diff --git a/aisenzhecode/液化石油气/液化气价格预测ytj.ipynb b/aisenzhecode/液化石油气/液化气价格预测ytj.ipynb index 02a48b9..c18db50 100644 --- a/aisenzhecode/液化石油气/液化气价格预测ytj.ipynb +++ b/aisenzhecode/液化石油气/液化气价格预测ytj.ipynb @@ -2,17 +2,9 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING:tensorflow:From C:\\Users\\EDY\\AppData\\Roaming\\Python\\Python311\\site-packages\\keras\\src\\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.\n", - "\n" - ] - }, { "data": { "text/html": [ @@ -555,8 +547,8 @@ " else:\n", " append_rows.append(\"\")\n", " save_xls(append_rows)\n", - " optimize_Model()\n", - " upload_data_to_system(token_push,cur_time)\n", + " # optimize_Model()\n", + " # upload_data_to_system(token_push,cur_time)\n", " \n", " \n", " \n", @@ -724,7 +716,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": { "scrolled": true }, @@ -770,1213 +762,40 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "20250204 \n", - "2025-02-04 00:00:00 \n", - "{'data': {'date': '20250204', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250204', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8905.0}, {'dataDate': '20250204', 'dataItemNo': '251926669|STRIKE_PRICE', 'dataValue': 5450.0}, {'dataDate': '20250204', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250204', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250204', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5000.0}, {'dataDate': '20250204', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 4900.0}, {'dataDate': '20250204', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4690.0}, {'dataDate': '20250204', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5050.0}, {'dataDate': '20250204', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5600.0}, {'dataDate': '20250204', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250204', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250204', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5608.0}, {'dataDate': '20250204', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 175.0}, {'dataDate': '20250204', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5605.0}, {'dataDate': '20250204', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250204', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5400.0}, {'dataDate': '20250204', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 105.9453}, {'dataDate': '20250204', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250204', 'dataItemNo': 'C01100008|PLAN_SALE'}, {'dataDate': '20250204', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -150.0}, {'dataDate': '20250204', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5450.0}, {'dataDate': '20250204', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250204', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 6900.0}]\n", - "{'dataDate': '20250204', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n", - "{'dataDate': '20250204', 'dataItemNo': 'C01100008|PLAN_SALE'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: \n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\IPython\\core\\magics\\pylab.py:162: UserWarning:\n", - "\n", - "pylab import has clobbered these variables: ['__version__', 'random', 'plot', 'datetime']\n", - "`%matplotlib` prevents importing * from pylab and numpy\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-04 5410.651855\n", - "Name: 日度预测价格, dtype: float32\n", - "20250205 \n", - "2025-02-05 00:00:00 \n", - "{'data': {'date': '20250205', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250205', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8956.0}, {'dataDate': '20250205', 'dataItemNo': '251926669|STRIKE_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250205', 'dataItemNo': '370500|ISOBUTANE|LIST_PRICE', 'dataValue': 5140.0}, {'dataDate': '20250205', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250205', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250205', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5150.0}, {'dataDate': '20250205', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5050.0}, {'dataDate': '20250205', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4790.0}, {'dataDate': '20250205', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5250.0}, {'dataDate': '20250205', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5680.0}, {'dataDate': '20250205', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5530.0}, {'dataDate': '20250205', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250205', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5638.0}, {'dataDate': '20250205', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 175.0}, {'dataDate': '20250205', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5635.0}, {'dataDate': '20250205', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250205', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5500.0}, {'dataDate': '20250205', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 81.2796}, {'dataDate': '20250205', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250205', 'dataItemNo': 'C01100008|PLAN_SALE'}, {'dataDate': '20250205', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -150.0}, {'dataDate': '20250205', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250205', 'dataItemNo': 'SD|GC|ZDW|LIST_PRICE', 'dataValue': 5050.0}, {'dataDate': '20250205', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250205', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 8800.0}, {'dataDate': '20250205', 'dataItemNo': 'SD|YT|SG|LIST_PRICE', 'dataValue': 6200.0}]\n", - "{'dataDate': '20250205', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n", - "{'dataDate': '20250205', 'dataItemNo': 'C01100008|PLAN_SALE'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: QtAgg\n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-05 5494.333496\n", - "Name: 日度预测价格, dtype: float32\n", - "20250206 \n", - "2025-02-06 00:00:00 \n", - "{'data': {'date': '20250206', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250206', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8956.0}, {'dataDate': '20250206', 'dataItemNo': '251926669|STRIKE_PRICE', 'dataValue': 5550.0}, {'dataDate': '20250206', 'dataItemNo': '370500|ISOBUTANE|LIST_PRICE', 'dataValue': 5160.0}, {'dataDate': '20250206', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250206', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250206', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5300.0}, {'dataDate': '20250206', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5200.0}, {'dataDate': '20250206', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4870.0}, {'dataDate': '20250206', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250206', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5700.0}, {'dataDate': '20250206', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5630.0}, {'dataDate': '20250206', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 300.0}, {'dataDate': '20250206', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5678.0}, {'dataDate': '20250206', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 175.0}, {'dataDate': '20250206', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5655.0}, {'dataDate': '20250206', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250206', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5500.0}, {'dataDate': '20250206', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 152.4238}, {'dataDate': '20250206', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250206', 'dataItemNo': 'C01100008|PLAN_SALE', 'dataValue': 0.0}, {'dataDate': '20250206', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -150.0}, {'dataDate': '20250206', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250206', 'dataItemNo': 'SD|GC|ZDW|LIST_PRICE', 'dataValue': 5070.0}, {'dataDate': '20250206', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250206', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 8800.0}, {'dataDate': '20250206', 'dataItemNo': 'SD|YT|SG|LIST_PRICE', 'dataValue': 6200.0}]\n", - "{'dataDate': '20250206', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: QtAgg\n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-06 5552.835938\n", - "Name: 日度预测价格, dtype: float32\n", - "20250207 \n", - "2025-02-07 00:00:00 \n", - "{'data': {'date': '20250207', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250207', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8921.0}, {'dataDate': '20250207', 'dataItemNo': '251926669|STRIKE_PRICE', 'dataValue': 5550.0}, {'dataDate': '20250207', 'dataItemNo': '370500|ISOBUTANE|LIST_PRICE', 'dataValue': 5160.0}, {'dataDate': '20250207', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250207', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250207', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250207', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5250.0}, {'dataDate': '20250207', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4870.0}, {'dataDate': '20250207', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250207', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5700.0}, {'dataDate': '20250207', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5630.0}, {'dataDate': '20250207', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 300.0}, {'dataDate': '20250207', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5678.0}, {'dataDate': '20250207', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 175.0}, {'dataDate': '20250207', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5655.0}, {'dataDate': '20250207', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250207', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5550.0}, {'dataDate': '20250207', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': -7.6913}, {'dataDate': '20250207', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250207', 'dataItemNo': 'C01100008|PLAN_SALE'}, {'dataDate': '20250207', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -150.0}, {'dataDate': '20250207', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250207', 'dataItemNo': 'SD|GC|ZDW|LIST_PRICE', 'dataValue': 5110.0}, {'dataDate': '20250207', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250207', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 8700.0}, {'dataDate': '20250207', 'dataItemNo': 'SD|YT|SG|LIST_PRICE', 'dataValue': 6150.0}]\n", - "{'dataDate': '20250207', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n", - "{'dataDate': '20250207', 'dataItemNo': 'C01100008|PLAN_SALE'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: QtAgg\n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-07 5574.327637\n", - "Name: 日度预测价格, dtype: float32\n", - "20250208 \n", - "2025-02-08 00:00:00 \n", - "{'data': {'date': '20250208', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250208', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8866.0}, {'dataDate': '20250208', 'dataItemNo': '251926669|STRIKE_PRICE', 'dataValue': 5450.0}, {'dataDate': '20250208', 'dataItemNo': '370500|ISOBUTANE|LIST_PRICE', 'dataValue': 5220.0}, {'dataDate': '20250208', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250208', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE', 'dataValue': 0.0}, {'dataDate': '20250208', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250208', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5250.0}, {'dataDate': '20250208', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4870.0}, {'dataDate': '20250208', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250208', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5600.0}, {'dataDate': '20250208', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250208', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 300.0}, {'dataDate': '20250208', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5578.0}, {'dataDate': '20250208', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250208', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5555.0}, {'dataDate': '20250208', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250208', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5450.0}, {'dataDate': '20250208', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 153.4345}, {'dataDate': '20250208', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250208', 'dataItemNo': 'C01100008|PLAN_SALE', 'dataValue': 0.0}, {'dataDate': '20250208', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -50.0}, {'dataDate': '20250208', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250208', 'dataItemNo': 'SD|GC|ZDW|LIST_PRICE', 'dataValue': 5130.0}, {'dataDate': '20250208', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250208', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 8700.0}, {'dataDate': '20250208', 'dataItemNo': 'SD|YT|SG|LIST_PRICE', 'dataValue': 6100.0}]\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: QtAgg\n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-08 5400.607422\n", - "Name: 日度预测价格, dtype: float32\n", - "20250209 \n", - "2025-02-09 00:00:00 \n", - "{'data': {'date': '20250209', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250209', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8875.0}, {'dataDate': '20250209', 'dataItemNo': '251926669|STRIKE_PRICE', 'dataValue': 5450.0}, {'dataDate': '20250209', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250209', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250209', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250209', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5250.0}, {'dataDate': '20250209', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4870.0}, {'dataDate': '20250209', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250209', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5550.0}, {'dataDate': '20250209', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5470.0}, {'dataDate': '20250209', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 300.0}, {'dataDate': '20250209', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5558.0}, {'dataDate': '20250209', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250209', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5555.0}, {'dataDate': '20250209', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250209', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5500.0}, {'dataDate': '20250209', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 231.5606}, {'dataDate': '20250209', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250209', 'dataItemNo': 'C01100008|PLAN_SALE'}, {'dataDate': '20250209', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -50.0}, {'dataDate': '20250209', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250209', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250209', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 7000.0}]\n", - "{'dataDate': '20250209', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n", - "{'dataDate': '20250209', 'dataItemNo': 'C01100008|PLAN_SALE'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: QtAgg\n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-09 5392.519043\n", - "Name: 日度预测价格, dtype: float32\n", - "20250210 \n", - "2025-02-10 00:00:00 \n", - "{'data': {'date': '20250210', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250210', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8875.0}, {'dataDate': '20250210', 'dataItemNo': '251926669|STRIKE_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250210', 'dataItemNo': '370500|ISOBUTANE|LIST_PRICE', 'dataValue': 5250.0}, {'dataDate': '20250210', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250210', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250210', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250210', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5250.0}, {'dataDate': '20250210', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4820.0}, {'dataDate': '20250210', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250210', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5550.0}, {'dataDate': '20250210', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5470.0}, {'dataDate': '20250210', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 300.0}, {'dataDate': '20250210', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5558.0}, {'dataDate': '20250210', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250210', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5555.0}, {'dataDate': '20250210', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250210', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5500.0}, {'dataDate': '20250210', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 236.8478}, {'dataDate': '20250210', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250210', 'dataItemNo': 'C01100008|PLAN_SALE'}, {'dataDate': '20250210', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -50.0}, {'dataDate': '20250210', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250210', 'dataItemNo': 'SD|GC|ZDW|LIST_PRICE', 'dataValue': 5160.0}, {'dataDate': '20250210', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250210', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 8600.0}, {'dataDate': '20250210', 'dataItemNo': 'SD|YT|SG|LIST_PRICE', 'dataValue': 6000.0}]\n", - "{'dataDate': '20250210', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n", - "{'dataDate': '20250210', 'dataItemNo': 'C01100008|PLAN_SALE'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: QtAgg\n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-10 5405.626465\n", - "Name: 日度预测价格, dtype: float32\n", - "20250211 \n", - "2025-02-11 00:00:00 \n", - "{'data': {'date': '20250211', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250211', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8875.0}, {'dataDate': '20250211', 'dataItemNo': '251926669|STRIKE_PRICE', 'dataValue': 5420.0}, {'dataDate': '20250211', 'dataItemNo': '370500|ISOBUTANE|LIST_PRICE', 'dataValue': 5280.0}, {'dataDate': '20250211', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250211', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250211', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5300.0}, {'dataDate': '20250211', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5200.0}, {'dataDate': '20250211', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4820.0}, {'dataDate': '20250211', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250211', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5650.0}, {'dataDate': '20250211', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5490.0}, {'dataDate': '20250211', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 300.0}, {'dataDate': '20250211', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5608.0}, {'dataDate': '20250211', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250211', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5605.0}, {'dataDate': '20250211', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5420.0}, {'dataDate': '20250211', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5420.0}, {'dataDate': '20250211', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 263.0919}, {'dataDate': '20250211', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250211', 'dataItemNo': 'C01100008|PLAN_SALE'}, {'dataDate': '20250211', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -50.0}, {'dataDate': '20250211', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250211', 'dataItemNo': 'SD|GC|ZDW|LIST_PRICE', 'dataValue': 5150.0}, {'dataDate': '20250211', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250211', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 8550.0}, {'dataDate': '20250211', 'dataItemNo': 'SD|YT|SG|LIST_PRICE', 'dataValue': 5700.0}]\n", - "{'dataDate': '20250211', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n", - "{'dataDate': '20250211', 'dataItemNo': 'C01100008|PLAN_SALE'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: QtAgg\n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-11 5423.526855\n", - "Name: 日度预测价格, dtype: float32\n", - "20250212 \n", - "2025-02-12 00:00:00 \n", - "{'data': {'date': '20250212', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250212', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8875.0}, {'dataDate': '20250212', 'dataItemNo': '251926669|STRIKE_PRICE', 'dataValue': 5480.0}, {'dataDate': '20250212', 'dataItemNo': '370500|ISOBUTANE|LIST_PRICE', 'dataValue': 5280.0}, {'dataDate': '20250212', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250212', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250212', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5300.0}, {'dataDate': '20250212', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5200.0}, {'dataDate': '20250212', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4720.0}, {'dataDate': '20250212', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250212', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5750.0}, {'dataDate': '20250212', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5550.0}, {'dataDate': '20250212', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 300.0}, {'dataDate': '20250212', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5708.0}, {'dataDate': '20250212', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250212', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5705.0}, {'dataDate': '20250212', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250212', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5500.0}, {'dataDate': '20250212', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 332.637}, {'dataDate': '20250212', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250212', 'dataItemNo': 'C01100008|PLAN_SALE'}, {'dataDate': '20250212', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -50.0}, {'dataDate': '20250212', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250212', 'dataItemNo': 'SD|GC|ZDW|LIST_PRICE', 'dataValue': 5100.0}, {'dataDate': '20250212', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250212', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 8600.0}, {'dataDate': '20250212', 'dataItemNo': 'SD|YT|SG|LIST_PRICE', 'dataValue': 5675.0}]\n", - "{'dataDate': '20250212', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n", - "{'dataDate': '20250212', 'dataItemNo': 'C01100008|PLAN_SALE'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: QtAgg\n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-12 5480.074707\n", - "Name: 日度预测价格, dtype: float32\n", - "20250213 \n", - "2025-02-13 00:00:00 \n", - "{'data': {'date': '20250213', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250213', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8793.0}, {'dataDate': '20250213', 'dataItemNo': '251926669|STRIKE_PRICE', 'dataValue': 5420.0}, {'dataDate': '20250213', 'dataItemNo': '370500|ISOBUTANE|LIST_PRICE', 'dataValue': 5280.0}, {'dataDate': '20250213', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250213', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250213', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250213', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5300.0}, {'dataDate': '20250213', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4720.0}, {'dataDate': '20250213', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5450.0}, {'dataDate': '20250213', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5650.0}, {'dataDate': '20250213', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5470.0}, {'dataDate': '20250213', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 300.0}, {'dataDate': '20250213', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5658.0}, {'dataDate': '20250213', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250213', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5625.0}, {'dataDate': '20250213', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250213', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5420.0}, {'dataDate': '20250213', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 229.5496}, {'dataDate': '20250213', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250213', 'dataItemNo': 'C01100008|PLAN_SALE'}, {'dataDate': '20250213', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -50.0}, {'dataDate': '20250213', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250213', 'dataItemNo': 'SD|GC|ZDW|LIST_PRICE', 'dataValue': 5080.0}, {'dataDate': '20250213', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250213', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 8400.0}, {'dataDate': '20250213', 'dataItemNo': 'SD|YT|SG|LIST_PRICE', 'dataValue': 5800.0}]\n", - "{'dataDate': '20250213', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n", - "{'dataDate': '20250213', 'dataItemNo': 'C01100008|PLAN_SALE'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: QtAgg\n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-13 5421.194336\n", - "Name: 日度预测价格, dtype: float32\n", - "20250214 \n", - "2025-02-14 00:00:00 \n", - "{'data': {'date': '20250214', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250214', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8722.0}, {'dataDate': '20250214', 'dataItemNo': '251926669|STRIKE_PRICE', 'dataValue': 5370.0}, {'dataDate': '20250214', 'dataItemNo': '370500|ISOBUTANE|LIST_PRICE', 'dataValue': 5270.0}, {'dataDate': '20250214', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250214', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250214', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250214', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5300.0}, {'dataDate': '20250214', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4720.0}, {'dataDate': '20250214', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5450.0}, {'dataDate': '20250214', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5550.0}, {'dataDate': '20250214', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250214', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 300.0}, {'dataDate': '20250214', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5608.0}, {'dataDate': '20250214', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250214', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5555.0}, {'dataDate': '20250214', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250214', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5370.0}, {'dataDate': '20250214', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 322.7353}, {'dataDate': '20250214', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250214', 'dataItemNo': 'C01100008|PLAN_SALE'}, {'dataDate': '20250214', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -50.0}, {'dataDate': '20250214', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250214', 'dataItemNo': 'SD|GC|ZDW|LIST_PRICE', 'dataValue': 5090.0}, {'dataDate': '20250214', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250214', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 8300.0}, {'dataDate': '20250214', 'dataItemNo': 'SD|YT|SG|LIST_PRICE', 'dataValue': 5800.0}]\n", - "{'dataDate': '20250214', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n", - "{'dataDate': '20250214', 'dataItemNo': 'C01100008|PLAN_SALE'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: QtAgg\n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-14 5389.237305\n", - "Name: 日度预测价格, dtype: float32\n", - "20250215 \n", - "2025-02-15 00:00:00 \n", - "{'data': {'date': '20250215', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250215', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8722.0}, {'dataDate': '20250215', 'dataItemNo': '251926669|STRIKE_PRICE', 'dataValue': 5300.0}, {'dataDate': '20250215', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250215', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250215', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250215', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5300.0}, {'dataDate': '20250215', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4720.0}, {'dataDate': '20250215', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5450.0}, {'dataDate': '20250215', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250215', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250215', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 300.0}, {'dataDate': '20250215', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5538.0}, {'dataDate': '20250215', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250215', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5505.0}, {'dataDate': '20250215', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250215', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5300.0}, {'dataDate': '20250215', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 461.3501}, {'dataDate': '20250215', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250215', 'dataItemNo': 'C01100008|PLAN_SALE'}, {'dataDate': '20250215', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -50.0}, {'dataDate': '20250215', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250215', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250215', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 6850.0}]\n", - "{'dataDate': '20250215', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n", - "{'dataDate': '20250215', 'dataItemNo': 'C01100008|PLAN_SALE'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: QtAgg\n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-15 5337.031738\n", - "Name: 日度预测价格, dtype: float32\n", - "20250216 \n", - "2025-02-16 00:00:00 \n", - "{'data': {'date': '20250216', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250216', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8674.0}, {'dataDate': '20250216', 'dataItemNo': '251926669|STRIKE_PRICE', 'dataValue': 5300.0}, {'dataDate': '20250216', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250216', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5300.0}, {'dataDate': '20250216', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4720.0}, {'dataDate': '20250216', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5450.0}, {'dataDate': '20250216', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5450.0}, {'dataDate': '20250216', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5380.0}, {'dataDate': '20250216', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5538.0}, {'dataDate': '20250216', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5505.0}, {'dataDate': '20250216', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5300.0}, {'dataDate': '20250216', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 786.1007}, {'dataDate': '20250216', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5350.0}]\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: QtAgg\n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-16 5371.679688\n", - "Name: 日度预测价格, dtype: float32\n", - "20250217 \n", - "2025-02-17 00:00:00 \n", - "{'data': {'date': '20250217', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250217', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8674.0}, {'dataDate': '20250217', 'dataItemNo': '251926669|STRIKE_PRICE', 'dataValue': 5300.0}, {'dataDate': '20250217', 'dataItemNo': '370500|ISOBUTANE|LIST_PRICE', 'dataValue': 5270.0}, {'dataDate': '20250217', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250217', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250217', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5300.0}, {'dataDate': '20250217', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5200.0}, {'dataDate': '20250217', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4720.0}, {'dataDate': '20250217', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250217', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5520.0}, {'dataDate': '20250217', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250217', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 300.0}, {'dataDate': '20250217', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5538.0}, {'dataDate': '20250217', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250217', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5505.0}, {'dataDate': '20250217', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250217', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5300.0}, {'dataDate': '20250217', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 1158.2119}, {'dataDate': '20250217', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250217', 'dataItemNo': 'C01100008|PLAN_SALE'}, {'dataDate': '20250217', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -50.0}, {'dataDate': '20250217', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250217', 'dataItemNo': 'SD|GC|ZDW|LIST_PRICE', 'dataValue': 5180.0}, {'dataDate': '20250217', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250217', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 8300.0}, {'dataDate': '20250217', 'dataItemNo': 'SD|YT|SG|LIST_PRICE', 'dataValue': 5800.0}]\n", - "{'dataDate': '20250217', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n", - "{'dataDate': '20250217', 'dataItemNo': 'C01100008|PLAN_SALE'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: QtAgg\n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-17 5310.317383\n", - "Name: 日度预测价格, dtype: float32\n", - "20250218 \n", - "2025-02-18 00:00:00 \n", - "{'data': {'date': '20250218', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250218', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8674.0}, {'dataDate': '20250218', 'dataItemNo': '251926669|STRIKE_PRICE', 'dataValue': 5480.0}, {'dataDate': '20250218', 'dataItemNo': '370500|ISOBUTANE|LIST_PRICE', 'dataValue': 5270.0}, {'dataDate': '20250218', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250218', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250218', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5300.0}, {'dataDate': '20250218', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5200.0}, {'dataDate': '20250218', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4690.0}, {'dataDate': '20250218', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250218', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5630.0}, {'dataDate': '20250218', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5550.0}, {'dataDate': '20250218', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 300.0}, {'dataDate': '20250218', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5588.0}, {'dataDate': '20250218', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250218', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5585.0}, {'dataDate': '20250218', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250218', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5500.0}, {'dataDate': '20250218', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 1308.9073}, {'dataDate': '20250218', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250218', 'dataItemNo': 'C01100008|PLAN_SALE'}, {'dataDate': '20250218', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -50.0}, {'dataDate': '20250218', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250218', 'dataItemNo': 'SD|GC|ZDW|LIST_PRICE', 'dataValue': 5220.0}, {'dataDate': '20250218', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250218', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 8400.0}, {'dataDate': '20250218', 'dataItemNo': 'SD|YT|SG|LIST_PRICE', 'dataValue': 5775.0}]\n", - "{'dataDate': '20250218', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n", - "{'dataDate': '20250218', 'dataItemNo': 'C01100008|PLAN_SALE'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: QtAgg\n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-18 5466.825195\n", - "Name: 日度预测价格, dtype: float32\n", - "20250219 \n", - "2025-02-19 00:00:00 \n", - "{'data': {'date': '20250219', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250219', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8674.0}, {'dataDate': '20250219', 'dataItemNo': '370500|ISOBUTANE|LIST_PRICE', 'dataValue': 5300.0}, {'dataDate': '20250219', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250219', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250219', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250219', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5250.0}, {'dataDate': '20250219', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4690.0}, {'dataDate': '20250219', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250219', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5700.0}, {'dataDate': '20250219', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5650.0}, {'dataDate': '20250219', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 300.0}, {'dataDate': '20250219', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5668.0}, {'dataDate': '20250219', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250219', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5665.0}, {'dataDate': '20250219', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250219', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5550.0}, {'dataDate': '20250219', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 1600.0196}, {'dataDate': '20250219', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250219', 'dataItemNo': 'C01100008|PLAN_SALE'}, {'dataDate': '20250219', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -50.0}, {'dataDate': '20250219', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250219', 'dataItemNo': 'SD|GC|ZDW|LIST_PRICE', 'dataValue': 5220.0}, {'dataDate': '20250219', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250219', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 8400.0}, {'dataDate': '20250219', 'dataItemNo': 'SD|YT|SG|LIST_PRICE', 'dataValue': 5750.0}]\n", - "{'dataDate': '20250219', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n", - "{'dataDate': '20250219', 'dataItemNo': 'C01100008|PLAN_SALE'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: QtAgg\n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-19 5479.943848\n", - "Name: 日度预测价格, dtype: float32\n", - "20250220 \n", - "2025-02-20 00:00:00 \n", - "{'data': {'date': '20250220', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250220', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8674.0}, {'dataDate': '20250220', 'dataItemNo': '370500|ISOBUTANE|LIST_PRICE', 'dataValue': 5340.0}, {'dataDate': '20250220', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250220', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250220', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250220', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5300.0}, {'dataDate': '20250220', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4770.0}, {'dataDate': '20250220', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5450.0}, {'dataDate': '20250220', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5700.0}, {'dataDate': '20250220', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5650.0}, {'dataDate': '20250220', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 300.0}, {'dataDate': '20250220', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5668.0}, {'dataDate': '20250220', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250220', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5665.0}, {'dataDate': '20250220', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250220', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5550.0}, {'dataDate': '20250220', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 1471.9223}, {'dataDate': '20250220', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250220', 'dataItemNo': 'C01100008|PLAN_SALE'}, {'dataDate': '20250220', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -50.0}, {'dataDate': '20250220', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250220', 'dataItemNo': 'SD|GC|ZDW|LIST_PRICE', 'dataValue': 5230.0}, {'dataDate': '20250220', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250220', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 8500.0}, {'dataDate': '20250220', 'dataItemNo': 'SD|YT|SG|LIST_PRICE', 'dataValue': 5750.0}]\n", - "{'dataDate': '20250220', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n", - "{'dataDate': '20250220', 'dataItemNo': 'C01100008|PLAN_SALE'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: QtAgg\n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-20 5478.131348\n", - "Name: 日度预测价格, dtype: float32\n", - "20250221 \n", - "2025-02-21 00:00:00 \n", - "{'data': {'date': '20250221', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250221', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8674.0}, {'dataDate': '20250221', 'dataItemNo': '370500|ISOBUTANE|LIST_PRICE', 'dataValue': 5340.0}, {'dataDate': '20250221', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250221', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250221', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5450.0}, {'dataDate': '20250221', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250221', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4770.0}, {'dataDate': '20250221', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250221', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5700.0}, {'dataDate': '20250221', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5650.0}, {'dataDate': '20250221', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 300.0}, {'dataDate': '20250221', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5668.0}, {'dataDate': '20250221', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250221', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5665.0}, {'dataDate': '20250221', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250221', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5500.0}, {'dataDate': '20250221', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 1313.0783}, {'dataDate': '20250221', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250221', 'dataItemNo': 'C01100008|PLAN_SALE'}, {'dataDate': '20250221', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -50.0}, {'dataDate': '20250221', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250221', 'dataItemNo': 'SD|GC|ZDW|LIST_PRICE', 'dataValue': 5240.0}, {'dataDate': '20250221', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250221', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 8400.0}, {'dataDate': '20250221', 'dataItemNo': 'SD|YT|SG|LIST_PRICE', 'dataValue': 5875.0}]\n", - "{'dataDate': '20250221', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n", - "{'dataDate': '20250221', 'dataItemNo': 'C01100008|PLAN_SALE'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: QtAgg\n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-21 5482.609375\n", - "Name: 日度预测价格, dtype: float32\n", - "20250222 \n", - "2025-02-22 00:00:00 \n", - "{'data': {'date': '20250222', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250222', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8593.0}, {'dataDate': '20250222', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250222', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE', 'dataValue': 0.0}, {'dataDate': '20250222', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5450.0}, {'dataDate': '20250222', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250222', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4770.0}, {'dataDate': '20250222', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250222', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5600.0}, {'dataDate': '20250222', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5550.0}, {'dataDate': '20250222', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250222', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5618.0}, {'dataDate': '20250222', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 175.0}, {'dataDate': '20250222', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5605.0}, {'dataDate': '20250222', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250222', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5500.0}, {'dataDate': '20250222', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 1043.6716}, {'dataDate': '20250222', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250222', 'dataItemNo': 'C01100008|PLAN_SALE', 'dataValue': 700.0}, {'dataDate': '20250222', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -50.0}, {'dataDate': '20250222', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250222', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250222', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 6850.0}]\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: QtAgg\n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-22 5422.866211\n", - "Name: 日度预测价格, dtype: float32\n", - "20250223 \n", - "2025-02-23 00:00:00 \n", - "{'data': {'date': '20250223', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250223', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8513.0}, {'dataDate': '20250223', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250223', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250223', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5450.0}, {'dataDate': '20250223', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250223', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4770.0}, {'dataDate': '20250223', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250223', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5600.0}, {'dataDate': '20250223', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5550.0}, {'dataDate': '20250223', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250223', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5568.0}, {'dataDate': '20250223', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 175.0}, {'dataDate': '20250223', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5555.0}, {'dataDate': '20250223', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250223', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5400.0}, {'dataDate': '20250223', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 1127.7162}, {'dataDate': '20250223', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250223', 'dataItemNo': 'C01100008|PLAN_SALE', 'dataValue': 400.0}, {'dataDate': '20250223', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -50.0}, {'dataDate': '20250223', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250223', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250223', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 6850.0}]\n", - "{'dataDate': '20250223', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: QtAgg\n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-23 5481.371094\n", - "Name: 日度预测价格, dtype: float32\n", - "20250224 \n", - "2025-02-24 00:00:00 \n", - "{'data': {'date': '20250224', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", - "[{'dataDate': '20250224', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8513.0}, {'dataDate': '20250224', 'dataItemNo': '370500|ISOBUTANE|LIST_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250224', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250224', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250224', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250224', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5250.0}, {'dataDate': '20250224', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4670.0}, {'dataDate': '20250224', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250224', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5600.0}, {'dataDate': '20250224', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250224', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250224', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5488.0}, {'dataDate': '20250224', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 175.0}, {'dataDate': '20250224', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5455.0}, {'dataDate': '20250224', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250224', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5400.0}, {'dataDate': '20250224', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 1218.5774}, {'dataDate': '20250224', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250224', 'dataItemNo': 'C01100008|PLAN_SALE', 'dataValue': 400.0}, {'dataDate': '20250224', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -50.0}, {'dataDate': '20250224', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250224', 'dataItemNo': 'SD|GC|ZDW|LIST_PRICE', 'dataValue': 5200.0}, {'dataDate': '20250224', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250224', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 8300.0}, {'dataDate': '20250224', 'dataItemNo': 'SD|YT|SG|LIST_PRICE', 'dataValue': 5900.0}]\n", - "{'dataDate': '20250224', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:293: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:295: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using matplotlib backend: QtAgg\n", - "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", - "Populating the interactive namespace from numpy and matplotlib\n", - "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:241: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:243: UserWarning:\n", - "\n", - "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", - "\n", - "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10368\\3326068263.py:275: FutureWarning:\n", - "\n", - "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Date\n", - "2025-02-24 5480.000488\n", - "Name: 日度预测价格, dtype: float32\n", - "[5410.65, 5494.33, 5552.84, 5574.33, 5400.61, 5392.52, 5405.63, 5423.53, 5480.07, 5421.19, 5389.24, 5337.03, 5371.68, 5310.32, 5466.83, 5479.94, 5478.13, 5482.61, 5422.87, 5481.37, 5480.0]\n" + "20250225 \n", + "2025-02-25 00:00:00 \n", + "{'data': {'date': '20250225', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", + "[{'dataDate': '20250225', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8513.0}, {'dataDate': '20250225', 'dataItemNo': '370500|ISOBUTANE|LIST_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250225', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250225', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250225', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250225', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5250.0}, {'dataDate': '20250225', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4670.0}, {'dataDate': '20250225', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250225', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5600.0}, {'dataDate': '20250225', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250225', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250225', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5488.0}, {'dataDate': '20250225', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 175.0}, {'dataDate': '20250225', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5455.0}, {'dataDate': '20250225', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250225', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5400.0}, {'dataDate': '20250225', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 1102.7538}, {'dataDate': '20250225', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250225', 'dataItemNo': 'C01100008|PLAN_SALE', 'dataValue': 400.0}, {'dataDate': '20250225', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -50.0}, {'dataDate': '20250225', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250225', 'dataItemNo': 'SD|GC|ZDW|LIST_PRICE', 'dataValue': 5210.0}, {'dataDate': '20250225', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250225', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 8350.0}, {'dataDate': '20250225', 'dataItemNo': 'SD|YT|SG|LIST_PRICE', 'dataValue': 6000.0}]\n", + "{'dataDate': '20250225', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n", + "20250226 \n", + "2025-02-26 00:00:00 \n", + "{'data': {'date': '20250226', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", + "[{'dataDate': '20250226', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8513.0}, {'dataDate': '20250226', 'dataItemNo': '370500|ISOBUTANE|LIST_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250226', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250226', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250226', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250226', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5250.0}, {'dataDate': '20250226', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4670.0}, {'dataDate': '20250226', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250226', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5600.0}, {'dataDate': '20250226', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250226', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250226', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5488.0}, {'dataDate': '20250226', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 175.0}, {'dataDate': '20250226', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5455.0}, {'dataDate': '20250226', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250226', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5400.0}, {'dataDate': '20250226', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 973.1879}, {'dataDate': '20250226', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250226', 'dataItemNo': 'C01100008|PLAN_SALE', 'dataValue': 400.0}, {'dataDate': '20250226', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -50.0}, {'dataDate': '20250226', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250226', 'dataItemNo': 'SD|GC|ZDW|LIST_PRICE', 'dataValue': 5250.0}, {'dataDate': '20250226', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250226', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 8300.0}, {'dataDate': '20250226', 'dataItemNo': 'SD|YT|SG|LIST_PRICE', 'dataValue': 6000.0}]\n", + "{'dataDate': '20250226', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n", + "20250227 \n", + "2025-02-27 00:00:00 \n", + "{'data': {'date': '20250227', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", + "[{'dataDate': '20250227', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8441.0}, {'dataDate': '20250227', 'dataItemNo': '370500|ISOBUTANE|LIST_PRICE', 'dataValue': 5340.0}, {'dataDate': '20250227', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250227', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250227', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5350.0}, {'dataDate': '20250227', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5250.0}, {'dataDate': '20250227', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4670.0}, {'dataDate': '20250227', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250227', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5600.0}, {'dataDate': '20250227', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250227', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250227', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5488.0}, {'dataDate': '20250227', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 175.0}, {'dataDate': '20250227', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5455.0}, {'dataDate': '20250227', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250227', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5480.0}, {'dataDate': '20250227', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': 698.2293}, {'dataDate': '20250227', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250227', 'dataItemNo': 'C01100008|PLAN_SALE', 'dataValue': 600.0}, {'dataDate': '20250227', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -50.0}, {'dataDate': '20250227', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250227', 'dataItemNo': 'SD|GC|ZDW|LIST_PRICE', 'dataValue': 5250.0}, {'dataDate': '20250227', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250227', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 8300.0}, {'dataDate': '20250227', 'dataItemNo': 'SD|YT|SG|LIST_PRICE', 'dataValue': 6000.0}]\n", + "{'dataDate': '20250227', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n", + "20250228 \n", + "2025-02-28 00:00:00 \n", + "{'data': {'date': '20250228', 'dataItemNoList': ['251926669|STRIKE_PRICE', 'C01100008|CORTED_VALUE', 'C01100008|AUCTION_MAX_PRICE', 'C01100008|YEDAY_AMOUNT', 'ICE_CL0_LAST_YEDAY_PRICE\\n', '100028046|LISTING_PRICE', 'C01100008|PLAN_SALE', '91370200163576944B|C01100008|STRIKE_PRICE', '9137078672073757X8|C01100008|STRIKE_PRICE', '91370500674526498A|C01100008|STRIKE_PRICE', '91370305773165341A|C01100008|STRIKE_PRICE', '91370521164880008P|C01100008|STRIKE_PRICE', '91370321164425136B|C01100008|STRIKE_PRICE', 'SD|GC|ZDW|LIST_PRICE', '370500|ISOBUTANE|LIST_PRICE', 'SD|YT|SG|LIST_PRICE', '91110000710926094P|C01100008|SUPPLY_MERE', '91110000710932515R|C01100008|SUPPLY_MERE', '91370500674526498A|C01100008|SUPPLY_MERE', '91370321164425136B|C01100008|SUPPLY_MERE', 'C01100008|OTHER|SUPPLY_MERE', 'SD|WJH|DEMANDS', 'C01100008|SUY_DED_DAP', 'C01100008|EFFECTIVE_STOCK', '912102117169477344|C01100008|STRIKE_PRICE', '91110304102767480H|C01100008|STRIKE_PRICE', '91130193670310403L|C01100008|STRIKE_PRICE', 'HD|LPG|IMPORT_PRICE', 'SD|WJH|SALES_PRICE']}, 'funcModule': '数据项', 'funcOperation': '查询'}\n", + "[{'dataDate': '20250228', 'dataItemNo': '100028046|LISTING_PRICE', 'dataValue': 8441.0}, {'dataDate': '20250228', 'dataItemNo': '370500|ISOBUTANE|LIST_PRICE', 'dataValue': 5380.0}, {'dataDate': '20250228', 'dataItemNo': '91110000710926094P|C01100008|SUPPLY_MERE', 'dataValue': 1300.0}, {'dataDate': '20250228', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}, {'dataDate': '20250228', 'dataItemNo': '91110304102767480H|C01100008|STRIKE_PRICE', 'dataValue': 5150.0}, {'dataDate': '20250228', 'dataItemNo': '91130193670310403L|C01100008|STRIKE_PRICE', 'dataValue': 5150.0}, {'dataDate': '20250228', 'dataItemNo': '912102117169477344|C01100008|STRIKE_PRICE', 'dataValue': 4670.0}, {'dataDate': '20250228', 'dataItemNo': '91370200163576944B|C01100008|STRIKE_PRICE', 'dataValue': 5300.0}, {'dataDate': '20250228', 'dataItemNo': '91370305773165341A|C01100008|STRIKE_PRICE', 'dataValue': 5600.0}, {'dataDate': '20250228', 'dataItemNo': '91370321164425136B|C01100008|STRIKE_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250228', 'dataItemNo': '91370321164425136B|C01100008|SUPPLY_MERE', 'dataValue': 200.0}, {'dataDate': '20250228', 'dataItemNo': '91370500674526498A|C01100008|STRIKE_PRICE', 'dataValue': 5488.0}, {'dataDate': '20250228', 'dataItemNo': '91370500674526498A|C01100008|SUPPLY_MERE', 'dataValue': 175.0}, {'dataDate': '20250228', 'dataItemNo': '91370521164880008P|C01100008|STRIKE_PRICE', 'dataValue': 5455.0}, {'dataDate': '20250228', 'dataItemNo': 'C01100008|AUCTION_MAX_PRICE', 'dataValue': 5500.0}, {'dataDate': '20250228', 'dataItemNo': 'C01100008|CORTED_VALUE', 'dataValue': 5500.0}, {'dataDate': '20250228', 'dataItemNo': 'C01100008|EFFECTIVE_STOCK', 'dataValue': -550.2}, {'dataDate': '20250228', 'dataItemNo': 'C01100008|OTHER|SUPPLY_MERE', 'dataValue': 5000.0}, {'dataDate': '20250228', 'dataItemNo': 'C01100008|PLAN_SALE', 'dataValue': 500.0}, {'dataDate': '20250228', 'dataItemNo': 'C01100008|SUY_DED_DAP', 'dataValue': -50.0}, {'dataDate': '20250228', 'dataItemNo': 'HD|LPG|IMPORT_PRICE', 'dataValue': 5400.0}, {'dataDate': '20250228', 'dataItemNo': 'SD|GC|ZDW|LIST_PRICE', 'dataValue': 5250.0}, {'dataDate': '20250228', 'dataItemNo': 'SD|WJH|DEMANDS', 'dataValue': 8500.0}, {'dataDate': '20250228', 'dataItemNo': 'SD|WJH|SALES_PRICE', 'dataValue': 8400.0}, {'dataDate': '20250228', 'dataItemNo': 'SD|YT|SG|LIST_PRICE', 'dataValue': 6050.0}]\n", + "{'dataDate': '20250228', 'dataItemNo': '91110000710932515R|C01100008|SUPPLY_MERE'}\n", + "[]\n" ] } ], "source": [ - "start_date = datetime(2025, 2, 4)\n", - "end_date = datetime(2025, 2, 25)\n", + "start_date = datetime(2025, 2, 25)\n", + "end_date = datetime(2025, 3, 1)\n", "\n", "while start_date < end_date:\n", " date = start_date.strftime('%Y%m%d')\n", diff --git a/aisenzhecode/液化石油气/液化气数据.xls b/aisenzhecode/液化石油气/液化气数据.xls index cf91e1c..9f177cd 100644 Binary files a/aisenzhecode/液化石油气/液化气数据.xls and b/aisenzhecode/液化石油气/液化气数据.xls differ diff --git a/config_jingbo_yuedu.py b/config_jingbo_yuedu.py index 1cdcfbe..65ba324 100644 --- a/config_jingbo_yuedu.py +++ b/config_jingbo_yuedu.py @@ -159,7 +159,7 @@ table_name = 'v_tbl_crude_oil_warning' # 开关 is_train = False # 是否训练 is_debug = False # 是否调试 -is_eta = False # 是否使用eta接口 +is_eta = True # 是否使用eta接口 is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效 is_timefurture = True # 是否使用时间特征 is_fivemodels = False # 是否使用之前保存的最佳的5个模型 diff --git a/config_juxiting.py b/config_juxiting.py index a08c9f5..6054a38 100644 --- a/config_juxiting.py +++ b/config_juxiting.py @@ -2,7 +2,7 @@ import logging import os import logging.handlers import datetime -from lib.tools import MySQLDB,SQLiteHandler +from lib.tools import MySQLDB, SQLiteHandler # eta 接口token @@ -10,35 +10,35 @@ APPID = "XNLDvxZHHugj7wJ7" SECRET = "iSeU4s6cKKBVbt94htVY1p0sqUMqb2xa" # eta 接口url -sourcelisturl = 'http://10.189.2.78:8108/v1/edb/source/list' +sourcelisturl = 'http://10.189.2.78:8108/v1/edb/source/list' classifylisturl = 'http://10.189.2.78:8108/v1/edb/classify/list?ClassifyType=' uniquecodedataurl = 'http://10.189.2.78:8108/v1/edb/data?UniqueCode=4991c37becba464609b409909fe4d992&StartDate=2024-02-01' classifyidlisturl = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId=' edbcodedataurl = 'http://10.189.2.78:8108/v1/edb/data?EdbCode=' -edbdatapushurl = 'http://10.189.2.78:8108/v1/edb/push' -edbdeleteurl = 'http://10.189.2.78:8108/v1/edb/business/edb/del' -edbbusinessurl = 'http://10.189.2.78:8108/v1/edb/business/data/del' -edbcodelist = ['ID01385938','lmcads03 lme comdty', -'GC1 COMB Comdty', -'C2404171822', -'dxy curncy', -'S5443199 ', -'S5479800', -'S5443108', -'H7358586', -'LC3FM1 INDEX', -'CNY REGN Curncy', -'s0105897', -'M0067419', -'M0066351', -'S0266372', -'S0266438', -'S0266506', -'ID01384463'] +edbdatapushurl = 'http://10.189.2.78:8108/v1/edb/push' +edbdeleteurl = 'http://10.189.2.78:8108/v1/edb/business/edb/del' +edbbusinessurl = 'http://10.189.2.78:8108/v1/edb/business/data/del' +edbcodelist = ['ID01385938', 'lmcads03 lme comdty', + 'GC1 COMB Comdty', + 'C2404171822', + 'dxy curncy', + 'S5443199 ', + 'S5479800', + 'S5443108', + 'H7358586', + 'LC3FM1 INDEX', + 'CNY REGN Curncy', + 's0105897', + 'M0067419', + 'M0066351', + 'S0266372', + 'S0266438', + 'S0266506', + 'ID01384463'] # 临时写死用指定的列,与上面的edbcode对应,后面更改 edbnamelist = [ - 'ds','y', + 'ds', 'y', 'LME铜价', '黄金连1合约', 'Brent-WTI', @@ -52,66 +52,65 @@ edbnamelist = [ '南华工业品指数', 'PVC期货主力', 'PE期货收盘价', -'PP连续-1月', -'PP连续-5月', -'PP连续-9月', -'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)' - ] + 'PP连续-1月', + 'PP连续-5月', + 'PP连续-9月', + 'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)' +] edbcodenamedict = { -'ID01385938':'PP:拉丝:1102K:市场价:青州:国家能源宁煤(日)', -'ID01384463':'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)', -'lmcads03 lme comdty':'LME铜价', -'GC1 COMB Comdty':'黄金连1合约', -'C2404171822':'Brent-WTI', -'dxy curncy':'美元指数', -'S5443199 ':'甲醇鲁南价格', -'S5479800':'甲醇太仓港口价格', -'S5443108':'山东丙烯主流价', -'H7358586':'丙烷(山东)', -'LC3FM1 INDEX':'FEI丙烷 M1', -'CNY REGN Curncy':'在岸人民币汇率', -'s0105897':'南华工业品指数', -'M0067419':'PVC期货主力', -'M0066351':'PE期货收盘价', -'S0266372':'PP连续-1月', -'S0266438':'PP连续-5月', -'S0266506':'PP连续-9月', + 'ID01385938': 'PP:拉丝:1102K:市场价:青州:国家能源宁煤(日)', + 'ID01384463': 'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)', + 'lmcads03 lme comdty': 'LME铜价', + 'GC1 COMB Comdty': '黄金连1合约', + 'C2404171822': 'Brent-WTI', + 'dxy curncy': '美元指数', + 'S5443199 ': '甲醇鲁南价格', + 'S5479800': '甲醇太仓港口价格', + 'S5443108': '山东丙烯主流价', + 'H7358586': '丙烷(山东)', + 'LC3FM1 INDEX': 'FEI丙烷 M1', + 'CNY REGN Curncy': '在岸人民币汇率', + 's0105897': '南华工业品指数', + 'M0067419': 'PVC期货主力', + 'M0066351': 'PE期货收盘价', + 'S0266372': 'PP连续-1月', + 'S0266438': 'PP连续-5月', + 'S0266506': 'PP连续-9月', } # eta自有数据指标编码 modelsindex = { - 'NHITS': 'SELF0000077', - 'Informer':'SELF0000078', - 'LSTM':'SELF0000079', - 'iTransformer':'SELF0000080', - 'TSMixer':'SELF0000081', - 'TSMixerx':'SELF0000082', - 'PatchTST':'SELF0000083', - 'RNN':'SELF0000084', - 'GRU':'SELF0000085', - 'TCN':'SELF0000086', - 'BiTCN':'SELF0000087', - 'DilatedRNN':'SELF0000088', - 'MLP':'SELF0000089', - 'DLinear':'SELF0000090', - 'NLinear':'SELF0000091', - 'TFT':'SELF0000092', - 'FEDformer':'SELF0000093', - 'StemGNN':'SELF0000094', - 'MLPMultivariate':'SELF0000095', - 'TiDE':'SELF0000096', - 'DeepNPTS':'SELF0000097' - } - + 'NHITS': 'SELF0000077', + 'Informer': 'SELF0000078', + 'LSTM': 'SELF0000079', + 'iTransformer': 'SELF0000080', + 'TSMixer': 'SELF0000081', + 'TSMixerx': 'SELF0000082', + 'PatchTST': 'SELF0000083', + 'RNN': 'SELF0000084', + 'GRU': 'SELF0000085', + 'TCN': 'SELF0000086', + 'BiTCN': 'SELF0000087', + 'DilatedRNN': 'SELF0000088', + 'MLP': 'SELF0000089', + 'DLinear': 'SELF0000090', + 'NLinear': 'SELF0000091', + 'TFT': 'SELF0000092', + 'FEDformer': 'SELF0000093', + 'StemGNN': 'SELF0000094', + 'MLPMultivariate': 'SELF0000095', + 'TiDE': 'SELF0000096', + 'DeepNPTS': 'SELF0000097' +} # eta 上传预测结果的请求体,后面发起请求的时候更改 model datalist 数据 data = { - "IndexCode": "", - "IndexName": "价格预测模型", - "Unit": "无", + "IndexCode": "", + "IndexName": "价格预测模型", + "Unit": "无", "Frequency": "日度", "SourceName": f"价格预测", "Remark": 'ddd', @@ -121,19 +120,18 @@ data = { "Value": 333444 } ] - } +} # eta 分类 # level:3才可以获取到数据,所以需要人工把能源化工下所有的level3级都找到 - # url = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId=1214' - #ParentId ":1160, 能源化工 - # ClassifyId ":1214,原油 - #ParentId ":1214,",就是原油下所有的数据。 -ClassifyId = 1161 +# url = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId=1214' +# ParentId ":1160, 能源化工 +# ClassifyId ":1214,原油 +# ParentId ":1214,",就是原油下所有的数据。 +ClassifyId = 1161 - -############################################################################################################### 变量定义--测试环境 +# 变量定义--测试环境 server_host = '192.168.100.53' login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login" @@ -145,7 +143,7 @@ login_data = { "data": { "account": "api_test", # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456 - "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456 + "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456 "tenantHashCode": "8a4577dbd919675758d57999a1e891fe", "terminal": "API" }, @@ -154,41 +152,41 @@ login_data = { } upload_data = { - "funcModule":'研究报告信息', - "funcOperation":'上传聚烯烃PP价格预测报告', - "data":{ + "funcModule": '研究报告信息', + "funcOperation": '上传聚烯烃PP价格预测报告', + "data": { "groupNo": "000127", - "ownerAccount":'arui', #报告所属用户账号 - "reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST - "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称 - "fileBase64": '' ,#文件内容base64 - "categoryNo":'yyjgycbg', # 研究报告分类编码 - "smartBusinessClassCode":'JXTJGYCBG', #分析报告分类编码 - "reportEmployeeCode":"E40116", # 报告人 - "reportDeptCode" :"D0044" ,# 报告部门 - "productGroupCode":"RAW_MATERIAL" # 商品分类 - } + "ownerAccount": 'arui', # 报告所属用户账号 + "reportType": 'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST + "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', # 文件名称 + "fileBase64": '', # 文件内容base64 + "categoryNo": 'yyjgycbg', # 研究报告分类编码 + "smartBusinessClassCode": 'JXTJGYCBG', # 分析报告分类编码 + "reportEmployeeCode": "E40116", # 报告人 + "reportDeptCode": "D0044", # 报告部门 + "productGroupCode": "RAW_MATERIAL" # 商品分类 + } } warning_data = { - "funcModule":'原油特征停更预警', - "funcOperation":'原油特征停更预警', - "data":{ - "groupNo": "000127", - 'WARNING_TYPE_NAME':'特征数据停更预警', - 'WARNING_CONTENT':'', - 'WARNING_DATE':'' - } + "funcModule": '原油特征停更预警', + "funcOperation": '原油特征停更预警', + "data": { + "groupNo": "000127", + 'WARNING_TYPE_NAME': '特征数据停更预警', + 'WARNING_CONTENT': '', + 'WARNING_DATE': '' + } } query_data_list_item_nos_data = { - "funcModule": "数据项", - "funcOperation": "查询", + "funcModule": "数据项", + "funcOperation": "查询", "data": { - "dateStart":"20200101", - "dateEnd":"20241231", - "dataItemNoList":["Brentzdj","Brentzgj"] # 数据项编码,代表 brent最低价和最高价 + "dateStart": "20200101", + "dateEnd": "20241231", + "dataItemNoList": ["Brentzdj", "Brentzgj"] # 数据项编码,代表 brent最低价和最高价 } } @@ -196,104 +194,104 @@ query_data_list_item_nos_data = { # 北京环境数据库 host = '192.168.101.27' port = 3306 -dbusername ='root' +dbusername = 'root' password = '123456' dbname = 'jingbo_test' table_name = 'v_tbl_crude_oil_warning' -### 开关 -is_train = False # 是否训练 -is_debug = True # 是否调试 -is_eta = False # 是否使用eta接口 -is_market = False # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效 -is_timefurture = True # 是否使用时间特征 -is_fivemodels = False # 是否使用之前保存的最佳的5个模型 -is_edbcode = False # 特征使用edbcoding列表中的 -is_edbnamelist = False # 自定义特征,对应上面的edbnamelist -is_update_eta = False # 预测结果上传到eta -is_update_report = True # 是否上传报告 -is_update_warning_data = True # 是否上传预警数据 -is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征 -is_del_tow_month = True # 是否删除两个月不更新的特征 - +# 开关 +is_train = False # 是否训练 +is_debug = True # 是否调试 +is_eta = True # 是否使用eta接口 +is_market = False # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效 +is_timefurture = True # 是否使用时间特征 +is_fivemodels = False # 是否使用之前保存的最佳的5个模型 +is_edbcode = False # 特征使用edbcoding列表中的 +is_edbnamelist = False # 自定义特征,对应上面的edbnamelist +is_update_eta = False # 预测结果上传到eta +is_update_report = True # 是否上传报告 +is_update_warning_data = True # 是否上传预警数据 +is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征 +is_del_tow_month = True # 是否删除两个月不更新的特征 # 连接到数据库 -db_mysql = MySQLDB(host=host, user=dbusername, password=password, database=dbname) +db_mysql = MySQLDB(host=host, user=dbusername, + password=password, database=dbname) db_mysql.connect() -print("数据库连接成功",host,dbname,dbusername) +print("数据库连接成功", host, dbname, dbusername) # 数据截取日期 -start_year = 2020 # 数据开始年份 -end_time = '2025-01-27' # 数据截取日期 +start_year = 2020 # 数据开始年份 +end_time = '' # 数据截取日期 freq = 'B' # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日 -delweekenday = True if freq == 'B' else False # 是否删除周末数据 -is_corr = False # 特征是否参与滞后领先提升相关系数 -add_kdj = False # 是否添加kdj指标 +delweekenday = True if freq == 'B' else False # 是否删除周末数据 +is_corr = False # 特征是否参与滞后领先提升相关系数 +add_kdj = False # 是否添加kdj指标 if add_kdj and is_edbnamelist: - edbnamelist = edbnamelist+['K','D','J'] + edbnamelist = edbnamelist+['K', 'D', 'J'] -### 模型参数 -y = 'AVG-金能大唐久泰青州' +# 模型参数 +y = 'AVG-金能大唐久泰青州' avg_cols = [ 'PP:拉丝:1102K:出厂价:青州:国家能源宁煤(日)', - 'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)', + 'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)', 'PP:拉丝:L5E89:出厂价:河北、鲁北:大唐内蒙多伦(日)', 'PP:拉丝:HP550J:市场价:青岛:金能化学(日)' ] offsite = 80 offsite_col = ['PP:拉丝:HP550J:市场价:青岛:金能化学(日)'] -horizon =5 # 预测的步长 +horizon = 5 # 预测的步长 input_size = 40 # 输入序列长度 -train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数 +train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数 val_check_steps = 30 # 评估频率 -early_stop_patience_steps = 5 # 早停的耐心步数 +early_stop_patience_steps = 5 # 早停的耐心步数 # --- 交叉验证用的参数 test_size = 200 # 测试集大小,定义100,后面使用的时候重新赋值 -val_size = test_size # 验证集大小,同测试集大小 +val_size = test_size # 验证集大小,同测试集大小 -### 特征筛选用到的参数 -k = 100 # 特征筛选数量,如果是0或者值比特征数量大,代表全部特征 -corr_threshold = 0.6 # 相关性大于0.6的特征 -rote = 0.06 # 绘图上下界阈值 +# 特征筛选用到的参数 +k = 100 # 特征筛选数量,如果是0或者值比特征数量大,代表全部特征 +corr_threshold = 0.6 # 相关性大于0.6的特征 +rote = 0.06 # 绘图上下界阈值 -### 计算准确率 -weight_dict = [0.4,0.15,0.1,0.1,0.25] # 权重 +# 计算准确率 +weight_dict = [0.4, 0.15, 0.1, 0.1, 0.25] # 权重 -### 文件 -data_set = 'PP指标数据.xlsx' # 数据集文件 -dataset = 'juxitingdataset' # 数据集文件夹 +# 文件 +data_set = 'PP指标数据.xlsx' # 数据集文件 +dataset = 'juxitingdataset' # 数据集文件夹 # 数据库名称 -db_name = os.path.join(dataset,'jbsh_juxiting.db') -sqlitedb = SQLiteHandler(db_name) +db_name = os.path.join(dataset, 'jbsh_juxiting.db') +sqlitedb = SQLiteHandler(db_name) sqlitedb.connect() -settings = f'{input_size}-{horizon}-{train_steps}--{k}-{data_set}-{y}' +settings = f'{input_size}-{horizon}-{train_steps}--{k}-{data_set}-{y}' # 获取日期时间 # now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') # 获取当前日期时间 -now = datetime.datetime.now().strftime('%Y-%m-%d') # 获取当前日期时间 -reportname = f'PP大模型预测报告--{end_time}.pdf' # 报告文件名 -reportname = reportname.replace(':', '-') # 替换冒号 +now = datetime.datetime.now().strftime('%Y-%m-%d') # 获取当前日期时间 +reportname = f'PP大模型预测报告--{end_time}.pdf' # 报告文件名 +reportname = reportname.replace(':', '-') # 替换冒号 if end_time == '': end_time = now -### 邮件配置 -username='1321340118@qq.com' -passwd='wgczgyhtyyyyjghi' +# 邮件配置 +username = '1321340118@qq.com' +passwd = 'wgczgyhtyyyyjghi' # recv=['liurui_test@163.com','52585119@qq.com'] -recv=['liurui_test@163.com'] +recv = ['liurui_test@163.com'] # recv=['liurui_test@163.com'] -title='reportname' -content=y+'预测报告请看附件' -file=os.path.join(dataset,'reportname') +title = 'reportname' +content = y+'预测报告请看附件' +file = os.path.join(dataset, 'reportname') # file=os.path.join(dataset,'14-7-50--100-原油指标数据.xlsx-Brent连1合约价格--20240731175936-预测报告.pdf') -ssl=True +ssl = True -### 日志配置 +# 日志配置 # 创建日志目录(如果不存在) log_dir = 'logs' @@ -305,8 +303,10 @@ logger = logging.getLogger('my_logger') logger.setLevel(logging.INFO) # 配置文件处理器,将日志记录到文件 -file_handler = logging.handlers.RotatingFileHandler(os.path.join(log_dir, 'pricepredict.log'), maxBytes=1024 * 1024, backupCount=5) -file_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')) +file_handler = logging.handlers.RotatingFileHandler(os.path.join( + log_dir, 'pricepredict.log'), maxBytes=1024 * 1024, backupCount=5) +file_handler.setFormatter(logging.Formatter( + '%(asctime)s - %(name)s - %(levelname)s - %(message)s')) # 配置控制台处理器,将日志打印到控制台 console_handler = logging.StreamHandler() @@ -317,4 +317,3 @@ logger.addHandler(file_handler) logger.addHandler(console_handler) # logger.info('当前配置:'+settings) - diff --git a/lib/dataread.py b/lib/dataread.py index f3a385d..e30c6a1 100644 --- a/lib/dataread.py +++ b/lib/dataread.py @@ -103,6 +103,14 @@ global_config = { # ETA配置 'APPID': None, 'SECRET': None, + 'classifylisturl': None, + 'classifyidlisturl': None, + 'edbcodedataurl': None, + 'edbcodelist': None, + 'edbdatapushurl': None, + 'edbdeleteurl': None, + 'edbbusinessurl': None, + 'ClassifyId': None, # 数据库配置 'sqlitedb': None, @@ -1352,7 +1360,7 @@ def style_row(row): class EtaReader(): - def __init__(self, signature, classifylisturl, classifyidlisturl, edbcodedataurl, edbcodelist, edbdatapushurl, edbdeleteurl, edbbusinessurl): + def __init__(self, signature, classifylisturl, classifyidlisturl, edbcodedataurl, edbcodelist, edbdatapushurl, edbdeleteurl, edbbusinessurl, classifyId): ''' 初始化 EtaReader 类的实例。 @@ -1377,6 +1385,7 @@ class EtaReader(): self.edbcodelist = edbcodelist self.edbdeleteurl = edbdeleteurl self.edbbusinessurl = edbbusinessurl + self.classifyId = classifyId def filter_yuanyou_data(self, ClassifyName, data): ''' @@ -1779,7 +1788,6 @@ class EtaReader(): return df_zhibiaoshuju, df_zhibiaoliebiao def get_eta_api_pp_data(self, data_set, dataset=''): - global ClassifyId today = datetime.date.today().strftime("%Y-%m-%d") # 定义你的headers,这里可以包含多个参数 @@ -1818,7 +1826,7 @@ class EtaReader(): # 请求成功,处理响应内容 # config.logger.info(data.get('Data')) # 定义你想要保留的固定值 - fixed_value = ClassifyId + fixed_value = self.classifyId # 遍历列表,只保留那些'category' key的值为固定值的数据项 filtered_data = [item for item in data.get( diff --git a/main_juxiting.py b/main_juxiting.py index f7563d2..fab405c 100644 --- a/main_juxiting.py +++ b/main_juxiting.py @@ -1,12 +1,75 @@ # 读取配置 -from lib.dataread import * -from lib.tools import SendMail,exception_logger -from models.nerulforcastmodels import ex_Model_Juxiting,model_losss,model_losss_juxiting,brent_export_pdf,tansuanli_export_pdf,pp_export_pdf,model_losss_juxiting -import glob +from lib.dataread import * +from config_juxiting import * +from lib.tools import SendMail, exception_logger +from models.nerulforcastmodels import ex_Model, model_losss, model_losss_juxiting, brent_export_pdf, tansuanli_export_pdf, pp_export_pdf, model_losss_juxiting +import datetime import torch torch.set_float32_matmul_precision("high") +global_config.update({ + # 核心参数 + 'logger': logger, + 'dataset': dataset, + 'y': y, + 'is_debug': is_debug, + 'is_train': is_train, + 'is_fivemodels': is_fivemodels, + 'settings': settings, + + + # 模型参数 + 'data_set': data_set, + 'input_size': input_size, + 'horizon': horizon, + 'train_steps': train_steps, + 'val_check_steps': val_check_steps, + 'val_size': val_size, + 'test_size': test_size, + 'modelsindex': modelsindex, + 'rote': rote, + + # 特征工程开关 + 'is_del_corr': is_del_corr, + 'is_del_tow_month': is_del_tow_month, + 'is_eta': is_eta, + 'is_update_eta': is_update_eta, + 'early_stop_patience_steps': early_stop_patience_steps, + + # 时间参数 + 'start_year': start_year, + 'end_time': end_time or datetime.datetime.now().strftime("%Y-%m-%d"), + 'freq': freq, # 保持列表结构 + + # 接口配置 + 'login_pushreport_url': login_pushreport_url, + 'login_data': login_data, + 'upload_url': upload_url, + 'upload_warning_url': upload_warning_url, + 'warning_data': warning_data, + + # 查询接口 + 'query_data_list_item_nos_url': query_data_list_item_nos_url, + 'query_data_list_item_nos_data': query_data_list_item_nos_data, + + # eta 配置 + 'APPID': APPID, + 'SECRET': SECRET, + 'etadata': data, + 'edbcodelist': edbcodelist, + 'ClassifyId': ClassifyId, + 'edbcodedataurl': edbcodedataurl, + 'classifyidlisturl': classifyidlisturl, + 'edbdatapushurl': edbdatapushurl, + 'edbdeleteurl': edbdeleteurl, + 'edbbusinessurl': edbbusinessurl, + 'ClassifyId': ClassifyId, + 'classifylisturl': classifylisturl, + + # 数据库配置 + 'sqlitedb': sqlitedb, +}) def predict_main(): @@ -48,31 +111,23 @@ def predict_main(): 返回: None """ - global end_time - signature = BinanceAPI(APPID, SECRET) - etadata = EtaReader(signature=signature, - classifylisturl=classifylisturl, - classifyidlisturl=classifyidlisturl, - edbcodedataurl=edbcodedataurl, - edbcodelist=edbcodelist, - edbdatapushurl=edbdatapushurl, - edbdeleteurl=edbdeleteurl, - edbbusinessurl=edbbusinessurl - ) + end_time = global_config['end_time'] # 获取数据 if is_eta: logger.info('从eta获取数据...') signature = BinanceAPI(APPID, SECRET) etadata = EtaReader(signature=signature, - classifylisturl=classifylisturl, - classifyidlisturl=classifyidlisturl, - edbcodedataurl=edbcodedataurl, - edbcodelist=edbcodelist, - edbdatapushurl=edbdatapushurl, - edbdeleteurl=edbdeleteurl, - edbbusinessurl=edbbusinessurl, + classifylisturl=global_config['classifylisturl'], + classifyidlisturl=global_config['classifyidlisturl'], + edbcodedataurl=global_config['edbcodedataurl'], + edbcodelist=global_config['edbcodelist'], + edbdatapushurl=global_config['edbdatapushurl'], + edbdeleteurl=global_config['edbdeleteurl'], + edbbusinessurl=global_config['edbbusinessurl'], + classifyId=global_config['ClassifyId'], ) - df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_pp_data(data_set=data_set, dataset=dataset) # 原始数据,未处理 + df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_pp_data( + data_set=data_set, dataset=dataset) # 原始数据,未处理 if is_market: logger.info('从市场信息平台获取数据...') @@ -83,26 +138,26 @@ def predict_main(): df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju) else: logger.info('从市场信息平台获取数据') - df_zhibiaoshuju = get_market_data(end_time,df_zhibiaoshuju) - - except : + df_zhibiaoshuju = get_market_data( + end_time, df_zhibiaoshuju) + + except: logger.info('最高最低价拼接失败') - + # 保存到xlsx文件的sheet表 - with pd.ExcelWriter(os.path.join(dataset,data_set)) as file: + with pd.ExcelWriter(os.path.join(dataset, data_set)) as file: df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False) df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False) - - + # 数据处理 - df = datachuli_juxiting(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture, - end_time=end_time) + df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture, + end_time=end_time) else: # 读取数据 logger.info('读取本地数据:' + os.path.join(dataset, data_set)) - df,df_zhibiaoliebiao = getdata_juxiting(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj, - is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理 + df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj, + is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理 # 更改预测列名称 df.rename(columns={y: 'y'}, inplace=True) @@ -124,47 +179,65 @@ def predict_main(): else: for row in first_row.itertuples(index=False): row_dict = row._asdict() - row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S') - check_query = sqlitedb.select_data('trueandpredict', where_condition=f"ds = '{row.ds}'") + config.logger.info(f'要保存的真实值:{row_dict}') + # 判断ds是否为字符串类型,如果不是则转换为字符串类型 + if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)): + row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') + elif not isinstance(row_dict['ds'], str): + try: + row_dict['ds'] = pd.to_datetime( + row_dict['ds']).strftime('%Y-%m-%d') + except: + logger.warning(f"无法解析的时间格式: {row_dict['ds']}") + # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') + # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S') + check_query = sqlitedb.select_data( + 'trueandpredict', where_condition=f"ds = '{row.ds}'") if len(check_query) > 0: - set_clause = ", ".join([f"{key} = '{value}'" for key, value in row_dict.items()]) - sqlitedb.update_data('trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'") + set_clause = ", ".join( + [f"{key} = '{value}'" for key, value in row_dict.items()]) + sqlitedb.update_data( + 'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'") continue - sqlitedb.insert_data('trueandpredict', tuple(row_dict.values()), columns=row_dict.keys()) + sqlitedb.insert_data('trueandpredict', tuple( + row_dict.values()), columns=row_dict.keys()) # 更新accuracy表的y值 if not sqlitedb.check_table_exists('accuracy'): pass else: - update_y = sqlitedb.select_data('accuracy',where_condition="y is null") + update_y = sqlitedb.select_data( + 'accuracy', where_condition="y is null") if len(update_y) > 0: logger.info('更新accuracy表的y值') # 找到update_y 中ds且df中的y的行 - update_y = update_y[update_y['ds']<=end_time] + update_y = update_y[update_y['ds'] <= end_time] logger.info(f'要更新y的信息:{update_y}') # try: for row in update_y.itertuples(index=False): try: - row_dict = row._asdict() - yy = df[df['ds']==row_dict['ds']]['y'].values[0] - LOW = df[df['ds']==row_dict['ds']]['Brentzdj'].values[0] - HIGH = df[df['ds']==row_dict['ds']]['Brentzgj'].values[0] - sqlitedb.update_data('accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'") + row_dict = row._asdict() + yy = df[df['ds'] == row_dict['ds']]['y'].values[0] + LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0] + HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0] + sqlitedb.update_data( + 'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'") except: logger.info(f'更新accuracy表的y值失败:{row_dict}') # except Exception as e: # logger.info(f'更新accuracy表的y值失败:{e}') - import datetime # 判断当前日期是不是周一 is_weekday = datetime.datetime.now().weekday() == 0 if is_weekday: logger.info('今天是周一,更新预测模型') # 计算最近60天预测残差最低的模型名称 - model_results = sqlitedb.select_data('trueandpredict', order_by="ds DESC", limit="60") + model_results = sqlitedb.select_data( + 'trueandpredict', order_by="ds DESC", limit="60") # 删除空值率为90%以上的列 if len(model_results) > 10: - model_results = model_results.dropna(thresh=len(model_results)*0.1,axis=1) + model_results = model_results.dropna( + thresh=len(model_results)*0.1, axis=1) # 删除空行 model_results = model_results.dropna() modelnames = model_results.columns.to_list()[2:-1] @@ -172,51 +245,61 @@ def predict_main(): model_results[col] = model_results[col].astype(np.float32) # 计算每个预测值与真实值之间的偏差率 for model in modelnames: - model_results[f'{model}_abs_error_rate'] = abs(model_results['y'] - model_results[model]) / model_results['y'] + model_results[f'{model}_abs_error_rate'] = abs( + model_results['y'] - model_results[model]) / model_results['y'] # 获取每行对应的最小偏差率值 - min_abs_error_rate_values = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1) + min_abs_error_rate_values = model_results.apply( + lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1) # 获取每行对应的最小偏差率值对应的列名 - min_abs_error_rate_column_name = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1) + min_abs_error_rate_column_name = model_results.apply( + lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1) # 将列名索引转换为列名 - min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(lambda x: x.split('_')[0]) + min_abs_error_rate_column_name = min_abs_error_rate_column_name.map( + lambda x: x.split('_')[0]) # 取出现次数最多的模型名称 most_common_model = min_abs_error_rate_column_name.value_counts().idxmax() logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}") # 保存结果到数据库 if not sqlitedb.check_table_exists('most_model'): - sqlitedb.create_table('most_model', columns="ds datetime, most_common_model TEXT") - sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) + sqlitedb.create_table( + 'most_model', columns="ds datetime, most_common_model TEXT") + sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime( + '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) try: - # if is_weekday: - if True: - # logger.info('今天是周一,发送特征预警') - # # 上传预警信息到数据库 - # warning_data_df = df_zhibiaoliebiao.copy() - # warning_data_df = warning_data_df[warning_data_df['停更周期']> 3 ][['指标名称', '指标id', '频度','更新周期','指标来源','最后更新时间','停更周期']] - # # 重命名列名 - # warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY', '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'}) - # from sqlalchemy import create_engine - # import urllib - # global password - # if '@' in password: - # password = urllib.parse.quote_plus(password) + if is_weekday: + # if True: + logger.info('今天是周一,发送特征预警') + # 上传预警信息到数据库 + warning_data_df = df_zhibiaoliebiao.copy() + warning_data_df = warning_data_df[warning_data_df['停更周期'] > 3][[ + '指标名称', '指标id', '频度', '更新周期', '指标来源', '最后更新时间', '停更周期']] + # 重命名列名 + warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY', + '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'}) + from sqlalchemy import create_engine + import urllib + global password + if '@' in password: + password = urllib.parse.quote_plus(password) - # engine = create_engine(f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}') - # warning_data_df['WARNING_DATE'] = datetime.date.today().strftime("%Y-%m-%d %H:%M:%S") - # warning_data_df['TENANT_CODE'] = 'T0004' - # # 插入数据之前查询表数据然后新增id列 - # existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine) - # if not existing_data.empty: - # max_id = existing_data['ID'].astype(int).max() - # warning_data_df['ID'] = range(max_id + 1, max_id + 1 + len(warning_data_df)) - # else: - # warning_data_df['ID'] = range(1, 1 + len(warning_data_df)) - # warning_data_df.to_sql(table_name, con=engine, if_exists='append', index=False) - # if is_update_warning_data: - # upload_warning_info(len(warning_data_df)) + engine = create_engine( + f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}') + warning_data_df['WARNING_DATE'] = datetime.date.today().strftime( + "%Y-%m-%d %H:%M:%S") + warning_data_df['TENANT_CODE'] = 'T0004' + # 插入数据之前查询表数据然后新增id列 + existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine) + if not existing_data.empty: + max_id = existing_data['ID'].astype(int).max() + warning_data_df['ID'] = range( + max_id + 1, max_id + 1 + len(warning_data_df)) + else: + warning_data_df['ID'] = range(1, 1 + len(warning_data_df)) + warning_data_df.to_sql( + table_name, con=engine, if_exists='append', index=False) if is_update_warning_data: - upload_warning_info(10) + upload_warning_info(len(warning_data_df)) except: logger.info('上传预警信息到数据库失败') @@ -228,76 +311,75 @@ def predict_main(): row, col = df.shape now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') - # ex_Model_Juxiting(df, - # horizon=horizon, - # input_size=input_size, - # train_steps=train_steps, - # val_check_steps=val_check_steps, - # early_stop_patience_steps=early_stop_patience_steps, - # is_debug=is_debug, - # dataset=dataset, - # is_train=is_train, - # is_fivemodels=is_fivemodels, - # val_size=val_size, - # test_size=test_size, - # settings=settings, - # now=now, - # etadata=etadata, - # modelsindex=modelsindex, - # data=data, - # is_eta=is_eta, - # end_time=end_time, - # ) - + ex_Model(df, + horizon=global_config['horizon'], + input_size=global_config['input_size'], + train_steps=global_config['train_steps'], + val_check_steps=global_config['val_check_steps'], + early_stop_patience_steps=global_config['early_stop_patience_steps'], + is_debug=global_config['is_debug'], + dataset=global_config['dataset'], + is_train=global_config['is_train'], + is_fivemodels=global_config['is_fivemodels'], + val_size=global_config['val_size'], + test_size=global_config['test_size'], + settings=global_config['settings'], + now=now, + etadata=global_config['etadata'], + modelsindex=global_config['modelsindex'], + data=data, + is_eta=global_config['is_eta'], + end_time=global_config['end_time'], + ) logger.info('模型训练完成') - + logger.info('训练数据绘图ing') - model_results3 = model_losss_juxiting(sqlitedb) + model_results3 = model_losss(sqlitedb, end_time=end_time) logger.info('训练数据绘图end') - - # 模型报告 - logger.info('制作报告ing') - title = f'{settings}--{end_time}-预测报告' # 报告标题 - reportname = f'PP大模型预测报告--{end_time}.pdf' # 报告文件名 - reportname = reportname.replace(':', '-') # 替换冒号 - pp_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time, - reportname=reportname,sqlitedb=sqlitedb), - logger.info('制作报告end') - logger.info('模型训练完成') + # # 模型报告 + # logger.info('制作报告ing') + # title = f'{settings}--{end_time}-预测报告' # 报告标题 + # reportname = f'Brent原油大模型月度预测--{end_time}.pdf' # 报告文件名 + # reportname = reportname.replace(':', '-') # 替换冒号 + # brent_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time, + # reportname=reportname, sqlitedb=sqlitedb), + + # logger.info('制作报告end') + # logger.info('模型训练完成') # # LSTM 单变量模型 # ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset) - + # # lstm 多变量模型 # ex_Lstm_M(df,n_days=input_size,out_days=horizon,is_debug=is_debug,datasetpath=dataset) - + # # GRU 模型 # # ex_GRU(df) # 发送邮件 - m = SendMail( - username=username, - passwd=passwd, - recv=recv, - title=title, - content=content, - file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime), - ssl=ssl, - ) - # m.send_mail() + # m = SendMail( + # username=username, + # passwd=passwd, + # recv=recv, + # title=title, + # content=content, + # file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime), + # ssl=ssl, + # ) + # m.send_mail() if __name__ == '__main__': # global end_time - # is_on = True - # # 遍历2024-11-25 到 2024-12-3 之间的工作日日期 - # for i_time in pd.date_range('2025-1-20', '2025-2-6', freq='B'): - # end_time = i_time.strftime('%Y-%m-%d') + # 遍历2024-11-25 到 2024-12-3 之间的工作日日期 + # for i_time in pd.date_range('2022-1-1', '2025-3-26', freq='M'): # try: + # global_config['end_time'] = i_time.strftime('%Y-%m-%d') # predict_main() - # except: - # pass + # except Exception as e: + # logger.info(f'预测失败:{e}') + # continue - predict_main() \ No newline at end of file + predict_main() diff --git a/main_yuanyou_yuedu.py b/main_yuanyou_yuedu.py index d9b055b..c00a2b0 100644 --- a/main_yuanyou_yuedu.py +++ b/main_yuanyou_yuedu.py @@ -374,13 +374,12 @@ def predict_main(): if __name__ == '__main__': # global end_time # 遍历2024-11-25 到 2024-12-3 之间的工作日日期 - for i_time in pd.date_range('2022-1-1', '2025-3-26', freq='M'): - try: - global_config['end_time'] = i_time.strftime('%Y-%m-%d') - predict_main() - except Exception as e: - logger.info(f'预测失败:{e}') - continue + # for i_time in pd.date_range('2022-1-1', '2025-3-26', freq='M'): + # try: + # global_config['end_time'] = i_time.strftime('%Y-%m-%d') + # predict_main() + # except Exception as e: + # logger.info(f'预测失败:{e}') + # continue - - # predict_main() + predict_main()