenzhecode/沥青/定性模型数据项12-11 - 2025年1月8日备份.xls
rename to aisenzhecode/沥青/备份/定性模型数据项12-11 - 2025年1月8日备份.xls
diff --git a/aisenzhecode/沥青/定性模型数据项12-11.xls b/aisenzhecode/沥青/备份/定性模型数据项12-11.xls
similarity index 100%
rename from aisenzhecode/沥青/定性模型数据项12-11.xls
rename to aisenzhecode/沥青/备份/定性模型数据项12-11.xls
diff --git a/aisenzhecode/沥青/定性模型计算规则与权重.xls b/aisenzhecode/沥青/备份/定性模型计算规则与权重.xls
similarity index 100%
rename from aisenzhecode/沥青/定性模型计算规则与权重.xls
rename to aisenzhecode/沥青/备份/定性模型计算规则与权重.xls
diff --git a/aisenzhecode/沥青/定性模型数据项12-11.xlsx b/aisenzhecode/沥青/定性模型数据项12-11.xlsx
index 29acdd4..6ac18e4 100644
Binary files a/aisenzhecode/沥青/定性模型数据项12-11.xlsx and b/aisenzhecode/沥青/定性模型数据项12-11.xlsx differ
diff --git a/aisenzhecode/沥青/日度价格预测_最佳模型.pkl b/aisenzhecode/沥青/日度价格预测_最佳模型.pkl
index 9e7d0ab..c672501 100644
Binary files a/aisenzhecode/沥青/日度价格预测_最佳模型.pkl and b/aisenzhecode/沥青/日度价格预测_最佳模型.pkl differ
diff --git a/aisenzhecode/沥青/沥青定性模型每日推送-ytj.ipynb b/aisenzhecode/沥青/沥青定性模型每日推送-ytj.ipynb
index a9754b4..c23a7e3 100644
--- a/aisenzhecode/沥青/沥青定性模型每日推送-ytj.ipynb
+++ b/aisenzhecode/沥青/沥青定性模型每日推送-ytj.ipynb
@@ -14,6 +14,7 @@
"import time\n",
"import pandas as pd\n",
"pd.set_option('display.max_columns', None)\n",
+ "import datetime\n",
"\n",
"import numpy as np\n",
"# 变量定义\n",
@@ -21,6 +22,7 @@
"# query_data_list_item_nos_url\n",
"search_url = \"http://10.200.32.39/jingbo-api/api/warehouse/dwDataItem/queryByItemNos\" #jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos\n",
"upload_url = \"http://10.200.32.39/jingbo-api/api/dw/dataValue/pushDataValueList\"\n",
+ "queryDataListItemNos_url = \"http://10.200.32.39/jingbo-api//api/warehouse/dwDataItem/queryDataListItemNos\"\n",
"\n",
"\n",
"query_data_list_item_nos_data = {\n",
@@ -972,28 +974,125 @@
" # 保存新的xls文件\n",
" new_workbook.save(\"定性模型数据项12-11.xlsx\")\n",
"\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "def get_queryDataListItemNos_value(token, url, dataItemNoList, dateStart, dateEnd):\n",
+ "\n",
+ " search_data = {\n",
+ " \"funcModule\": \"数据项\",\n",
+ " \"funcOperation\": \"查询\",\n",
+ " \"data\": {\n",
+ " \"dateStart\": dateStart,\n",
+ " \"dateEnd\": dateEnd,\n",
+ " \"dataItemNoList\": dataItemNoList # 数据项编码,代表 brent最低价和最高价\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " headers = {\"Authorization\": token}\n",
+ " search_res = requests.post(url=url, headers=headers, json=search_data, timeout=(3, 5))\n",
+ " search_value = json.loads(search_res.text)[\"data\"]\n",
+ " if search_value:\n",
+ " return search_value\n",
+ " else:\n",
+ " return None\n",
+ "\n",
+ "\n",
+ "\n",
+ "def save_queryDataListItemNos_xls(data_df,dataItemNoList):\n",
+ "\n",
+ " current_year_month = datetime.datetime.now().strftime('%Y-%m')\n",
+ " grouped = data_df.groupby(\"dataDate\")\n",
+ "\n",
+ "\n",
+ " df_old = pd.read_excel('定性模型数据项12-11.xlsx')\n",
+ " df_old0 = df_old[:1]\n",
+ " result_dict = {df_old0.iloc[0][col] : col for col in df_old0.columns}\n",
+ " df_old1 = df_old[1:].copy()\n",
+ "\n",
+ " df_old1[\"日期\"] = pd.to_datetime(df_old1[\"日期\"])\n",
+ " # 删除日期列为本月的数据\n",
+ " df_old1 = df_old1[~df_old1[\"日期\"].dt.strftime('%Y-%m').eq(current_year_month)]\n",
+ " df_old1[\"日期\"] = df_old1[\"日期\"].dt.strftime('%Y-%m-%d')\n",
+ "\n",
+ "\n",
+ " list_data = []\n",
+ " for date, group in grouped:\n",
+ " dict_data = {\"日期\": date}\n",
+ " for index, row in group.iterrows():\n",
+ " dict_data[result_dict[row['dataItemNo']]] = row['dataValue']\n",
+ " list_data.append(dict_data)\n",
+ "\n",
+ " df_current_year_month = pd.DataFrame(list_data)\n",
