From 1ae576454cb8c38a6351d0b9ec82a92ba62cfd15 Mon Sep 17 00:00:00 2001 From: workpc Date: Wed, 28 May 2025 16:56:25 +0800 Subject: [PATCH] =?UTF-8?q?=E7=9F=B3=E6=B2=B9=E7=84=A6=E6=99=AE=E8=B4=A7?= =?UTF-8?q?=E5=91=A8=E5=BA=A6=E6=9C=88=E5=BA=A6=E9=85=8D=E7=BD=AE?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- config_shiyoujiao_puhuo_yuedu.py | 619 ++++++++++++++++++++++++++++++ config_shiyoujiao_puhuo_zhoudu.py | 470 +++++++++++++++++++++++ eta数据调试.py | 353 ++++++++--------- main_shiyoujiao_puhuo_yuedu.py | 442 +++++++++++++++++++++ main_shiyoujiao_puhuo_zhoudu.py | 424 ++++++++++++++++++++ 5 files changed, 2132 insertions(+), 176 deletions(-) create mode 100644 config_shiyoujiao_puhuo_yuedu.py create mode 100644 config_shiyoujiao_puhuo_zhoudu.py create mode 100644 main_shiyoujiao_puhuo_yuedu.py create mode 100644 main_shiyoujiao_puhuo_zhoudu.py diff --git a/config_shiyoujiao_puhuo_yuedu.py b/config_shiyoujiao_puhuo_yuedu.py new file mode 100644 index 0000000..47653d4 --- /dev/null +++ b/config_shiyoujiao_puhuo_yuedu.py @@ -0,0 +1,619 @@ +import logging +import os +import logging.handlers +import datetime +from lib.tools import MySQLDB, SQLiteHandler + + +# eta 接口token +APPID = "XNLDvxZHHugj7wJ7" +SECRET = "iSeU4s6cKKBVbt94htVY1p0sqUMqb2xa" + +# eta 接口url +sourcelisturl = 'http://10.189.2.78:8108/v1/edb/source/list' +classifylisturl = 'http://10.189.2.78:8108/v1/edb/classify/list?ClassifyType=' +uniquecodedataurl = 'http://10.189.2.78:8108/v1/edb/data?UniqueCode=4991c37becba464609b409909fe4d992&StartDate=2024-02-01' +classifyidlisturl = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId=' +edbcodedataurl = 'http://10.189.2.78:8108/v1/edb/data?EdbCode=' +edbdatapushurl = 'http://10.189.2.78:8108/v1/edb/push' +edbdeleteurl = 'http://10.189.2.78:8108/v1/edb/business/edb/del' +edbbusinessurl = 'http://10.189.2.78:8108/v1/edb/business/data/del' + +edbcodenamedict = { + 'C2403283369': '预赔阳极加工利润(高端)', + 'C2403285560': '预培阳极加工利润(低端)', + 'C2403288616': '低硫石油焦煅烧利润', + 'S6949656': '平均价:氧化铝:一级:全国', + 'S5807052': '氧化铝:一级:贵阳', + 'S5443355': '市场价:煤沥青:河北地区', + 'S5443357': '市场价:煤沥青:山西地区', + 'W000294': '国内主要港口石油焦出货量(隆重)', + 'W000293': '日照港库存(隆重)', + 'W000292': '港口总库存(隆重)', + 'W000283': '主营石油焦产量(隆重)', + 'W000282': '地炼石油焦产量(隆重)', + 'W000281': '中国石油焦产量(隆重)', + 'W000280': '主营石油焦开工负荷率(隆重)', + 'W000279': '地炼石油焦开工负荷率(隆重)', + 'ID00150273': '石油焦:1 # :市场低端价:东北地区(日)', + 'ID00150281': '石油焦:1 # :市场主流价:东北地区(日)', + 'ID00150277': '石油焦:1 # :市场高端价:东北地区(日)', + 'ID00150289': '石油焦:2 # :市场低端价:华东地区(日)', + 'ID00150285': '石油焦:2 # :市场低端价:西北地区(日)', + 'ID00150313': '石油焦:2 # :市场主流价:华东地区(日)', + 'ID00150309': '石油焦:2 # :市场主流价:西北地区(日)', + 'ID00150301': '石油焦:2 # :市场高端价:华东地区(日)', + 'ID00150297': '石油焦:2 # :市场高端价:西北地区(日)', + 'ID00150321': '石油焦:2 # A:市场低端价:山东(日)', + 'ID00150329': '石油焦:2 # A:市场主流价:山东(日)', + 'ID00150325': '石油焦:2 # A:市场高端价:山东(日)', + 'ID00150337': '石油焦:2 # B:市场低端价:华南地区(日)', + 'ID00150341': '石油焦:2 # B:市场低端价:华中地区(日)', + 'ID00150361': '石油焦:2 # B:市场主流价:华南地区(日)', + 'ID00150365': '石油焦:2 # B:市场主流价:华中地区(日)', + 'ID00150349': '石油焦:2 # B:市场高端价:华南地区(日)', + 'ID00150353': '石油焦:2 # B:市场高端价:华中地区(日)', + 'ID00150333': '石油焦:2 # B:市场低端价:山东(日)', + 'ID00150357': '石油焦:2 # B:市场主流价:山东(日)', + 'ID00150345': '石油焦:2 # B:市场高端价:山东(日)', + 'ID00150369': '石油焦:3 # :市场低端价:华中地区(日)', + 'ID00150373': '石油焦:3 # :市场高端价:华中地区(日)', + 'ID00150385': '石油焦:3 # A:市场高端价:山东(日)', + 'ID00150393': '石油焦:3 # B:市场低端价:华东地区(日)', + 'ID00150409': '石油焦:3 # B:市场主流价:华东地区(日)', + 'ID00150401': '石油焦:3 # B:市场高端价:华东地区(日)', + 'ID00146589': '海绵焦:4 # :出厂价:华中地区:洛阳石化(日)', + 'ID01242846': '石油焦:4 # B:挂牌价:华北地区:中石化燕山(日)', + 'ID01300358': '石油焦:3 # C:市场低端价:山东(日)', + 'ID01300357': '石油焦:3 # C:市场高端价:山东(日)', + 'ID00150377': '石油焦:3 # :市场主流价:华中地区(日)', + 'ID01387643': '煅烧焦:低硫:0.5 % S:市场价:东北地区(日)', + 'ID01387646': '煅烧焦:低硫:3.5 % S:市场价:东北地区(日)', + 'ID01387660': '煅烧焦:中硫:3 % S,400V:市场价:山东(日)', + 'ID00150381': '石油焦:3 # A:市场低端价:山东(日)', + 'ID00150397': '石油焦:3 # B:市场低端价:山东(日)', + 'ID00150405': '石油焦:3 # B:市场高端价:山东(日)', + 'ID00146545': '海绵焦:3B:出厂价:山东:山东东明(日)', + 'B3e90b34e4b9e7a6ea3': '石油焦市场均价(元/吨)', + 'B6b5c53b270a3af12ac': '石油焦1 # 市场均价(元/吨)', + 'B10721189a11c209a20': '石油焦2 # 市场均价(元/吨)', + 'B6accfa9d2bf4735a50': '石油焦3 # 市场均价(元/吨)', + 'B8a0ab5357569c385a9': '石油焦海绵焦市场均价(元/吨)', + 'B19dcf45e22fbfd3e43': '石油焦海绵焦东北1 # A焦(低端)(元/吨)(百川)', + 'B5832a62d1e0fba50b6': '石油焦海绵焦东北1 # A焦(高端)(元/吨)(百川)', + 'B1de4fba026d4609cc7': '石油焦海绵焦东北1 # B焦(低端)(元/吨)(百川)', + 'B38f89180736172490d': '石油焦海绵焦东北1 # B焦(高端)(元/吨)(百川)', + 'B4f847871674c3d77f2': '石油焦海绵焦山东地炼1 # -3#焦(低端)(元/吨)', + 'B1aefb8a64a5200adbd': '石油焦海绵焦山东地炼1 # -3#焦(高端)(元/吨)', + 'B1df7d0afbfedfb628a': '煅烧焦东北低硫(高端S < 0.5)(元/吨)', + 'B5f8f9859635876da28': '煅烧焦东北低硫(低端S < 0.5)(元/吨)', + 'B2342a8c5a39fa00348': '煅烧焦华北中硫(高端S < 3.0,钒 < 400)(元/吨)', + 'B051f27900397c6a35f': '煅烧焦山东中硫(高端S < 3.0,钒 < 400)(元/吨)', + 'Be2a8050a48e86cae1f': '煅烧焦华东中硫(高端S < 3.0,钒 < 400)(元/吨)', + 'B4a1811938f85065f6a': '煅烧焦华中中硫(高端S < 3.0,钒 < 400)(元/吨)', + 'Bc197d4834ef7fb98ec': '煅烧焦华东高硫(高端S < 3.5,钒 < 400)(元/吨)', + 'B62be5dbdb8c6454530': '煅烧焦低硫参考价格(元/吨)(百川)', + 'Bdd813140bffc4edfa6': '煅烧焦中硫微量市场均价(元/吨)(百川)', + 'B185a597decfc71915a': '预焙阳极山东低端(元/吨)(百川)', + 'B1bcde6130de031bd42': '山西 改质沥青(元/吨)', + 'Bb9f4a1f6dd32b4ad8a': '山东 改质沥青(元/吨)', + 'C2411261557491549': '石油焦市场均价(元/吨)/4DMA', + 'C2411271143174617': '石油焦市场均价(元/吨)/9DMA', + 'ID01387649': '煅烧焦:中硫:3 % S,350V:市场价:华东地区(日)', + 'ID01387655': '煅烧焦:中硫:3 % S,350V:市场价:山东(日)', + 'RE00010076': '煅烧焦:低硫:生产毛利:东北地区(周)', + 'B9d1acaf80383683da3': '石油焦总产量(周)(吨)', + 'Bdaa719a38936c8dd76': '石油焦开工率(周)( % )', + 'B9459d549a332b200e7': '石油焦行业总库存(周)(吨)', + 'Bce6e098b9518370cff': '石油焦工厂库存(周)(吨)', + 'B577ce2809772779710': '石油焦市场库存(周)(吨)', + 'B5d8c564c62f3e6b77f': '石油焦成本(周)(吨)', + 'B43baa98bcaa06c11a5': '石油焦利润(周)(吨)', + 'Bdd0c1361d94081211c': '煅烧石油焦总产量(周)(吨)', + 'B65315111fa28951b1e': '煅烧石油焦开工率(周)( % )', + 'B2aff5f2632a20027d0': '煅烧石油焦行业总库存(周)(吨)', + 'B29fbd31128cd71b212': '煅烧石油焦工厂库存(周)(吨)', + 'B7a88313a89d1261c53': '煅烧石油焦成本(周)(吨)', + 'Bd4fa36b4decec0aafa': '煅烧石油焦利润(周)(吨)', + 'B9bd80eac7df81ffbd4': '预焙阳极总产量(周)(吨)', + 'B27074786605f4660d2': '预焙阳极开工率(周)( % )', + 'Bdc2a5985ecb56b6a0c': '预焙阳极行业总库存(周)(吨)', + 'Bce8511f899e487e5b6': '预焙阳极工厂库存(周)(吨)', + 'B13ec89105bd866a2bd': '预焙阳极成本(周)(吨)', + 'B66c3abcfa15a2e611c': '预焙阳极利润(周)(吨)', + 'Bf7efe3200f9abc0453': '电解铝开工率(周)( % )', + 'Be193166f347267b1a7': '电解铝行业总库存(周)(吨)', + 'Baa744fc97769353175': '电解铝工厂库存(周)(吨)', + 'Bf9654603913cfc5282': '电解铝市场库存(周)(吨)', + 'Bef1535c96da0d70fbc': '电解铝利润(周)(吨)', + 'B7d1d0b24316d49cbdc': '煤沥青总产量(周)(吨)', + 'B4303fb002ea1c214da': '煤沥青开工率(周)( % )', + 'Be9a470c97e9efe660c': '煤沥青行业总库存(周)(吨)', + 'B50d4d87f6b78bca587': '煤沥青工厂库存(周)(吨)', + 'B46cc7d0a90155b5bfd': '煅烧焦山东高硫(高端S < 3.5,普货)(元/吨)' +} + +edbcodelist = edbcodenamedict.keys() +# 临时写死用指定的列,与上面的edbcode对应,后面更改 +edbnamelist = ['ds', 'y']+[edbcodenamedict[edbcodename] + for edbcodename in edbcodelist] + +# eta自有数据指标编码,石油焦普货还没新增,暂且留空 +# eta自有数据指标编码 次周,隔周 +bdwdname = [ + '次月', + '次二月', + '次三月', + '次四月', +] +modelsindex = [{"NHITS": "SELF0000451", + "Informer": "SELF0000452", + "LSTM": "SELF0000453", + "iTransformer": "SELF0000454", + "TSMixer": "SELF0000455", + "TSMixerx": "SELF0000456", + "PatchTST": "SELF0000457", + "RNN": "SELF0000458", + "GRU": "SELF0000459", + "TCN": "SELF0000460", + "BiTCN": "SELF0000461", + "DilatedRNN": "SELF0000462", + "MLP": "SELF0000463", + "DLinear": "SELF0000464", + "NLinear": "SELF0000465", + "TFT": "SELF0000466", + "FEDformer": "SELF0000467", + "StemGNN": "SELF0000468", + "MLPMultivariate": "SELF0000469", + "TiDE": "SELF0000470", + "DeepNPTS": "SELF0000471", + "NBEATS": "SELF0000472", + }, {"NHITS": "SELF0000473", + "Informer": "SELF0000474", + "LSTM": "SELF0000475", + "iTransformer": "SELF0000476", + "TSMixer": "SELF0000477", + "TSMixerx": "SELF0000478", + "PatchTST": "SELF0000479", + "RNN": "SELF0000480", + "GRU": "SELF0000481", + "TCN": "SELF0000482", + "BiTCN": "SELF0000483", + "DilatedRNN": "SELF0000484", + "MLP": "SELF0000485", + "DLinear": "SELF0000486", + "NLinear": "SELF0000487", + "TFT": "SELF0000488", + "FEDformer": "SELF0000489", + "StemGNN": "SELF0000490", + "MLPMultivariate": "SELF0000491", + "TiDE": "SELF0000492", + "DeepNPTS": "SELF0000493", + "NBEATS": "SELF0000494", + }, {"NHITS": "SELF0000495", + "Informer": "SELF0000496", + "LSTM": "SELF0000497", + "iTransformer": "SELF0000498", + "TSMixer": "SELF0000499", + "TSMixerx": "SELF0000500", + "PatchTST": "SELF0000501", + "RNN": "SELF0000502", + "GRU": "SELF0000503", + "TCN": "SELF0000504", + "BiTCN": "SELF0000505", + "DilatedRNN": "SELF0000506", + "MLP": "SELF0000507", + "DLinear": "SELF0000508", + "NLinear": "SELF0000509", + "TFT": "SELF0000510", + "FEDformer": "SELF0000511", + "StemGNN": "SELF0000512", + "MLPMultivariate": "SELF0000513", + "TiDE": "SELF0000514", + "DeepNPTS": "SELF0000515", + "NBEATS": "SELF0000516", + }, {"NHITS": "SELF0000517", + "Informer": "SELF0000518", + "LSTM": "SELF0000519", + "iTransformer": "SELF0000520", + "TSMixer": "SELF0000521", + "TSMixerx": "SELF0000522", + "PatchTST": "SELF0000523", + "RNN": "SELF0000524", + "GRU": "SELF0000525", + "TCN": "SELF0000526", + "BiTCN": "SELF0000527", + "DilatedRNN": "SELF0000528", + "MLP": "SELF0000529", + "DLinear": "SELF0000530", + "NLinear": "SELF0000531", + "TFT": "SELF0000532", + "FEDformer": "SELF0000533", + "StemGNN": "SELF0000534", + "MLPMultivariate": "SELF0000535", + "TiDE": "SELF0000536", + "DeepNPTS": "SELF0000537", + "NBEATS": "SELF0000538", + }] + +# 百川数据指标编码 +baichuanidnamedict = { + '1588348470396480901': '石油焦滨州-友泰', + '1588348470396480903': '石油焦东营-海科瑞林', + '1588348470396480902': '石油焦东营-华联2', + '1588348470396481080': '石油焦东营-华联3', + '1588348470396480905': '石油焦东营-联合', + '1588348470396481081': '石油焦东营-联合3', + '1588348470396480915': '石油焦淄博-汇丰', + '1588348470396480888': '石油焦沧州-鑫海', + '1588348470396480917': '石油焦东营-万通', + '1588348470396480925': '石油焦东营-齐润', + '1588348470396481084': '石油焦东营-尚能4', + '1588348470396480930': '石油焦潍坊-寿光鲁清', + '1588348470396480929': '石油焦滨州-鑫岳' +} + + +# baichuanidnamedict = {'1588348470396475286': 'test1', '1666': 'test2'} # 北京环境测试用 + +# eta 上传预测结果的请求体,后面发起请求的时候更改 model datalist 数据 +data = { + "IndexCode": "", + "IndexName": "石油焦普货价格预测xx模型-yy", + "Unit": "无", + "Frequency": "日度", + "SourceName": f"价格预测", + "Remark": 'ddd', + "DataList": [ + { + "Date": "2024-05-02", + "Value": 333444 + } + ] +} + +# eta 分类 +# level:3才可以获取到数据,所以需要人工把能源化工下所有的level3级都找到 +# url = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId=1214' +# ParentId ":1160, 能源化工 +# ClassifyId ":1214,原油 3912 石油焦 +# ParentId ":1214,",就是原油下所有的数据。 +ClassifyId = 3707 + + +# 变量定义--线上环境 +# server_host = '10.200.32.39' +# login_pushreport_url = "http://10.200.32.39/jingbo-api/api/server/login" +# upload_url = "http://10.200.32.39/jingbo-api/api/analysis/reportInfo/researchUploadReportSave" +# upload_warning_url = "http://10.200.32.39/jingbo-api/api/basicBuiness/crudeOilWarning/save" +# query_data_list_item_nos_url = f"http://{server_host}/jingbo-api/api/warehouse/dwDataItem/queryDataListItemNos" +# # 上传数据项值 +# push_data_value_list_url = f"http://{server_host}/jingbo-api/api/dw/dataValue/pushDataValueList" + +# login_data = { +# "data": { +# "account": "api_dev", +# "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", +# "tenantHashCode": "8a4577dbd919675758d57999a1e891fe", +# "terminal": "API" +# }, +# "funcModule": "API", +# "funcOperation": "获取token" +# } + + +# upload_data = { +# "funcModule":'研究报告信息', +# "funcOperation":'上传原油价格预测报告', +# "data":{ +# "groupNo":'', # 用户组id +# "ownerAccount":'27663', #报告所属用户账号 27663 - 刘小朋 +# "reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST +# "fileName": '', #文件名称 +# "fileBase64": '' ,#文件内容base64 +# "categoryNo":'yyjgycbg', # 研究报告分类编码 +# "smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码 +# "reportEmployeeCode":"E40482" ,# 报告人 E40482 - 管理员 0000027663 - 刘小朋 +# "reportDeptCode" :"002000621000", # 报告部门 - 002000621000 SH期货研究部 +# "productGroupCode":"RAW_MATERIAL" # 商品分类 +# } +# } + +# warning_data = { +# "groupNo":'', # 用户组id +# "funcModule":'原油特征停更预警', +# "funcOperation":'原油特征停更预警', +# "data":{ +# 'WARNING_TYPE_NAME':'特征数据停更预警', +# 'WARNING_CONTENT':'', +# 'WARNING_DATE':'' +# } +# } + +# query_data_list_item_nos_data = { +# "funcModule": "数据项", +# "funcOperation": "查询", +# "data": { +# "dateStart":"20200101", +# "dateEnd":"20241231", +# "dataItemNoList":["Brentzdj","Brentzgj"] # 数据项编码,代表 brent最低价和最高价 +# } +# } + + +# push_data_value_list_data = { +# "funcModule": "数据表信息列表", +# "funcOperation": "新增", +# "data": [ +# {"dataItemNo": "91230600716676129", +# "dataDate": "20230113", +# "dataStatus": "add", +# "dataValue": 100.11 +# }, +# {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY", +# "dataDate": "20230113", +# "dataStatus": "add", +# "dataValue": 100.55 +# }, +# {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY", +# "dataDate": "20230113", +# "dataStatus": "add", +# "dataValue": 100.55 +# } +# ] +# } +# # 八大维度数据项编码 +# bdwd_items = { +# 'ciri': '原油大数据预测|FORECAST|PRICE|T', +# 'benzhou': '原油大数据预测|FORECAST|PRICE|W', +# 'cizhou': '原油大数据预测|FORECAST|PRICE|W_1', +# 'gezhou': '原油大数据预测|FORECAST|PRICE|W_2', +# 'ciyue': '原油大数据预测|FORECAST|PRICE|M_1', +# 'cieryue': '原油大数据预测|FORECAST|PRICE|M_2', +# 'cisanyue': '原油大数据预测|FORECAST|PRICE|M_3', +# 'cisiyue': '原油大数据预测|FORECAST|PRICE|M_4', +# } + + +# # 生产环境数据库 +# host = 'rm-2zehj3r1n60ttz9x5.mysql.rds.aliyuncs.com' +# port = 3306 +# dbusername ='jingbo' +# password = 'shihua@123' +# dbname = 'jingbo' +# table_name = 'v_tbl_crude_oil_warning' + + +# # 变量定义--测试环境 +server_host = '192.168.100.53:8080' # 内网 +# server_host = '183.242.74.28' # 外网 +login_pushreport_url = f"http://{server_host}/jingbo-dev/api/server/login" +upload_url = f"http://{server_host}/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave" +upload_warning_url = f"http://{server_host}/jingbo-dev/api/basicBuiness/crudeOilWarning/save" +query_data_list_item_nos_url = f"http://{server_host}/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos" +# 上传数据项值 +push_data_value_list_url = f"http://{server_host}/jingbo-dev/api/dw/dataValue/pushDataValueList" + +login_data = { + "data": { + "account": "api_test", + # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456 + "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456 + "tenantHashCode": "8a4577dbd919675758d57999a1e891fe", + "terminal": "API" + }, + "funcModule": "API", + "funcOperation": "获取token" +} + +upload_data = { + "groupNo": '', # 用户组id + "funcModule": '研究报告信息', + "funcOperation": '上传石油焦普货价格预测报告', + "data": { + "ownerAccount": 'arui', # 报告所属用户账号 + "reportType": 'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST + "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', # 文件名称 + "fileBase64": '', # 文件内容base64 + "categoryNo": 'yyjgycbg', # 研究报告分类编码 + "smartBusinessClassCode": 'YCJGYCBG', # 分析报告分类编码 + "reportEmployeeCode": "E40116", # 报告人 + "reportDeptCode": "D0044", # 报告部门 + "productGroupCode": "RAW_MATERIAL" # 商品分类 + } +} + + +warning_data = { + "groupNo": '', # 用户组id + "funcModule": '石油焦普货特征停更预警', + "funcOperation": '石油焦普货特征停更预警', + "data": { + 'WARNING_TYPE_NAME': '特征数据停更预警', + 'WARNING_CONTENT': '', + 'WARNING_DATE': '' + } +} + +query_data_list_item_nos_data = { + "funcModule": "数据项", + "funcOperation": "查询", + "data": { + "dateStart": "20200101", + "dateEnd": "20241231", + "dataItemNoList": ["Brentzdj", "Brentzgj"] # 数据项编码,代表 brent最低价和最高价 + } +} + +push_data_value_list_data = { + "funcModule": "数据表信息列表", + "funcOperation": "新增", + "data": [ + {"dataItemNo": "91230600716676129", + "dataDate": "20230113", + "dataStatus": "add", + "dataValue": 100.11 + }, + {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY", + "dataDate": "20230113", + "dataStatus": "add", + "dataValue": 100.55 + }, + {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY", + "dataDate": "20230113", + "dataStatus": "add", + "dataValue": 100.55 + } + ] +} + +# 八大维度数据项编码 +bdwd_items = { + 'ciri': 'syjlyycbdwdcr', + 'benzhou': 'syjlyycbdwdbz', + 'cizhou': 'syj|nextweek|price', + 'gezhou': 'syj|next-one-week|price', + 'ciyue': 'syj|next-month|price', + 'cieryue': 'syj|next-one-month|price', + 'cisanyue': 'yj|next-two-month|price', + 'cisiyue': 'yj|next-three-month|price', +} + +# 报告中八大维度数据项重命名 +columnsrename = {'syjlyycbdwdcr': '次日', 'syjlyycbdwdbz': '本周', + 'syj|nextweek|price': '次周', 'syj|next-one-week|price': '隔周', + 'syj|next-month|price': '次月', 'syj|next-one-month|price': '次二月', 'yj|next-two-month|price': '次三月', 'yj|next-three-month|price': '次四月'} +# 北京环境数据库 +host = '192.168.101.27' +port = 3306 +dbusername = 'root' +password = '123456' +dbname = 'jingbo_test' + +# 京博测试环境 +# host = 'rm-2zehj3r1n60ttz9x5ko.mysql.rds.aliyuncs.com' +# port = 3306 +# dbusername = 'jingbo' +# password = 'shihua@123' +# dbname = 'jingbo-test' + + +table_name = 'v_tbl_crude_oil_warning' +baichuan_table_name = 'V_TBL_BAICHUAN_YINGFU_VALUE' +# select BAICHUAN_ID, DATA_DATE, DATA_VALUE from V_TBL_BAICHUAN_YINGFU_VALUE where BAICHUAN_ID in ('1588348470396475286', '1666') +# 开关 +is_train = True # 是否训练 +is_debug = False # 是否调试 +is_eta = True # 是否使用eta接口 +is_market = False # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效 +is_timefurture = True # 是否使用时间特征 +is_fivemodels = False # 是否使用之前保存的最佳的5个模型 +is_edbcode = False # 特征使用edbcoding列表中的 +is_edbnamelist = False # 自定义特征,对应上面的edbnamelist +is_update_eta = True # 预测结果上传到eta +is_update_report = True # 是否上传报告 +is_update_warning_data = False # 是否上传预警数据 +is_update_predict_value = True # 是否上传预测值到市场信息平台 +is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征 +is_del_tow_month = False # 是否删除两个月不更新的特征 +is_bdwd = True # 是否使用八大维度 + + +# 连接到数据库 +db_mysql = MySQLDB(host=host, user=dbusername, + password=password, database=dbname) +db_mysql.connect() +print("数据库连接成功", host, dbname, dbusername) + + +# 数据截取日期 +start_year = 2000 # 数据开始年份 +end_time = '' # 数据截取日期 +freq = 'M' # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日 "WW" 自定义周 +delweekenday = True if freq == 'B' else False # 是否删除周末数据 +is_corr = False # 特征是否参与滞后领先提升相关系数 +add_kdj = False # 是否添加kdj指标 +if add_kdj and is_edbnamelist: + edbnamelist = edbnamelist+['K', 'D', 'J'] + +# 模型参数 +y = '石油焦:3 # B:市场低端价:山东(日)' +avg_cols = [ + +] +offsite = 80 +offsite_col = [] +horizon = 4 # 预测的步长 +input_size = 8 # 输入序列长度 +train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数 +val_check_steps = 30 # 评估频率 +early_stop_patience_steps = 5 # 早停的耐心步数 +# --- 交叉验证用的参数 +test_size = 100 # 测试集大小,定义100,后面使用的时候重新赋值 +val_size = test_size # 验证集大小,同测试集大小 + +# 特征筛选用到的参数 +k = 100 # 特征筛选数量,如果是0或者值比特征数量大,代表全部特征 +corr_threshold = 0.6 # 相关性大于0.6的特征 +rote = 0.06 # 绘图上下界阈值 + +# 计算准确率 +weight_dict = [0.4, 0.15, 0.1, 0.1, 0.25] # 权重 + + +# 文件 +data_set = '石油焦普货指标数据.xlsx' # 数据集文件 +dataset = 'shiyoujiaopuhuoyuedudataset' # 数据集文件夹 + +# 数据库名称 +db_name = os.path.join(dataset, 'jbsh_shiyoujiao_puhuo_yuedu.db') +sqlitedb = SQLiteHandler(db_name) +sqlitedb.connect() + +settings = f'{input_size}-{horizon}-{train_steps}--{k}-{data_set}' +# 获取日期时间 +# now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') # 获取当前日期时间 +now = datetime.datetime.now().strftime('%Y-%m-%d') # 获取当前日期时间 +reportname = f'石油焦普货大模型月度预测报告--{end_time}.pdf' # 报告文件名 +reportname = reportname.replace(':', '-') # 替换冒号 +if end_time == '': + end_time = now +# 邮件配置 +username = '1321340118@qq.com' +passwd = 'wgczgyhtyyyyjghi' +# recv=['liurui_test@163.com','52585119@qq.com'] +recv = ['liurui_test@163.com'] +# recv=['liurui_test@163.com'] +title = 'reportname' +content = y+'预测报告请看附件' +file = os.path.join(dataset, 'reportname') +# file=os.path.join(dataset,'14-7-50--100-原油指标数据.xlsx-Brent连1合约价格--20240731175936-预测报告.pdf') +ssl = True + + +# 日志配置 + +# 创建日志目录(如果不存在) +log_dir = 'logs' +if not os.path.exists(log_dir): + os.makedirs(log_dir) + +# 配置日志记录器 +logger = logging.getLogger('my_logger') +logger.setLevel(logging.INFO) + +# 配置文件处理器,将日志记录到文件 +file_handler = logging.handlers.RotatingFileHandler(os.path.join( + log_dir, 'pricepredict.log'), maxBytes=1024 * 1024, backupCount=5) +file_handler.setFormatter(logging.Formatter( + '%(asctime)s - %(name)s - %(levelname)s - %(message)s')) + +# 配置控制台处理器,将日志打印到控制台 +console_handler = logging.StreamHandler() +console_handler.setFormatter(logging.Formatter('%(message)s')) + +# 将处理器添加到日志记录器 +logger.addHandler(file_handler) +logger.addHandler(console_handler) + +# logger.info('当前配置:'+settings) diff --git a/config_shiyoujiao_puhuo_zhoudu.py b/config_shiyoujiao_puhuo_zhoudu.py new file mode 100644 index 0000000..fd16269 --- /dev/null +++ b/config_shiyoujiao_puhuo_zhoudu.py @@ -0,0 +1,470 @@ +import logging +import os +import logging.handlers +import datetime +from lib.tools import MySQLDB, SQLiteHandler + + +# eta 接口token +APPID = "XNLDvxZHHugj7wJ7" +SECRET = "iSeU4s6cKKBVbt94htVY1p0sqUMqb2xa" + +# eta 接口url +sourcelisturl = 'http://10.189.2.78:8108/v1/edb/source/list' +classifylisturl = 'http://10.189.2.78:8108/v1/edb/classify/list?ClassifyType=' +uniquecodedataurl = 'http://10.189.2.78:8108/v1/edb/data?UniqueCode=4991c37becba464609b409909fe4d992&StartDate=2024-02-01' +classifyidlisturl = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId=' +edbcodedataurl = 'http://10.189.2.78:8108/v1/edb/data?EdbCode=' +edbdatapushurl = 'http://10.189.2.78:8108/v1/edb/push' +edbdeleteurl = 'http://10.189.2.78:8108/v1/edb/business/edb/del' +edbbusinessurl = 'http://10.189.2.78:8108/v1/edb/business/data/del' + +edbcodenamedict = { + 'C2403283369': '预赔阳极加工利润(高端)', + 'C2403285560': '预培阳极加工利润(低端)', + 'C2403288616': '低硫石油焦煅烧利润', + 'S6949656': '平均价:氧化铝:一级:全国', + 'S5807052': '氧化铝:一级:贵阳', + 'S5443355': '市场价:煤沥青:河北地区', + 'S5443357': '市场价:煤沥青:山西地区', + 'W000294': '国内主要港口石油焦出货量(隆重)', + 'W000293': '日照港库存(隆重)', + 'W000292': '港口总库存(隆重)', + 'W000283': '主营石油焦产量(隆重)', + 'W000282': '地炼石油焦产量(隆重)', + 'W000281': '中国石油焦产量(隆重)', + 'W000280': '主营石油焦开工负荷率(隆重)', + 'W000279': '地炼石油焦开工负荷率(隆重)', + 'ID00150273': '石油焦:1 # :市场低端价:东北地区(日)', + 'ID00150281': '石油焦:1 # :市场主流价:东北地区(日)', + 'ID00150277': '石油焦:1 # :市场高端价:东北地区(日)', + 'ID00150289': '石油焦:2 # :市场低端价:华东地区(日)', + 'ID00150285': '石油焦:2 # :市场低端价:西北地区(日)', + 'ID00150313': '石油焦:2 # :市场主流价:华东地区(日)', + 'ID00150309': '石油焦:2 # :市场主流价:西北地区(日)', + 'ID00150301': '石油焦:2 # :市场高端价:华东地区(日)', + 'ID00150297': '石油焦:2 # :市场高端价:西北地区(日)', + 'ID00150321': '石油焦:2 # A:市场低端价:山东(日)', + 'ID00150329': '石油焦:2 # A:市场主流价:山东(日)', + 'ID00150325': '石油焦:2 # A:市场高端价:山东(日)', + 'ID00150337': '石油焦:2 # B:市场低端价:华南地区(日)', + 'ID00150341': '石油焦:2 # B:市场低端价:华中地区(日)', + 'ID00150361': '石油焦:2 # B:市场主流价:华南地区(日)', + 'ID00150365': '石油焦:2 # B:市场主流价:华中地区(日)', + 'ID00150349': '石油焦:2 # B:市场高端价:华南地区(日)', + 'ID00150353': '石油焦:2 # B:市场高端价:华中地区(日)', + 'ID00150333': '石油焦:2 # B:市场低端价:山东(日)', + 'ID00150357': '石油焦:2 # B:市场主流价:山东(日)', + 'ID00150345': '石油焦:2 # B:市场高端价:山东(日)', + 'ID00150369': '石油焦:3 # :市场低端价:华中地区(日)', + 'ID00150373': '石油焦:3 # :市场高端价:华中地区(日)', + 'ID00150385': '石油焦:3 # A:市场高端价:山东(日)', + 'ID00150393': '石油焦:3 # B:市场低端价:华东地区(日)', + 'ID00150409': '石油焦:3 # B:市场主流价:华东地区(日)', + 'ID00150401': '石油焦:3 # B:市场高端价:华东地区(日)', + 'ID00146589': '海绵焦:4 # :出厂价:华中地区:洛阳石化(日)', + 'ID01242846': '石油焦:4 # B:挂牌价:华北地区:中石化燕山(日)', + 'ID01300358': '石油焦:3 # C:市场低端价:山东(日)', + 'ID01300357': '石油焦:3 # C:市场高端价:山东(日)', + 'ID00150377': '石油焦:3 # :市场主流价:华中地区(日)', + 'ID01387643': '煅烧焦:低硫:0.5 % S:市场价:东北地区(日)', + 'ID01387646': '煅烧焦:低硫:3.5 % S:市场价:东北地区(日)', + 'ID01387660': '煅烧焦:中硫:3 % S,400V:市场价:山东(日)', + 'ID00150381': '石油焦:3 # A:市场低端价:山东(日)', + 'ID00150397': '石油焦:3 # B:市场低端价:山东(日)', + 'ID00150405': '石油焦:3 # B:市场高端价:山东(日)', + 'ID00146545': '海绵焦:3B:出厂价:山东:山东东明(日)', + 'B3e90b34e4b9e7a6ea3': '石油焦市场均价(元/吨)', + 'B6b5c53b270a3af12ac': '石油焦1 # 市场均价(元/吨)', + 'B10721189a11c209a20': '石油焦2 # 市场均价(元/吨)', + 'B6accfa9d2bf4735a50': '石油焦3 # 市场均价(元/吨)', + 'B8a0ab5357569c385a9': '石油焦海绵焦市场均价(元/吨)', + 'B19dcf45e22fbfd3e43': '石油焦海绵焦东北1 # A焦(低端)(元/吨)(百川)', + 'B5832a62d1e0fba50b6': '石油焦海绵焦东北1 # A焦(高端)(元/吨)(百川)', + 'B1de4fba026d4609cc7': '石油焦海绵焦东北1 # B焦(低端)(元/吨)(百川)', + 'B38f89180736172490d': '石油焦海绵焦东北1 # B焦(高端)(元/吨)(百川)', + 'B4f847871674c3d77f2': '石油焦海绵焦山东地炼1 # -3#焦(低端)(元/吨)', + 'B1aefb8a64a5200adbd': '石油焦海绵焦山东地炼1 # -3#焦(高端)(元/吨)', + 'B1df7d0afbfedfb628a': '煅烧焦东北低硫(高端S < 0.5)(元/吨)', + 'B5f8f9859635876da28': '煅烧焦东北低硫(低端S < 0.5)(元/吨)', + 'B2342a8c5a39fa00348': '煅烧焦华北中硫(高端S < 3.0,钒 < 400)(元/吨)', + 'B051f27900397c6a35f': '煅烧焦山东中硫(高端S < 3.0,钒 < 400)(元/吨)', + 'Be2a8050a48e86cae1f': '煅烧焦华东中硫(高端S < 3.0,钒 < 400)(元/吨)', + 'B4a1811938f85065f6a': '煅烧焦华中中硫(高端S < 3.0,钒 < 400)(元/吨)', + 'Bc197d4834ef7fb98ec': '煅烧焦华东高硫(高端S < 3.5,钒 < 400)(元/吨)', + 'B62be5dbdb8c6454530': '煅烧焦低硫参考价格(元/吨)(百川)', + 'Bdd813140bffc4edfa6': '煅烧焦中硫微量市场均价(元/吨)(百川)', + 'B185a597decfc71915a': '预焙阳极山东低端(元/吨)(百川)', + 'B1bcde6130de031bd42': '山西 改质沥青(元/吨)', + 'Bb9f4a1f6dd32b4ad8a': '山东 改质沥青(元/吨)', + 'C2411261557491549': '石油焦市场均价(元/吨)/4DMA', + 'C2411271143174617': '石油焦市场均价(元/吨)/9DMA', + 'ID01387649': '煅烧焦:中硫:3 % S,350V:市场价:华东地区(日)', + 'ID01387655': '煅烧焦:中硫:3 % S,350V:市场价:山东(日)', + 'RE00010076': '煅烧焦:低硫:生产毛利:东北地区(周)', + 'B9d1acaf80383683da3': '石油焦总产量(周)(吨)', + 'Bdaa719a38936c8dd76': '石油焦开工率(周)( % )', + 'B9459d549a332b200e7': '石油焦行业总库存(周)(吨)', + 'Bce6e098b9518370cff': '石油焦工厂库存(周)(吨)', + 'B577ce2809772779710': '石油焦市场库存(周)(吨)', + 'B5d8c564c62f3e6b77f': '石油焦成本(周)(吨)', + 'B43baa98bcaa06c11a5': '石油焦利润(周)(吨)', + 'Bdd0c1361d94081211c': '煅烧石油焦总产量(周)(吨)', + 'B65315111fa28951b1e': '煅烧石油焦开工率(周)( % )', + 'B2aff5f2632a20027d0': '煅烧石油焦行业总库存(周)(吨)', + 'B29fbd31128cd71b212': '煅烧石油焦工厂库存(周)(吨)', + 'B7a88313a89d1261c53': '煅烧石油焦成本(周)(吨)', + 'Bd4fa36b4decec0aafa': '煅烧石油焦利润(周)(吨)', + 'B9bd80eac7df81ffbd4': '预焙阳极总产量(周)(吨)', + 'B27074786605f4660d2': '预焙阳极开工率(周)( % )', + 'Bdc2a5985ecb56b6a0c': '预焙阳极行业总库存(周)(吨)', + 'Bce8511f899e487e5b6': '预焙阳极工厂库存(周)(吨)', + 'B13ec89105bd866a2bd': '预焙阳极成本(周)(吨)', + 'B66c3abcfa15a2e611c': '预焙阳极利润(周)(吨)', + 'Bf7efe3200f9abc0453': '电解铝开工率(周)( % )', + 'Be193166f347267b1a7': '电解铝行业总库存(周)(吨)', + 'Baa744fc97769353175': '电解铝工厂库存(周)(吨)', + 'Bf9654603913cfc5282': '电解铝市场库存(周)(吨)', + 'Bef1535c96da0d70fbc': '电解铝利润(周)(吨)', + 'B7d1d0b24316d49cbdc': '煤沥青总产量(周)(吨)', + 'B4303fb002ea1c214da': '煤沥青开工率(周)( % )', + 'Be9a470c97e9efe660c': '煤沥青行业总库存(周)(吨)', + 'B50d4d87f6b78bca587': '煤沥青工厂库存(周)(吨)', + 'B46cc7d0a90155b5bfd': '煅烧焦山东高硫(高端S < 3.5,普货)(元/吨)' +} + +edbcodelist = edbcodenamedict.keys() +# 临时写死用指定的列,与上面的edbcode对应,后面更改 +edbnamelist = ['ds', 'y']+[edbcodenamedict[edbcodename] + for edbcodename in edbcodelist] + +# eta自有数据指标编码,石油焦铝用还没新增,暂且留空 +# eta自有数据指标编码 次周,隔周 +bdwdname = [ + '次周', + '隔周', +] +modelsindex = [ + {"NHITS":"SELF0000407", +"Informer":"SELF0000408", +"LSTM":"SELF0000409", +"iTransformer":"SELF0000410", +"TSMixer":"SELF0000411", +"TSMixerx":"SELF0000412", +"PatchTST":"SELF0000413", +"RNN":"SELF0000414", +"GRU":"SELF0000415", +"TCN":"SELF0000416", +"BiTCN":"SELF0000417", +"DilatedRNN":"SELF0000418", +"MLP":"SELF0000419", +"DLinear":"SELF0000420", +"NLinear":"SELF0000421", +"TFT":"SELF0000422", +"FEDformer":"SELF0000423", +"StemGNN":"SELF0000424", +"MLPMultivariate":"SELF0000425", +"TiDE":"SELF0000426", +"DeepNPTS":"SELF0000427", +"NBEATS":"SELF0000428", + +},{"NHITS":"SELF0000429", +"Informer":"SELF0000430", +"LSTM":"SELF0000431", +"iTransformer":"SELF0000432", +"TSMixer":"SELF0000433", +"TSMixerx":"SELF0000434", +"PatchTST":"SELF0000435", +"RNN":"SELF0000436", +"GRU":"SELF0000437", +"TCN":"SELF0000438", +"BiTCN":"SELF0000439", +"DilatedRNN":"SELF0000440", +"MLP":"SELF0000441", +"DLinear":"SELF0000442", +"NLinear":"SELF0000443", +"TFT":"SELF0000444", +"FEDformer":"SELF0000445", +"StemGNN":"SELF0000446", +"MLPMultivariate":"SELF0000447", +"TiDE":"SELF0000448", +"DeepNPTS":"SELF0000449", +"NBEATS":"SELF0000450",} +] + +# 百川数据指标编码 +baichuanidnamedict = { + '1588348470396480901': '石油焦滨州-友泰', + '1588348470396480903': '石油焦东营-海科瑞林', + '1588348470396480902': '石油焦东营-华联2', + '1588348470396481080': '石油焦东营-华联3', + '1588348470396480905': '石油焦东营-联合', + '1588348470396481081': '石油焦东营-联合3', + '1588348470396480915': '石油焦淄博-汇丰', + '1588348470396480888': '石油焦沧州-鑫海', + '1588348470396480917': '石油焦东营-万通', + '1588348470396480925': '石油焦东营-齐润', + '1588348470396481084': '石油焦东营-尚能4', + '1588348470396480930': '石油焦潍坊-寿光鲁清', + '1588348470396480929': '石油焦滨州-鑫岳' +} + + +# baichuanidnamedict = {'1588348470396475286': 'test1', '1666': 'test2'} # 北京环境测试用 + +# eta 上传预测结果的请求体,后面发起请求的时候更改 model datalist 数据 +data = { + "IndexCode": "", + "IndexName": "石油焦铝用价格预测xx模型-yy", + "Unit": "无", + "Frequency": "日度", + "SourceName": f"价格预测", + "Remark": 'ddd', + "DataList": [ + { + "Date": "2024-05-02", + "Value": 333444 + } + ] +} + +# eta 分类 +# level:3才可以获取到数据,所以需要人工把能源化工下所有的level3级都找到 +# url = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId=1214' +# ParentId ":1160, 能源化工 +# ClassifyId ":1214,原油 3912 石油焦 +# ParentId ":1214,",就是原油下所有的数据。 +ClassifyId = 3707 + + +# 变量定义--测试环境 +server_host = '192.168.100.53' # 内网 +# server_host = '183.242.74.28' # 外网 +login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login" +# 上传报告 +upload_url = f"http://{server_host}:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave" +# 停更预警 +upload_warning_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save" +# 查询数据项编码 +query_data_list_item_nos_url = f"http://{server_host}:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos" +# 上传数据项值 +push_data_value_list_url = f"http://{server_host}:8080/jingbo-dev/api/dw/dataValue/pushDataValueList" + +login_data = { + "data": { + "account": "api_test", + # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456 + "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456 + "tenantHashCode": "8a4577dbd919675758d57999a1e891fe", + "terminal": "API" + }, + "funcModule": "API", + "funcOperation": "获取token" +} + +upload_data = { + "groupNo": '', # 用户组id + "funcModule": '研究报告信息', + "funcOperation": '上传原油价格预测报告', + "data": { + "ownerAccount": 'arui', # 报告所属用户账号 + "reportType": 'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST + "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', # 文件名称 + "fileBase64": '', # 文件内容base64 + "categoryNo": 'yyjgycbg', # 研究报告分类编码 + "smartBusinessClassCode": 'YCJGYCBG', # 分析报告分类编码 + "reportEmployeeCode": "E40116", # 报告人 + "reportDeptCode": "D0044", # 报告部门 + "productGroupCode": "RAW_MATERIAL" # 商品分类 + } +} + + +warning_data = { + "groupNo": '', # 用户组id + "funcModule": '原油特征停更预警', + "funcOperation": '原油特征停更预警', + "data": { + 'WARNING_TYPE_NAME': '特征数据停更预警', + 'WARNING_CONTENT': '', + 'WARNING_DATE': '' + } +} + +query_data_list_item_nos_data = { + "funcModule": "数据项", + "funcOperation": "查询", + "data": { + "dateStart": "20200101", + "dateEnd": "20241231", + "dataItemNoList": ["Brentzdj", "Brentzgj"] # 数据项编码,代表 brent最低价和最高价 + } +} + +push_data_value_list_data = { + "funcModule": "数据表信息列表", + "funcOperation": "新增", + "data": [ + {"dataItemNo": "91230600716676129", + "dataDate": "20230113", + "dataStatus": "add", + "dataValue": 100.11 + }, + {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY", + "dataDate": "20230113", + "dataStatus": "add", + "dataValue": 100.55 + }, + {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY", + "dataDate": "20230113", + "dataStatus": "add", + "dataValue": 100.55 + } + ] +} +# 八大维度数据项编码 +bdwd_items = { + 'ciri': 'syjlyycbdwdcr', + 'benzhou': 'syjlyycbdwdbz', + 'cizhou': 'syj|nextweek|price', + 'gezhou': 'syj|next-one-week|price', + 'ciyue': 'syj|next-month|price', + 'cieryue': 'syj|next-one-month|price', + 'cisanyue': 'yj|next-two-month|price', + 'cisiyue': 'yj|next-three-month|price', +} + +# 北京环境数据库 +# host = '192.168.101.27' +# port = 3306 +# dbusername = 'root' +# password = '123456' +# dbname = 'jingbo_test' + +# 京博测试环境 +host = 'rm-2zehj3r1n60ttz9x5ko.mysql.rds.aliyuncs.com' +port = 3306 +dbusername = 'jingbo' +password = 'shihua@123' +dbname = 'jingbo-test' + + +table_name = 'v_tbl_crude_oil_warning' +baichuan_table_name = 'V_TBL_BAICHUAN_YINGFU_VALUE' +# select BAICHUAN_ID, DATA_DATE, DATA_VALUE from V_TBL_BAICHUAN_YINGFU_VALUE where BAICHUAN_ID in ('1588348470396475286', '1666') +# 开关 +is_train = True # 是否训练 +is_debug = False # 是否调试 +is_eta = True # 是否使用eta接口 +is_market = False # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效 +is_timefurture = True # 是否使用时间特征 +is_fivemodels = False # 是否使用之前保存的最佳的5个模型 +is_edbcode = False # 特征使用edbcoding列表中的 +is_edbnamelist = False # 自定义特征,对应上面的edbnamelist +is_update_eta = True # 预测结果上传到eta +is_update_report = True # 是否上传报告 +is_update_warning_data = False # 是否上传预警数据 +is_update_predict_value = True # 是否上传预测值到市场信息平台 +is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征 +is_del_tow_month = False # 是否删除两个月不更新的特征 +is_bdwd = False # 是否使用八大维度 + + +# 连接到数据库 +db_mysql = MySQLDB(host=host, user=dbusername, + password=password, database=dbname) +db_mysql.connect() +print("数据库连接成功", host, dbname, dbusername) + + +# 数据截取日期 +start_year = 2015 # 数据开始年份 +end_time = '' # 数据截取日期 +freq = 'WW' # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日 "WW" 自定义周 +delweekenday = True if freq == 'B' else False # 是否删除周末数据 +is_corr = False # 特征是否参与滞后领先提升相关系数 +add_kdj = False # 是否添加kdj指标 +if add_kdj and is_edbnamelist: + edbnamelist = edbnamelist+['K', 'D', 'J'] + +# 模型参数 +y = '石油焦:3 # B:市场低端价:山东(日)' +avg_cols = [ + +] +offsite = 80 +offsite_col = [] +horizon = 2 # 预测的步长 +input_size = 14 # 输入序列长度 +train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数 +val_check_steps = 30 # 评估频率 +early_stop_patience_steps = 5 # 早停的耐心步数 +# --- 交叉验证用的参数 +test_size = 200 # 测试集大小,定义100,后面使用的时候重新赋值 +val_size = test_size # 验证集大小,同测试集大小 + +# 特征筛选用到的参数 +k = 100 # 特征筛选数量,如果是0或者值比特征数量大,代表全部特征 +corr_threshold = 0.6 # 相关性大于0.6的特征 +rote = 0.06 # 绘图上下界阈值 + +# 计算准确率 +weight_dict = [0.4, 0.15, 0.1, 0.1, 0.25] # 权重 + + +# 文件 +data_set = '石油焦铝用指标数据.xlsx' # 数据集文件 +dataset = 'shiyoujiaolvyongzhoududataset' # 数据集文件夹 + +# 数据库名称 +db_name = os.path.join(dataset, 'jbsh_shiyoujiao_lvyong_zhoudu.db') +sqlitedb = SQLiteHandler(db_name) +sqlitedb.connect() + +settings = f'{input_size}-{horizon}-{train_steps}--{k}-{data_set}' +# 获取日期时间 +# now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') # 获取当前日期时间 +now = datetime.datetime.now().strftime('%Y-%m-%d') # 获取当前日期时间 +reportname = f'石油焦铝用大模型周度预测报告--{end_time}.pdf' # 报告文件名 +reportname = reportname.replace(':', '-') # 替换冒号 +if end_time == '': + end_time = now +# 邮件配置 +username = '1321340118@qq.com' +passwd = 'wgczgyhtyyyyjghi' +# recv=['liurui_test@163.com','52585119@qq.com'] +recv = ['liurui_test@163.com'] +# recv=['liurui_test@163.com'] +title = 'reportname' +content = y+'预测报告请看附件' +file = os.path.join(dataset, 'reportname') +# file=os.path.join(dataset,'14-7-50--100-原油指标数据.xlsx-Brent连1合约价格--20240731175936-预测报告.pdf') +ssl = True + + +# 日志配置 + +# 创建日志目录(如果不存在) +log_dir = 'logs' +if not os.path.exists(log_dir): + os.makedirs(log_dir) + +# 配置日志记录器 +logger = logging.getLogger('my_logger') +logger.setLevel(logging.INFO) + +# 配置文件处理器,将日志记录到文件 +file_handler = logging.handlers.RotatingFileHandler(os.path.join( + log_dir, 'pricepredict.log'), maxBytes=1024 * 1024, backupCount=5) +file_handler.setFormatter(logging.Formatter( + '%(asctime)s - %(name)s - %(levelname)s - %(message)s')) + +# 配置控制台处理器,将日志打印到控制台 +console_handler = logging.StreamHandler() +console_handler.setFormatter(logging.Formatter('%(message)s')) + +# 将处理器添加到日志记录器 +logger.addHandler(file_handler) +logger.addHandler(console_handler) + +# logger.info('当前配置:'+settings) diff --git a/eta数据调试.py b/eta数据调试.py index 1273afe..a6bf951 100644 --- a/eta数据调试.py +++ b/eta数据调试.py @@ -128,182 +128,183 @@ modelsindex = { } selfid = { - "石油焦-铝用价格预测NHITS模型-次日": "SELF0000363", - "石油焦-铝用价格预测Informer模型-次日": "SELF0000364", - "石油焦-铝用价格预测LSTM模型-次日": "SELF0000365", - "石油焦-铝用价格预测iTransformer模型-次日": "SELF0000366", - "石油焦-铝用价格预测TSMixer模型-次日": "SELF0000367", - "石油焦-铝用价格预测TSMixerx模型-次日": "SELF0000368", - "石油焦-铝用价格预测PatchTST模型-次日": "SELF0000369", - "石油焦-铝用价格预测RNN模型-次日": "SELF0000370", - "石油焦-铝用价格预测GRU模型-次日": "SELF0000371", - "石油焦-铝用价格预测TCN模型-次日": "SELF0000372", - "石油焦-铝用价格预测BiTCN模型-次日": "SELF0000373", - "石油焦-铝用价格预测DilatedRNN模型-次日": "SELF0000374", - "石油焦-铝用价格预测MLP模型-次日": "SELF0000375", - "石油焦-铝用价格预测DLinear模型-次日": "SELF0000376", - "石油焦-铝用价格预测NLinear模型-次日": "SELF0000377", - "石油焦-铝用价格预测TFT模型-次日": "SELF0000378", - "石油焦-铝用价格预测FEDformer模型-次日": "SELF0000379", - "石油焦-铝用价格预测StemGNN模型-次日": "SELF0000380", - "石油焦-铝用价格预测MLPMultivariate模型-次日": "SELF0000381", - "石油焦-铝用价格预测TiDE模型-次日": "SELF0000382", - "石油焦-铝用价格预测DeepNPTS模型-次日": "SELF0000383", - "石油焦-铝用价格预测NBEATS模型-次日": "SELF0000384", - "石油焦-铝用价格预测NHITS模型-本周": "SELF0000385", - "石油焦-铝用价格预测Informer模型-本周": "SELF0000386", - "石油焦-铝用价格预测LSTM模型-本周": "SELF0000387", - "石油焦-铝用价格预测iTransformer模型-本周": "SELF0000388", - "石油焦-铝用价格预测TSMixer模型-本周": "SELF0000389", - "石油焦-铝用价格预测TSMixerx模型-本周": "SELF0000390", - "石油焦-铝用价格预测PatchTST模型-本周": "SELF0000391", - "石油焦-铝用价格预测RNN模型-本周": "SELF0000392", - "石油焦-铝用价格预测GRU模型-本周": "SELF0000393", - "石油焦-铝用价格预测TCN模型-本周": "SELF0000394", - "石油焦-铝用价格预测BiTCN模型-本周": "SELF0000395", - "石油焦-铝用价格预测DilatedRNN模型-本周": "SELF0000396", - "石油焦-铝用价格预测MLP模型-本周": "SELF0000397", - "石油焦-铝用价格预测DLinear模型-本周": "SELF0000398", - "石油焦-铝用价格预测NLinear模型-本周": "SELF0000399", - "石油焦-铝用价格预测TFT模型-本周": "SELF0000400", - "石油焦-铝用价格预测FEDformer模型-本周": "SELF0000401", - "石油焦-铝用价格预测StemGNN模型-本周": "SELF0000402", - "石油焦-铝用价格预测MLPMultivariate模型-本周": "SELF0000403", - "石油焦-铝用价格预测TiDE模型-本周": "SELF0000404", - "石油焦-铝用价格预测DeepNPTS模型-本周": "SELF0000405", - "石油焦-铝用价格预测NBEATS模型-本周": "SELF0000406", - "石油焦-铝用价格预测NHITS模型-次周": "SELF0000407", - "石油焦-铝用价格预测Informer模型-次周": "SELF0000408", - "石油焦-铝用价格预测LSTM模型-次周": "SELF0000409", - "石油焦-铝用价格预测iTransformer模型-次周": "SELF0000410", - "石油焦-铝用价格预测TSMixer模型-次周": "SELF0000411", - "石油焦-铝用价格预测TSMixerx模型-次周": "SELF0000412", - "石油焦-铝用价格预测PatchTST模型-次周": "SELF0000413", - "石油焦-铝用价格预测RNN模型-次周": "SELF0000414", - "石油焦-铝用价格预测GRU模型-次周": "SELF0000415", - "石油焦-铝用价格预测TCN模型-次周": "SELF0000416", - "石油焦-铝用价格预测BiTCN模型-次周": "SELF0000417", - "石油焦-铝用价格预测DilatedRNN模型-次周": "SELF0000418", - "石油焦-铝用价格预测MLP模型-次周": "SELF0000419", - "石油焦-铝用价格预测DLinear模型-次周": "SELF0000420", - "石油焦-铝用价格预测NLinear模型-次周": "SELF0000421", - "石油焦-铝用价格预测TFT模型-次周": "SELF0000422", - "石油焦-铝用价格预测FEDformer模型-次周": "SELF0000423", - "石油焦-铝用价格预测StemGNN模型-次周": "SELF0000424", - "石油焦-铝用价格预测MLPMultivariate模型-次周": "SELF0000425", - "石油焦-铝用价格预测TiDE模型-次周": "SELF0000426", - "石油焦-铝用价格预测DeepNPTS模型-次周": "SELF0000427", - "石油焦-铝用价格预测NBEATS模型-次周": "SELF0000428", - "石油焦-铝用价格预测NHITS模型-隔周": "SELF0000429", - "石油焦-铝用价格预测Informer模型-隔周": "SELF0000430", - "石油焦-铝用价格预测LSTM模型-隔周": "SELF0000431", - "石油焦-铝用价格预测iTransformer模型-隔周": "SELF0000432", - "石油焦-铝用价格预测TSMixer模型-隔周": "SELF0000433", - "石油焦-铝用价格预测TSMixerx模型-隔周": "SELF0000434", - "石油焦-铝用价格预测PatchTST模型-隔周": "SELF0000435", - "石油焦-铝用价格预测RNN模型-隔周": "SELF0000436", - "石油焦-铝用价格预测GRU模型-隔周": "SELF0000437", - "石油焦-铝用价格预测TCN模型-隔周": "SELF0000438", - "石油焦-铝用价格预测BiTCN模型-隔周": "SELF0000439", - "石油焦-铝用价格预测DilatedRNN模型-隔周": "SELF0000440", - "石油焦-铝用价格预测MLP模型-隔周": "SELF0000441", - "石油焦-铝用价格预测DLinear模型-隔周": "SELF0000442", - "石油焦-铝用价格预测NLinear模型-隔周": "SELF0000443", - "石油焦-铝用价格预测TFT模型-隔周": "SELF0000444", - "石油焦-铝用价格预测FEDformer模型-隔周": "SELF0000445", - "石油焦-铝用价格预测StemGNN模型-隔周": "SELF0000446", - "石油焦-铝用价格预测MLPMultivariate模型-隔周": "SELF0000447", - "石油焦-铝用价格预测TiDE模型-隔周": "SELF0000448", - "石油焦-铝用价格预测DeepNPTS模型-隔周": "SELF0000449", - "石油焦-铝用价格预测NBEATS模型-隔周": "SELF0000450", - "石油焦-铝用价格预测NHITS模型-次月": "SELF0000451", - "石油焦-铝用价格预测Informer模型-次月": "SELF0000452", - "石油焦-铝用价格预测LSTM模型-次月": "SELF0000453", - "石油焦-铝用价格预测iTransformer模型-次月": "SELF0000454", - "石油焦-铝用价格预测TSMixer模型-次月": "SELF0000455", - "石油焦-铝用价格预测TSMixerx模型-次月": "SELF0000456", - "石油焦-铝用价格预测PatchTST模型-次月": "SELF0000457", - "石油焦-铝用价格预测RNN模型-次月": "SELF0000458", - "石油焦-铝用价格预测GRU模型-次月": "SELF0000459", - "石油焦-铝用价格预测TCN模型-次月": "SELF0000460", - "石油焦-铝用价格预测BiTCN模型-次月": "SELF0000461", - "石油焦-铝用价格预测DilatedRNN模型-次月": "SELF0000462", - "石油焦-铝用价格预测MLP模型-次月": "SELF0000463", - "石油焦-铝用价格预测DLinear模型-次月": "SELF0000464", - "石油焦-铝用价格预测NLinear模型-次月": "SELF0000465", - "石油焦-铝用价格预测TFT模型-次月": "SELF0000466", - "石油焦-铝用价格预测FEDformer模型-次月": "SELF0000467", - "石油焦-铝用价格预测StemGNN模型-次月": "SELF0000468", - "石油焦-铝用价格预测MLPMultivariate模型-次月": "SELF0000469", - "石油焦-铝用价格预测TiDE模型-次月": "SELF0000470", - "石油焦-铝用价格预测DeepNPTS模型-次月": "SELF0000471", - "石油焦-铝用价格预测NBEATS模型-次月": "SELF0000472", - "石油焦-铝用价格预测NHITS模型-次二月": "SELF0000473", - "石油焦-铝用价格预测Informer模型-次二月": "SELF0000474", - "石油焦-铝用价格预测LSTM模型-次二月": "SELF0000475", - "石油焦-铝用价格预测iTransformer模型-次二月": "SELF0000476", - "石油焦-铝用价格预测TSMixer模型-次二月": "SELF0000477", - "石油焦-铝用价格预测TSMixerx模型-次二月": "SELF0000478", - "石油焦-铝用价格预测PatchTST模型-次二月": "SELF0000479", - "石油焦-铝用价格预测RNN模型-次二月": "SELF0000480", - "石油焦-铝用价格预测GRU模型-次二月": "SELF0000481", - "石油焦-铝用价格预测TCN模型-次二月": "SELF0000482", - "石油焦-铝用价格预测BiTCN模型-次二月": "SELF0000483", - "石油焦-铝用价格预测DilatedRNN模型-次二月": "SELF0000484", - "石油焦-铝用价格预测MLP模型-次二月": "SELF0000485", - "石油焦-铝用价格预测DLinear模型-次二月": "SELF0000486", - "石油焦-铝用价格预测NLinear模型-次二月": "SELF0000487", - "石油焦-铝用价格预测TFT模型-次二月": "SELF0000488", - "石油焦-铝用价格预测FEDformer模型-次二月": "SELF0000489", - "石油焦-铝用价格预测StemGNN模型-次二月": "SELF0000490", - "石油焦-铝用价格预测MLPMultivariate模型-次二月": "SELF0000491", - "石油焦-铝用价格预测TiDE模型-次二月": "SELF0000492", - "石油焦-铝用价格预测DeepNPTS模型-次二月": "SELF0000493", - "石油焦-铝用价格预测NBEATS模型-次二月": "SELF0000494", - "石油焦-铝用价格预测NHITS模型-次三月": "SELF0000495", - "石油焦-铝用价格预测Informer模型-次三月": "SELF0000496", - "石油焦-铝用价格预测LSTM模型-次三月": "SELF0000497", - "石油焦-铝用价格预测iTransformer模型-次三月": "SELF0000498", - "石油焦-铝用价格预测TSMixer模型-次三月": "SELF0000499", - "石油焦-铝用价格预测TSMixerx模型-次三月": "SELF0000500", - "石油焦-铝用价格预测PatchTST模型-次三月": "SELF0000501", - "石油焦-铝用价格预测RNN模型-次三月": "SELF0000502", - "石油焦-铝用价格预测GRU模型-次三月": "SELF0000503", - "石油焦-铝用价格预测TCN模型-次三月": "SELF0000504", - "石油焦-铝用价格预测BiTCN模型-次三月": "SELF0000505", - "石油焦-铝用价格预测DilatedRNN模型-次三月": "SELF0000506", - "石油焦-铝用价格预测MLP模型-次三月": "SELF0000507", - "石油焦-铝用价格预测DLinear模型-次三月": "SELF0000508", - "石油焦-铝用价格预测NLinear模型-次三月": "SELF0000509", - "石油焦-铝用价格预测TFT模型-次三月": "SELF0000510", - "石油焦-铝用价格预测FEDformer模型-次三月": "SELF0000511", - "石油焦-铝用价格预测StemGNN模型-次三月": "SELF0000512", - "石油焦-铝用价格预测MLPMultivariate模型-次三月": "SELF0000513", - "石油焦-铝用价格预测TiDE模型-次三月": "SELF0000514", - "石油焦-铝用价格预测DeepNPTS模型-次三月": "SELF0000515", - "石油焦-铝用价格预测NBEATS模型-次三月": "SELF0000516", - "石油焦-铝用价格预测NHITS模型-次四月": "SELF0000517", - "石油焦-铝用价格预测Informer模型-次四月": "SELF0000518", - "石油焦-铝用价格预测LSTM模型-次四月": "SELF0000519", - "石油焦-铝用价格预测iTransformer模型-次四月": "SELF0000520", - "石油焦-铝用价格预测TSMixer模型-次四月": "SELF0000521", - "石油焦-铝用价格预测TSMixerx模型-次四月": "SELF0000522", - "石油焦-铝用价格预测PatchTST模型-次四月": "SELF0000523", - "石油焦-铝用价格预测RNN模型-次四月": "SELF0000524", - "石油焦-铝用价格预测GRU模型-次四月": "SELF0000525", - "石油焦-铝用价格预测TCN模型-次四月": "SELF0000526", - "石油焦-铝用价格预测BiTCN模型-次四月": "SELF0000527", - "石油焦-铝用价格预测DilatedRNN模型-次四月": "SELF0000528", - "石油焦-铝用价格预测MLP模型-次四月": "SELF0000529", - "石油焦-铝用价格预测DLinear模型-次四月": "SELF0000530", - "石油焦-铝用价格预测NLinear模型-次四月": "SELF0000531", - "石油焦-铝用价格预测TFT模型-次四月": "SELF0000532", - "石油焦-铝用价格预测FEDformer模型-次四月": "SELF0000533", - "石油焦-铝用价格预测StemGNN模型-次四月": "SELF0000534", - "石油焦-铝用价格预测MLPMultivariate模型-次四月": "SELF0000535", - "石油焦-铝用价格预测TiDE模型-次四月": "SELF0000536", - "石油焦-铝用价格预测DeepNPTS模型-次四月": "SELF0000537", - "石油焦-铝用价格预测NBEATS模型-次四月": "SELF0000538", + "石油焦-普货价格预测NHITS模型-次日": "SELF0000539", + "石油焦-普货价格预测Informer模型-次日": "SELF0000540", + "石油焦-普货价格预测LSTM模型-次日": "SELF0000541", + "石油焦-普货价格预测iTransformer模型-次日": "SELF0000542", + "石油焦-普货价格预测TSMixer模型-次日": "SELF0000543", + "石油焦-普货价格预测TSMixerx模型-次日": "SELF0000544", + "石油焦-普货价格预测PatchTST模型-次日": "SELF0000545", + "石油焦-普货价格预测RNN模型-次日": "SELF0000546", + "石油焦-普货价格预测GRU模型-次日": "SELF0000547", + "石油焦-普货价格预测TCN模型-次日": "SELF0000548", + "石油焦-普货价格预测BiTCN模型-次日": "SELF0000549", + "石油焦-普货价格预测DilatedRNN模型-次日": "SELF0000550", + "石油焦-普货价格预测MLP模型-次日": "SELF0000551", + "石油焦-普货价格预测DLinear模型-次日": "SELF0000552", + "石油焦-普货价格预测NLinear模型-次日": "SELF0000553", + "石油焦-普货价格预测TFT模型-次日": "SELF0000554", + "石油焦-普货价格预测FEDformer模型-次日": "SELF0000555", + "石油焦-普货价格预测StemGNN模型-次日": "SELF0000556", + "石油焦-普货价格预测MLPMultivariate模型-次日": "SELF0000557", + "石油焦-普货价格预测TiDE模型-次日": "SELF0000558", + "石油焦-普货价格预测DeepNPTS模型-次日": "SELF0000559", + "石油焦-普货价格预测NBEATS模型-次日": "SELF0000560", + "石油焦-普货价格预测NHITS模型-本周": "SELF0000561", + "石油焦-普货价格预测Informer模型-本周": "SELF0000562", + "石油焦-普货价格预测LSTM模型-本周": "SELF0000563", + "石油焦-普货价格预测iTransformer模型-本周": "SELF0000564", + "石油焦-普货价格预测TSMixer模型-本周": "SELF0000565", + "石油焦-普货价格预测TSMixerx模型-本周": "SELF0000566", + "石油焦-普货价格预测PatchTST模型-本周": "SELF0000567", + "石油焦-普货价格预测RNN模型-本周": "SELF0000568", + "石油焦-普货价格预测GRU模型-本周": "SELF0000569", + "石油焦-普货价格预测TCN模型-本周": "SELF0000570", + "石油焦-普货价格预测BiTCN模型-本周": "SELF0000571", + "石油焦-普货价格预测DilatedRNN模型-本周": "SELF0000572", + "石油焦-普货价格预测MLP模型-本周": "SELF0000573", + "石油焦-普货价格预测DLinear模型-本周": "SELF0000574", + "石油焦-普货价格预测NLinear模型-本周": "SELF0000575", + "石油焦-普货价格预测TFT模型-本周": "SELF0000576", + "石油焦-普货价格预测FEDformer模型-本周": "SELF0000577", + "石油焦-普货价格预测StemGNN模型-本周": "SELF0000578", + "石油焦-普货价格预测MLPMultivariate模型-本周": "SELF0000579", + "石油焦-普货价格预测TiDE模型-本周": "SELF0000580", + "石油焦-普货价格预测DeepNPTS模型-本周": "SELF0000581", + "石油焦-普货价格预测NBEATS模型-本周": "SELF0000582", + "石油焦-普货价格预测NHITS模型-次周": "SELF0000583", + "石油焦-普货价格预测Informer模型-次周": "SELF0000584", + "石油焦-普货价格预测LSTM模型-次周": "SELF0000585", + "石油焦-普货价格预测iTransformer模型-次周": "SELF0000586", + "石油焦-普货价格预测TSMixer模型-次周": "SELF0000587", + "石油焦-普货价格预测TSMixerx模型-次周": "SELF0000588", + "石油焦-普货价格预测PatchTST模型-次周": "SELF0000589", + "石油焦-普货价格预测RNN模型-次周": "SELF0000590", + "石油焦-普货价格预测GRU模型-次周": "SELF0000591", + "石油焦-普货价格预测TCN模型-次周": "SELF0000592", + "石油焦-普货价格预测BiTCN模型-次周": "SELF0000593", + "石油焦-普货价格预测DilatedRNN模型-次周": "SELF0000594", + "石油焦-普货价格预测MLP模型-次周": "SELF0000595", + "石油焦-普货价格预测DLinear模型-次周": "SELF0000596", + "石油焦-普货价格预测NLinear模型-次周": "SELF0000597", + "石油焦-普货价格预测TFT模型-次周": "SELF0000598", + "石油焦-普货价格预测FEDformer模型-次周": "SELF0000599", + "石油焦-普货价格预测StemGNN模型-次周": "SELF0000600", + "石油焦-普货价格预测MLPMultivariate模型-次周": "SELF0000601", + "石油焦-普货价格预测TiDE模型-次周": "SELF0000602", + "石油焦-普货价格预测DeepNPTS模型-次周": "SELF0000603", + "石油焦-普货价格预测NBEATS模型-次周": "SELF0000604", + "石油焦-普货价格预测NHITS模型-隔周": "SELF0000605", + "石油焦-普货价格预测Informer模型-隔周": "SELF0000606", + "石油焦-普货价格预测LSTM模型-隔周": "SELF0000607", + "石油焦-普货价格预测iTransformer模型-隔周": "SELF0000608", + "石油焦-普货价格预测TSMixer模型-隔周": "SELF0000609", + "石油焦-普货价格预测TSMixerx模型-隔周": "SELF0000610", + "石油焦-普货价格预测PatchTST模型-隔周": "SELF0000611", + "石油焦-普货价格预测RNN模型-隔周": "SELF0000612", + "石油焦-普货价格预测GRU模型-隔周": "SELF0000613", + "石油焦-普货价格预测TCN模型-隔周": "SELF0000614", + "石油焦-普货价格预测BiTCN模型-隔周": "SELF0000615", + "石油焦-普货价格预测DilatedRNN模型-隔周": "SELF0000616", + "石油焦-普货价格预测MLP模型-隔周": "SELF0000617", + "石油焦-普货价格预测DLinear模型-隔周": "SELF0000618", + "石油焦-普货价格预测NLinear模型-隔周": "SELF0000619", + "石油焦-普货价格预测TFT模型-隔周": "SELF0000620", + "石油焦-普货价格预测FEDformer模型-隔周": "SELF0000621", + "石油焦-普货价格预测StemGNN模型-隔周": "SELF0000622", + "石油焦-普货价格预测MLPMultivariate模型-隔周": "SELF0000623", + "石油焦-普货价格预测TiDE模型-隔周": "SELF0000624", + "石油焦-普货价格预测DeepNPTS模型-隔周": "SELF0000625", + "石油焦-普货价格预测NBEATS模型-隔周": "SELF0000626", + "石油焦-普货价格预测NHITS模型-次月": "SELF0000627", + "石油焦-普货价格预测Informer模型-次月": "SELF0000628", + "石油焦-普货价格预测LSTM模型-次月": "SELF0000629", + "石油焦-普货价格预测iTransformer模型-次月": "SELF0000630", + "石油焦-普货价格预测TSMixer模型-次月": "SELF0000631", + "石油焦-普货价格预测TSMixerx模型-次月": "SELF0000632", + "石油焦-普货价格预测PatchTST模型-次月": "SELF0000633", + "石油焦-普货价格预测RNN模型-次月": "SELF0000634", + "石油焦-普货价格预测GRU模型-次月": "SELF0000635", + "石油焦-普货价格预测TCN模型-次月": "SELF0000636", + "石油焦-普货价格预测BiTCN模型-次月": "SELF0000637", + "石油焦-普货价格预测DilatedRNN模型-次月": "SELF0000638", + "石油焦-普货价格预测MLP模型-次月": "SELF0000639", + "石油焦-普货价格预测DLinear模型-次月": "SELF0000640", + "石油焦-普货价格预测NLinear模型-次月": "SELF0000641", + "石油焦-普货价格预测TFT模型-次月": "SELF0000642", + "石油焦-普货价格预测FEDformer模型-次月": "SELF0000643", + "石油焦-普货价格预测StemGNN模型-次月": "SELF0000644", + "石油焦-普货价格预测MLPMultivariate模型-次月": "SELF0000645", + "石油焦-普货价格预测TiDE模型-次月": "SELF0000646", + "石油焦-普货价格预测DeepNPTS模型-次月": "SELF0000647", + "石油焦-普货价格预测NBEATS模型-次月": "SELF0000648", + "石油焦-普货价格预测NHITS模型-次二月": "SELF0000649", + "石油焦-普货价格预测Informer模型-次二月": "SELF0000650", + "石油焦-普货价格预测LSTM模型-次二月": "SELF0000651", + "石油焦-普货价格预测iTransformer模型-次二月": "SELF0000652", + "石油焦-普货价格预测TSMixer模型-次二月": "SELF0000653", + "石油焦-普货价格预测TSMixerx模型-次二月": "SELF0000654", + "石油焦-普货价格预测PatchTST模型-次二月": "SELF0000655", + "石油焦-普货价格预测RNN模型-次二月": "SELF0000656", + "石油焦-普货价格预测GRU模型-次二月": "SELF0000657", + "石油焦-普货价格预测TCN模型-次二月": "SELF0000658", + "石油焦-普货价格预测BiTCN模型-次二月": "SELF0000659", + "石油焦-普货价格预测DilatedRNN模型-次二月": "SELF0000660", + "石油焦-普货价格预测MLP模型-次二月": "SELF0000661", + "石油焦-普货价格预测DLinear模型-次二月": "SELF0000662", + "石油焦-普货价格预测NLinear模型-次二月": "SELF0000663", + "石油焦-普货价格预测TFT模型-次二月": "SELF0000664", + "石油焦-普货价格预测FEDformer模型-次二月": "SELF0000665", + "石油焦-普货价格预测StemGNN模型-次二月": "SELF0000666", + "石油焦-普货价格预测MLPMultivariate模型-次二月": "SELF0000667", + "石油焦-普货价格预测TiDE模型-次二月": "SELF0000668", + "石油焦-普货价格预测DeepNPTS模型-次二月": "SELF0000669", + "石油焦-普货价格预测NBEATS模型-次二月": "SELF0000670", + "石油焦-普货价格预测NHITS模型-次三月": "SELF0000671", + "石油焦-普货价格预测Informer模型-次三月": "SELF0000672", + "石油焦-普货价格预测LSTM模型-次三月": "SELF0000673", + "石油焦-普货价格预测iTransformer模型-次三月": "SELF0000674", + "石油焦-普货价格预测TSMixer模型-次三月": "SELF0000675", + "石油焦-普货价格预测TSMixerx模型-次三月": "SELF0000676", + "石油焦-普货价格预测PatchTST模型-次三月": "SELF0000677", + "石油焦-普货价格预测RNN模型-次三月": "SELF0000678", + "石油焦-普货价格预测GRU模型-次三月": "SELF0000679", + "石油焦-普货价格预测TCN模型-次三月": "SELF0000680", + "石油焦-普货价格预测BiTCN模型-次三月": "SELF0000681", + "石油焦-普货价格预测DilatedRNN模型-次三月": "SELF0000682", + "石油焦-普货价格预测MLP模型-次三月": "SELF0000683", + "石油焦-普货价格预测DLinear模型-次三月": "SELF0000684", + "石油焦-普货价格预测NLinear模型-次三月": "SELF0000685", + "石油焦-普货价格预测TFT模型-次三月": "SELF0000686", + "石油焦-普货价格预测FEDformer模型-次三月": "SELF0000687", + "石油焦-普货价格预测StemGNN模型-次三月": "SELF0000688", + "石油焦-普货价格预测MLPMultivariate模型-次三月": "SELF0000689", + "石油焦-普货价格预测TiDE模型-次三月": "SELF0000690", + "石油焦-普货价格预测DeepNPTS模型-次三月": "SELF0000691", + "石油焦-普货价格预测NBEATS模型-次三月": "SELF0000692", + "石油焦-普货价格预测NHITS模型-次四月": "SELF0000693", + "石油焦-普货价格预测Informer模型-次四月": "SELF0000694", + "石油焦-普货价格预测LSTM模型-次四月": "SELF0000695", + "石油焦-普货价格预测iTransformer模型-次四月": "SELF0000696", + "石油焦-普货价格预测TSMixer模型-次四月": "SELF0000697", + "石油焦-普货价格预测TSMixerx模型-次四月": "SELF0000698", + "石油焦-普货价格预测PatchTST模型-次四月": "SELF0000699", + "石油焦-普货价格预测RNN模型-次四月": "SELF0000700", + "石油焦-普货价格预测GRU模型-次四月": "SELF0000701", + "石油焦-普货价格预测TCN模型-次四月": "SELF0000702", + "石油焦-普货价格预测BiTCN模型-次四月": "SELF0000703", + "石油焦-普货价格预测DilatedRNN模型-次四月": "SELF0000704", + "石油焦-普货价格预测MLP模型-次四月": "SELF0000705", + "石油焦-普货价格预测DLinear模型-次四月": "SELF0000706", + "石油焦-普货价格预测NLinear模型-次四月": "SELF0000707", + "石油焦-普货价格预测TFT模型-次四月": "SELF0000708", + "石油焦-普货价格预测FEDformer模型-次四月": "SELF0000709", + "石油焦-普货价格预测StemGNN模型-次四月": "SELF0000710", + "石油焦-普货价格预测MLPMultivariate模型-次四月": "SELF0000711", + "石油焦-普货价格预测TiDE模型-次四月": "SELF0000712", + "石油焦-普货价格预测DeepNPTS模型-次四月": "SELF0000713", + "石油焦-普货价格预测NBEATS模型-次四月": "SELF0000714", + } diff --git a/main_shiyoujiao_puhuo_yuedu.py b/main_shiyoujiao_puhuo_yuedu.py new file mode 100644 index 0000000..9024687 --- /dev/null +++ b/main_shiyoujiao_puhuo_yuedu.py @@ -0,0 +1,442 @@ +# 读取配置 + +from lib.dataread import * +from config_shiyoujiao_puhuo_yuedu import * +from lib.tools import SendMail, exception_logger +from models.nerulforcastmodels import ex_Model, model_losss, shiyoujiao_puhuo_export_pdf +import datetime +import torch +torch.set_float32_matmul_precision("high") + +global_config.update({ + # 核心参数 + 'logger': logger, + 'dataset': dataset, + 'y': y, + 'is_debug': is_debug, + 'is_train': is_train, + 'is_fivemodels': is_fivemodels, + 'is_update_report': is_update_report, + 'settings': settings, + 'weight_dict': weight_dict, + 'baichuanidnamedict': baichuanidnamedict, + 'bdwdname': bdwdname, + + + # 模型参数 + 'data_set': data_set, + 'input_size': input_size, + 'horizon': horizon, + 'train_steps': train_steps, + 'val_check_steps': val_check_steps, + 'val_size': val_size, + 'test_size': test_size, + 'modelsindex': modelsindex, + 'rote': rote, + 'bdwd_items': bdwd_items, + 'baichuanidnamedict': baichuanidnamedict, + + # 特征工程开关 + 'is_del_corr': is_del_corr, + 'is_del_tow_month': is_del_tow_month, + 'is_eta': is_eta, + 'is_update_eta': is_update_eta, + 'is_fivemodels': is_fivemodels, + 'is_update_predict_value': is_update_predict_value, + 'early_stop_patience_steps': early_stop_patience_steps, + + # 时间参数 + 'start_year': start_year, + 'end_time': end_time or datetime.datetime.now().strftime("%Y-%m-%d"), + 'freq': freq, # 保持列表结构 + + # 接口配置 + 'login_pushreport_url': login_pushreport_url, + 'login_data': login_data, + 'upload_url': upload_url, + 'upload_data': upload_data, + 'upload_warning_url': upload_warning_url, + 'warning_data': warning_data, + + # 查询接口 + 'query_data_list_item_nos_url': query_data_list_item_nos_url, + 'query_data_list_item_nos_data': query_data_list_item_nos_data, + + # 上传数据项 + 'push_data_value_list_url': push_data_value_list_url, + 'push_data_value_list_data': push_data_value_list_data, + + # eta 配置 + 'APPID': APPID, + 'SECRET': SECRET, + 'etadata': data, + 'edbcodelist': edbcodelist, + 'ClassifyId': ClassifyId, + 'edbcodedataurl': edbcodedataurl, + 'classifyidlisturl': classifyidlisturl, + 'edbdatapushurl': edbdatapushurl, + 'edbdeleteurl': edbdeleteurl, + 'edbbusinessurl': edbbusinessurl, + 'edbcodenamedict': edbcodenamedict, + 'ClassifyId': ClassifyId, + 'classifylisturl': classifylisturl, + + # 数据库配置 + 'sqlitedb': sqlitedb, + 'is_bdwd': is_bdwd, + 'columnsrename': columnsrename, + 'db_mysql': db_mysql, + 'baichuan_table_name': baichuan_table_name, +}) + + +def push_market_value(): + logger.info('发送预测结果到市场信息平台') + # 读取预测数据和模型评估数据 + predict_file_path = os.path.join(config.dataset, 'predict.csv') + model_eval_file_path = os.path.join(config.dataset, 'model_evaluation.csv') + try: + predictdata_df = pd.read_csv(predict_file_path) + top_models_df = pd.read_csv(model_eval_file_path) + except FileNotFoundError as e: + logger.error(f"文件未找到: {e}") + return + + predictdata = predictdata_df.copy() + + # 取模型前十 + top_models = top_models_df['模型(Model)'].head(10).tolist() + # 去掉FDBformer + if 'FEDformer' in top_models: + top_models.remove('FEDformer') + # 计算前十模型的均值 + predictdata_df['top_models_mean'] = predictdata_df[top_models].mean(axis=1) + + # 打印日期和前十模型均值 + print(predictdata_df[['ds', 'top_models_mean']]) + + # 准备要推送的数据 + ciyue_mean = predictdata_df['top_models_mean'].iloc[0] + cieryue_mean = predictdata_df['top_models_mean'].iloc[1] + cisanyue_mean = predictdata_df['top_models_mean'].iloc[2] + cisieryue_mean = predictdata_df['top_models_mean'].iloc[3] + # 保留两位小数 + ciyue_mean = round(ciyue_mean, 2) + cieryue_mean = round(cieryue_mean, 2) + cisanyue_mean = round(cisanyue_mean, 2) + cisieryue_mean = round(cisieryue_mean, 2) + + predictdata = [ + { + "dataItemNo": global_config['bdwd_items']['ciyue'], + "dataDate": global_config['end_time'].replace('-', ''), + "dataStatus": "add", + "dataValue": ciyue_mean + }, + { + "dataItemNo": global_config['bdwd_items']['cieryue'], + "dataDate": global_config['end_time'].replace('-', ''), + "dataStatus": "add", + "dataValue": cieryue_mean + }, + { + "dataItemNo": global_config['bdwd_items']['cisanyue'], + "dataDate": global_config['end_time'].replace('-', ''), + "dataStatus": "add", + "dataValue": cisanyue_mean + }, + { + "dataItemNo": global_config['bdwd_items']['cisiyue'], + "dataDate": global_config['end_time'].replace('-', ''), + "dataStatus": "add", + "dataValue": cisieryue_mean + } + ] + + print(predictdata) + + # 推送数据到市场信息平台 + try: + push_market_data(predictdata) + except Exception as e: + logger.error(f"推送数据失败: {e}") + + +def predict_main(): + """ + 主预测函数,用于从 ETA 获取数据、处理数据、训练模型并进行预测。 + + 参数: + signature (BinanceAPI): Binance API 实例。 + etadata (EtaReader): ETA 数据读取器实例。 + is_eta (bool): 是否从 ETA 获取数据。 + data_set (str): 数据集名称。 + dataset (str): 数据集路径。 + add_kdj (bool): 是否添加 KDJ 指标。 + is_timefurture (bool): 是否添加时间衍生特征。 + end_time (str): 结束时间。 + is_edbnamelist (bool): 是否使用 EDB 名称列表。 + edbnamelist (list): EDB 名称列表。 + y (str): 预测目标列名。 + sqlitedb (SQLiteDB): SQLite 数据库实例。 + is_corr (bool): 是否进行相关性分析。 + horizon (int): 预测时域。 + input_size (int): 输入数据大小。 + train_steps (int): 训练步数。 + val_check_steps (int): 验证检查步数。 + early_stop_patience_steps (int): 早停耐心步数。 + is_debug (bool): 是否调试模式。 + dataset (str): 数据集名称。 + is_train (bool): 是否训练模型。 + is_fivemodels (bool): 是否使用五个模型。 + val_size (float): 验证集大小。 + test_size (float): 测试集大小。 + settings (dict): 模型设置。 + now (str): 当前时间。 + etadata (EtaReader): ETA 数据读取器实例。 + modelsindex (list): 模型索引列表。 + data (str): 数据类型。 + is_eta (bool): 是否从 ETA 获取数据。 + + 返回: + None + """ + + end_time = global_config['end_time'] + # 获取数据 + if is_eta: + logger.info('从eta获取数据...') + signature = BinanceAPI(APPID, SECRET) + etadata = EtaReader(signature=signature, + classifylisturl=global_config['classifylisturl'], + classifyidlisturl=global_config['classifyidlisturl'], + edbcodedataurl=global_config['edbcodedataurl'], + edbcodelist=global_config['edbcodelist'], + edbdatapushurl=global_config['edbdatapushurl'], + edbdeleteurl=global_config['edbdeleteurl'], + edbbusinessurl=global_config['edbbusinessurl'], + classifyId=global_config['ClassifyId'], + ) + df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_shiyoujiao_lvyong_data( + data_set=data_set, dataset=dataset) # 原始数据,未处理 + + if is_market: + logger.info('从市场信息平台获取数据...') + try: + # 如果是测试环境,最高价最低价取excel文档 + if server_host == '192.168.100.53': + logger.info('从excel文档获取最高价最低价') + df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju) + else: + logger.info('从市场信息平台获取数据') + df_zhibiaoshuju = get_market_data( + end_time, df_zhibiaoshuju) + + except: + logger.info('最高最低价拼接失败') + + if len(global_config['baichuanidnamedict']) > 0: + logger.info('从市场数据库获取百川数据...') + baichuandf = get_baichuan_data(global_config['baichuanidnamedict']) + df_zhibiaoshuju = pd.merge( + df_zhibiaoshuju, baichuandf, on='date', how='outer') + # 指标列表添加百川数据 + df_baichuanliebiao = pd.DataFrame( + global_config['baichuanidnamedict'].items(), columns=['指标id', '指标名称']) + df_baichuanliebiao['指标分类'] = '石油焦对标炼厂价格' + df_baichuanliebiao['频度'] = '其他' + df_zhibiaoliebiao = pd.concat( + [df_zhibiaoliebiao, df_baichuanliebiao], axis=0) + + # 保存到xlsx文件的sheet表 + with pd.ExcelWriter(os.path.join(dataset, data_set)) as file: + df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False) + df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False) + + # 数据处理 + df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=global_config['y'], dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture, + end_time=end_time) + + else: + # 读取数据 + logger.info('读取本地数据:' + os.path.join(dataset, data_set)) + df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj, + is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理 + + # 更改预测列名称 + df.rename(columns={y: 'y'}, inplace=True) + + if is_edbnamelist: + df = df[edbnamelist] + df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False) + # 保存最新日期的y值到数据库 + # 取第一行数据存储到数据库中 + first_row = df[['ds', 'y']].tail(1) + # 判断y的类型是否为float + if not isinstance(first_row['y'].values[0], float): + logger.info(f'{end_time}预测目标数据为空,跳过') + return None + + # 将最新真实值保存到数据库 + if not sqlitedb.check_table_exists('trueandpredict'): + first_row.to_sql('trueandpredict', sqlitedb.connection, index=False) + else: + for row in first_row.itertuples(index=False): + row_dict = row._asdict() + config.logger.info(f'要保存的真实值:{row_dict}') + # 判断ds是否为字符串类型,如果不是则转换为字符串类型 + if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)): + row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') + elif not isinstance(row_dict['ds'], str): + try: + row_dict['ds'] = pd.to_datetime( + row_dict['ds']).strftime('%Y-%m-%d') + except: + logger.warning(f"无法解析的时间格式: {row_dict['ds']}") + # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') + # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S') + check_query = sqlitedb.select_data( + 'trueandpredict', where_condition=f"ds = '{row.ds}'") + if len(check_query) > 0: + set_clause = ", ".join( + [f"{key} = '{value}'" for key, value in row_dict.items()]) + sqlitedb.update_data( + 'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'") + continue + sqlitedb.insert_data('trueandpredict', tuple( + row_dict.values()), columns=row_dict.keys()) + + # 更新accuracy表的y值 + if not sqlitedb.check_table_exists('accuracy'): + pass + else: + update_y = sqlitedb.select_data( + 'accuracy', where_condition="y is null") + if len(update_y) > 0: + logger.info('更新accuracy表的y值') + # 找到update_y 中ds且df中的y的行 + update_y = update_y[update_y['ds'] <= end_time] + logger.info(f'要更新y的信息:{update_y}') + # try: + for row in update_y.itertuples(index=False): + try: + row_dict = row._asdict() + yy = df[df['ds'] == row_dict['ds']]['y'].values[0] + LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0] + HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0] + sqlitedb.update_data( + 'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'") + except: + logger.info(f'更新accuracy表的y值失败:{row_dict}') + # except Exception as e: + # logger.info(f'更新accuracy表的y值失败:{e}') + + # 判断当前日期是不是周一 + is_weekday = datetime.datetime.now().weekday() == 0 + if is_weekday: + logger.info('今天是周一,更新预测模型') + # 计算最近60天预测残差最低的模型名称 + model_results = sqlitedb.select_data( + 'trueandpredict', order_by="ds DESC", limit="60") + # 删除空值率为90%以上的列 + if len(model_results) > 10: + model_results = model_results.dropna( + thresh=len(model_results)*0.1, axis=1) + # 删除空行 + model_results = model_results.dropna() + modelnames = model_results.columns.to_list()[2:-2] + for col in model_results[modelnames].select_dtypes(include=['object']).columns: + model_results[col] = model_results[col].astype(np.float32) + # 计算每个预测值与真实值之间的偏差率 + for model in modelnames: + model_results[f'{model}_abs_error_rate'] = abs( + model_results['y'] - model_results[model]) / model_results['y'] + # 获取每行对应的最小偏差率值 + min_abs_error_rate_values = model_results.apply( + lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1) + # 获取每行对应的最小偏差率值对应的列名 + min_abs_error_rate_column_name = model_results.apply( + lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1) + # 将列名索引转换为列名 + min_abs_error_rate_column_name = min_abs_error_rate_column_name.map( + lambda x: x.split('_')[0]) + # 取出现次数最多的模型名称 + most_common_model = min_abs_error_rate_column_name.value_counts().idxmax() + logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}") + # 保存结果到数据库 + if not sqlitedb.check_table_exists('most_model'): + sqlitedb.create_table( + 'most_model', columns="ds datetime, most_common_model TEXT") + sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime( + '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) + + if is_corr: + df = corr_feature(df=df) + + df1 = df.copy() # 备份一下,后面特征筛选完之后加入ds y 列用 + logger.info(f"开始训练模型...") + row, col = df.shape + + now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') + ex_Model(df, + horizon=global_config['horizon'], + input_size=global_config['input_size'], + train_steps=global_config['train_steps'], + val_check_steps=global_config['val_check_steps'], + early_stop_patience_steps=global_config['early_stop_patience_steps'], + is_debug=global_config['is_debug'], + dataset=global_config['dataset'], + is_train=global_config['is_train'], + is_fivemodels=global_config['is_fivemodels'], + val_size=global_config['val_size'], + test_size=global_config['test_size'], + settings=global_config['settings'], + now=now, + etadata=etadata, + modelsindex=global_config['modelsindex'], + data=data, + is_eta=global_config['is_eta'], + end_time=global_config['end_time'], + ) + + logger.info('模型训练完成') + + logger.info('训练数据绘图ing') + model_results3 = model_losss(sqlitedb, end_time=end_time) + logger.info('训练数据绘图end') + + # 模型报告 + logger.info('制作报告ing') + title = f'{settings}--{end_time}-预测报告' # 报告标题 + reportname = '石油焦大模型普货渠道.pdf' # 报告文件名 + # reportname = f'石油焦大模型普货月度预测--{end_time}.pdf' # 报告文件名 + # reportname = reportname.replace(':', '-') # 替换冒号 + shiyoujiao_puhuo_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time, + reportname=reportname, sqlitedb=sqlitedb), + + logger.info('制作报告end') + logger.info('模型训练完成') + + push_market_value() + + # 发送邮件 + # m = SendMail( + # username=username, + # passwd=passwd, + # recv=recv, + # title=title, + # content=content, + # file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime), + # ssl=ssl, + # ) + # m.send_mail() + + +if __name__ == '__main__': + # global end_time + # # 遍历2024-11-25 到 2024-12-3 之间的工作日日期 + # for i_time in pd.date_range('2024-12-1', '2025-2-26', freq='W'): + # end_time = i_time.strftime('%Y-%m-%d') + # predict_main() + + predict_main() diff --git a/main_shiyoujiao_puhuo_zhoudu.py b/main_shiyoujiao_puhuo_zhoudu.py new file mode 100644 index 0000000..f500bf4 --- /dev/null +++ b/main_shiyoujiao_puhuo_zhoudu.py @@ -0,0 +1,424 @@ +# 读取配置 + +from lib.dataread import * +from config_shiyoujiao_lvyong_zhoudu import * +from lib.tools import SendMail, exception_logger +from models.nerulforcastmodels import ex_Model, model_losss, shiyoujiao_lvyong_export_pdf +import datetime +import torch +torch.set_float32_matmul_precision("high") + +global_config.update({ + # 核心参数 + 'logger': logger, + 'dataset': dataset, + 'y': y, + 'is_debug': is_debug, + 'is_train': is_train, + 'is_fivemodels': is_fivemodels, + 'is_update_report': is_update_report, + 'settings': settings, + 'weight_dict': weight_dict, + 'baichuanidnamedict': baichuanidnamedict, + 'bdwdname': bdwdname, + + + # 模型参数 + 'data_set': data_set, + 'input_size': input_size, + 'horizon': horizon, + 'train_steps': train_steps, + 'val_check_steps': val_check_steps, + 'val_size': val_size, + 'test_size': test_size, + 'modelsindex': modelsindex, + 'rote': rote, + 'bdwd_items': bdwd_items, + 'baichuanidnamedict': baichuanidnamedict, + + # 特征工程开关 + 'is_del_corr': is_del_corr, + 'is_del_tow_month': is_del_tow_month, + 'is_eta': is_eta, + 'is_update_eta': is_update_eta, + 'is_fivemodels': is_fivemodels, + 'is_update_predict_value': is_update_predict_value, + 'early_stop_patience_steps': early_stop_patience_steps, + + # 时间参数 + 'start_year': start_year, + 'end_time': end_time or datetime.datetime.now().strftime("%Y-%m-%d"), + 'freq': freq, # 保持列表结构 + + # 接口配置 + 'login_pushreport_url': login_pushreport_url, + 'login_data': login_data, + 'upload_url': upload_url, + 'upload_data': upload_data, + 'upload_warning_url': upload_warning_url, + 'warning_data': warning_data, + + # 查询接口 + 'query_data_list_item_nos_url': query_data_list_item_nos_url, + 'query_data_list_item_nos_data': query_data_list_item_nos_data, + + # 上传数据项 + 'push_data_value_list_url': push_data_value_list_url, + 'push_data_value_list_data': push_data_value_list_data, + + # eta 配置 + 'APPID': APPID, + 'SECRET': SECRET, + 'etadata': data, + 'edbcodelist': edbcodelist, + 'ClassifyId': ClassifyId, + 'edbcodedataurl': edbcodedataurl, + 'classifyidlisturl': classifyidlisturl, + 'edbdatapushurl': edbdatapushurl, + 'edbdeleteurl': edbdeleteurl, + 'edbbusinessurl': edbbusinessurl, + 'edbcodenamedict': edbcodenamedict, + 'ClassifyId': ClassifyId, + 'classifylisturl': classifylisturl, + + # 数据库配置 + 'sqlitedb': sqlitedb, + 'db_mysql': db_mysql, + 'baichuan_table_name': baichuan_table_name, +}) + + +def push_market_value(): + logger.info('发送预测结果到市场信息平台') + # 读取预测数据和模型评估数据 + predict_file_path = os.path.join(config.dataset, 'predict.csv') + model_eval_file_path = os.path.join(config.dataset, 'model_evaluation.csv') + try: + predictdata_df = pd.read_csv(predict_file_path) + top_models_df = pd.read_csv(model_eval_file_path) + except FileNotFoundError as e: + logger.error(f"文件未找到: {e}") + return + + predictdata = predictdata_df.copy() + + # 取模型前十 + top_models = top_models_df['模型(Model)'].head(10).tolist() + # 去掉FDBformer + if 'FEDformer' in top_models: + top_models.remove('FEDformer') + # 计算前十模型的均值 + predictdata_df['top_models_mean'] = predictdata_df[top_models].mean(axis=1) + + # 打印日期和前十模型均值 + print(predictdata_df[['ds', 'top_models_mean']]) + + # 准备要推送的数据 + first_mean = predictdata_df['top_models_mean'].iloc[0] + last_mean = predictdata_df['top_models_mean'].iloc[-1] + # 保留两位小数 + first_mean = round(first_mean, 2) + last_mean = round(last_mean, 2) + + predictdata = [ + { + "dataItemNo": global_config['bdwd_items']['cizhou'], + "dataDate": global_config['end_time'].replace('-', ''), + "dataStatus": "add", + "dataValue": first_mean + }, + { + "dataItemNo": global_config['bdwd_items']['gezhou'], + "dataDate": global_config['end_time'].replace('-', ''), + "dataStatus": "add", + "dataValue": last_mean + } + ] + + print(predictdata) + + # 推送数据到市场信息平台 + try: + push_market_data(predictdata) + except Exception as e: + logger.error(f"推送数据失败: {e}") + + +def predict_main(): + """ + 主预测函数,用于从 ETA 获取数据、处理数据、训练模型并进行预测。 + + 参数: + signature (BinanceAPI): Binance API 实例。 + etadata (EtaReader): ETA 数据读取器实例。 + is_eta (bool): 是否从 ETA 获取数据。 + data_set (str): 数据集名称。 + dataset (str): 数据集路径。 + add_kdj (bool): 是否添加 KDJ 指标。 + is_timefurture (bool): 是否添加时间衍生特征。 + end_time (str): 结束时间。 + is_edbnamelist (bool): 是否使用 EDB 名称列表。 + edbnamelist (list): EDB 名称列表。 + y (str): 预测目标列名。 + sqlitedb (SQLiteDB): SQLite 数据库实例。 + is_corr (bool): 是否进行相关性分析。 + horizon (int): 预测时域。 + input_size (int): 输入数据大小。 + train_steps (int): 训练步数。 + val_check_steps (int): 验证检查步数。 + early_stop_patience_steps (int): 早停耐心步数。 + is_debug (bool): 是否调试模式。 + dataset (str): 数据集名称。 + is_train (bool): 是否训练模型。 + is_fivemodels (bool): 是否使用五个模型。 + val_size (float): 验证集大小。 + test_size (float): 测试集大小。 + settings (dict): 模型设置。 + now (str): 当前时间。 + etadata (EtaReader): ETA 数据读取器实例。 + modelsindex (list): 模型索引列表。 + data (str): 数据类型。 + is_eta (bool): 是否从 ETA 获取数据。 + + 返回: + None + """ + + end_time = global_config['end_time'] + # 获取数据 + if is_eta: + logger.info('从eta获取数据...') + signature = BinanceAPI(APPID, SECRET) + etadata = EtaReader(signature=signature, + classifylisturl=global_config['classifylisturl'], + classifyidlisturl=global_config['classifyidlisturl'], + edbcodedataurl=global_config['edbcodedataurl'], + edbcodelist=global_config['edbcodelist'], + edbdatapushurl=global_config['edbdatapushurl'], + edbdeleteurl=global_config['edbdeleteurl'], + edbbusinessurl=global_config['edbbusinessurl'], + classifyId=global_config['ClassifyId'], + ) + df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_shiyoujiao_lvyong_data( + data_set=data_set, dataset=dataset) # 原始数据,未处理 + + if is_market: + logger.info('从市场信息平台获取数据...') + try: + # 如果是测试环境,最高价最低价取excel文档 + if server_host == '192.168.100.53': + logger.info('从excel文档获取最高价最低价') + df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju) + else: + logger.info('从市场信息平台获取数据') + df_zhibiaoshuju = get_market_data( + end_time, df_zhibiaoshuju) + + except: + logger.info('最高最低价拼接失败') + + if len(global_config['baichuanidnamedict']) > 0: + logger.info('从市场数据库获取百川数据...') + baichuandf = get_baichuan_data(global_config['baichuanidnamedict']) + df_zhibiaoshuju = pd.merge( + df_zhibiaoshuju, baichuandf, on='date', how='outer') + # 指标列表添加百川数据 + df_baichuanliebiao = pd.DataFrame( + global_config['baichuanidnamedict'].items(), columns=['指标id', '指标名称']) + df_baichuanliebiao['指标分类'] = '石油焦对标炼厂价格' + df_baichuanliebiao['频度'] = '其他' + df_zhibiaoliebiao = pd.concat( + [df_zhibiaoliebiao, df_baichuanliebiao], axis=0) + + # 保存到xlsx文件的sheet表 + with pd.ExcelWriter(os.path.join(dataset, data_set)) as file: + df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False) + df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False) + + # 数据处理 + df = zhoududatachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=global_config['y'], dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture, + end_time=end_time) + + else: + # 读取数据 + logger.info('读取本地数据:' + os.path.join(dataset, data_set)) + df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj, + is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理 + + # 更改预测列名称 + df.rename(columns={y: 'y'}, inplace=True) + + if is_edbnamelist: + df = df[edbnamelist] + df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False) + # 保存最新日期的y值到数据库 + # 取第一行数据存储到数据库中 + first_row = df[['ds', 'y']].tail(1) + # 判断y的类型是否为float + if not isinstance(first_row['y'].values[0], float): + logger.info(f'{end_time}预测目标数据为空,跳过') + return None + + # 将最新真实值保存到数据库 + if not sqlitedb.check_table_exists('trueandpredict'): + first_row.to_sql('trueandpredict', sqlitedb.connection, index=False) + else: + for row in first_row.itertuples(index=False): + row_dict = row._asdict() + config.logger.info(f'要保存的真实值:{row_dict}') + # 判断ds是否为字符串类型,如果不是则转换为字符串类型 + if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)): + row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') + elif not isinstance(row_dict['ds'], str): + try: + row_dict['ds'] = pd.to_datetime( + row_dict['ds']).strftime('%Y-%m-%d') + except: + logger.warning(f"无法解析的时间格式: {row_dict['ds']}") + # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') + # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S') + check_query = sqlitedb.select_data( + 'trueandpredict', where_condition=f"ds = '{row.ds}'") + if len(check_query) > 0: + set_clause = ", ".join( + [f"{key} = '{value}'" for key, value in row_dict.items()]) + sqlitedb.update_data( + 'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'") + continue + sqlitedb.insert_data('trueandpredict', tuple( + row_dict.values()), columns=row_dict.keys()) + + # 更新accuracy表的y值 + if not sqlitedb.check_table_exists('accuracy'): + pass + else: + update_y = sqlitedb.select_data( + 'accuracy', where_condition="y is null") + if len(update_y) > 0: + logger.info('更新accuracy表的y值') + # 找到update_y 中ds且df中的y的行 + update_y = update_y[update_y['ds'] <= end_time] + logger.info(f'要更新y的信息:{update_y}') + # try: + for row in update_y.itertuples(index=False): + try: + row_dict = row._asdict() + yy = df[df['ds'] == row_dict['ds']]['y'].values[0] + LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0] + HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0] + sqlitedb.update_data( + 'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'") + except: + logger.info(f'更新accuracy表的y值失败:{row_dict}') + # except Exception as e: + # logger.info(f'更新accuracy表的y值失败:{e}') + + # 判断当前日期是不是周一 + is_weekday = datetime.datetime.now().weekday() == 0 + if is_weekday: + logger.info('今天是周一,更新预测模型') + # 计算最近60天预测残差最低的模型名称 + model_results = sqlitedb.select_data( + 'trueandpredict', order_by="ds DESC", limit="60") + # 删除空值率为90%以上的列 + if len(model_results) > 10: + model_results = model_results.dropna( + thresh=len(model_results)*0.1, axis=1) + # 删除空行 + model_results = model_results.dropna() + modelnames = model_results.columns.to_list()[2:-2] + for col in model_results[modelnames].select_dtypes(include=['object']).columns: + model_results[col] = model_results[col].astype(np.float32) + # 计算每个预测值与真实值之间的偏差率 + for model in modelnames: + model_results[f'{model}_abs_error_rate'] = abs( + model_results['y'] - model_results[model]) / model_results['y'] + # 获取每行对应的最小偏差率值 + min_abs_error_rate_values = model_results.apply( + lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1) + # 获取每行对应的最小偏差率值对应的列名 + min_abs_error_rate_column_name = model_results.apply( + lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1) + # 将列名索引转换为列名 + min_abs_error_rate_column_name = min_abs_error_rate_column_name.map( + lambda x: x.split('_')[0]) + # 取出现次数最多的模型名称 + most_common_model = min_abs_error_rate_column_name.value_counts().idxmax() + logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}") + # 保存结果到数据库 + if not sqlitedb.check_table_exists('most_model'): + sqlitedb.create_table( + 'most_model', columns="ds datetime, most_common_model TEXT") + sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime( + '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) + + if is_corr: + df = corr_feature(df=df) + + df1 = df.copy() # 备份一下,后面特征筛选完之后加入ds y 列用 + logger.info(f"开始训练模型...") + row, col = df.shape + + now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') + ex_Model(df, + horizon=global_config['horizon'], + input_size=global_config['input_size'], + train_steps=global_config['train_steps'], + val_check_steps=global_config['val_check_steps'], + early_stop_patience_steps=global_config['early_stop_patience_steps'], + is_debug=global_config['is_debug'], + dataset=global_config['dataset'], + is_train=global_config['is_train'], + is_fivemodels=global_config['is_fivemodels'], + val_size=global_config['val_size'], + test_size=global_config['test_size'], + settings=global_config['settings'], + now=now, + etadata=etadata, + modelsindex=global_config['modelsindex'], + data=data, + is_eta=global_config['is_eta'], + end_time=global_config['end_time'], + ) + + logger.info('模型训练完成') + + logger.info('训练数据绘图ing') + model_results3 = model_losss(sqlitedb, end_time=end_time) + logger.info('训练数据绘图end') + + # 模型报告 + logger.info('制作报告ing') + title = f'{settings}--{end_time}-预测报告' # 报告标题 + reportname = '石油焦大模型铝用渠道.pdf' # 报告文件名 + # reportname = f'石油焦铝用大模型周度预测--{end_time}.pdf' # 报告文件名 + # reportname = reportname.replace(':', '-') # 替换冒号 + shiyoujiao_lvyong_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time, + reportname=reportname, sqlitedb=sqlitedb), + + logger.info('制作报告end') + logger.info('模型训练完成') + + push_market_value() + + # 发送邮件 + # m = SendMail( + # username=username, + # passwd=passwd, + # recv=recv, + # title=title, + # content=content, + # file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime), + # ssl=ssl, + # ) + # m.send_mail() + + +if __name__ == '__main__': + # global end_time + # # 遍历2024-11-25 到 2024-12-3 之间的工作日日期 + # for i_time in pd.date_range('2024-12-1', '2025-2-26', freq='W'): + # end_time = i_time.strftime('%Y-%m-%d') + # predict_main() + + predict_main()