+ " df_current_year_month\n",
+ "\n",
+ " df_merged = pd.concat([df_old0, df_old1, df_current_year_month], ignore_index=True)\n",
+ "\n",
+ " df_merged.to_excel('定性模型数据项12-11.xlsx', index=False)\n",
+ "\n",
+ "\n",
+ "\n",
+ "def queryDataListItemNos():\n",
+ " df = pd.read_excel('定性模型数据项12-11.xlsx')\n",
+ " dataItemNoList = df.iloc[0].tolist()[1:]\n",
+ "\n",
+ " token = getLogToken()\n",
+ " if not token:\n",
+ " return\n",
+ "\n",
+ " # 获取当前日期\n",
+ " current_date = datetime.datetime.now()\n",
+ "\n",
+ " # 获取当月1日\n",
+ " first_day_of_month = current_date.replace(day=1)\n",
+ "\n",
+ " # 格式化为 YYYYMMDD 格式\n",
+ " dateEnd = current_date.strftime('%Y%m%d')\n",
+ " dateStart = first_day_of_month.strftime('%Y%m%d')\n",
+ "\n",
+ " search_value = get_queryDataListItemNos_value(token, queryDataListItemNos_url, dataItemNoList, dateStart, dateEnd)\n",
+ " # print(\"search_value\",search_value)\n",
+ "\n",
+ "\n",
+ " data_df = pd.DataFrame(search_value)\n",
+ "\n",
+ " data_df[\"dataDate\"] = pd.to_datetime(data_df[\"dataDate\"])\n",
+ " data_df[\"dataDate\"] = data_df[\"dataDate\"].dt.strftime('%Y-%m-%d')\n",
+ " save_queryDataListItemNos_xls(data_df,dataItemNoList)\n",
+ "\n",
"\n"
]
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"### 原始代码备份\n",
"\n",
- "# if __name__ == \"__main__\":\n",
+ "if __name__ == \"__main__\":\n",
+ " pass\n",
"\n",
" # 需要单独运行放开\n",
- "# start_1()\n",
+ " # start_1()\n",
+ " # start()\n",
"\n",
- " # # 每天定时12点运行\n",
+ "\n",
+ " # 每天定时12点运行\n",
" # while True:\n",
" # # 获取当前时间\n",
" # current_time = time.strftime(\"%H:%M:%S\", time.localtime())\n",
" # current_time_1 = time.strftime(\"%H:%M:%S\", time.localtime())\n",
"\n",
+ "\n",
+ " # # 获取当月的数据写入到指定文件\n",
+ " # queryDataListItemNos()\n",
+ "\n",
+ "\n",
" # # 判断当前时间是否为执行任务的时间点\n",
" # if current_time == \"12:00:00\":\n",
" # print(\"执行定时任务\")\n",
diff --git a/aisenzhecode/沥青/沥青定量价格预测每日推送-ytj.ipynb b/aisenzhecode/沥青/沥青定量价格预测每日推送-ytj.ipynb
index 51725e9..d13ce47 100644
--- a/aisenzhecode/沥青/沥青定量价格预测每日推送-ytj.ipynb
+++ b/aisenzhecode/沥青/沥青定量价格预测每日推送-ytj.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 6,
"metadata": {},
"outputs": [
{
@@ -11,23 +11,23 @@
" \n",
- " \n",
" "
]
},
"metadata": {},
"output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "C:\\Users\\h5218\\AppData\\Local\\Temp\\ipykernel_25428\\1736143337.py:811: DeprecationWarning:\n",
- "\n",
- "The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.\n",
- "\n"
- ]
}
],
"source": [
@@ -237,8 +237,8 @@
" ]\n",
" }\n",
" headers = {\"Authorization\": token_push}\n",
- " res = requests.post(url=upload_url, headers=headers, json=data, timeout=(3, 5))\n",
- " print(res.text)\n",
+ " # res = requests.post(url=upload_url, headers=headers, json=data, timeout=(3, 5))\n",
+ " # print(res.text)\n",
"\n",
" \n",
"# def upload_data_to_system(token):\n",
@@ -894,8 +894,9 @@
" # current_time = time.strftime(\"%H:%M:%S\", time.localtime())\n",
" # current_time_1 = time.strftime(\"%H:%M:%S\", time.localtime())\n",
"\n",
- " # 获取当月的数据写入到指定文件\n",
- " # queryDataListItemNos()\n",
+ " # 获取当月的数据写入到指定文件\n",
+ " # queryDataListItemNos()\n",
+ " \n",
"\n",
" # # 判断当前时间是否为执行任务的时间点\n",
" # if current_time == \"12:00:00\":\n",
@@ -925,1489 +926,98 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 7,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "20250201\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_7996\\2158043523.py:299: UserWarning:\n",
- "\n",
- "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Using matplotlib backend: