diff --git a/Untitled1.ipynb b/Untitled1.ipynb index 07ad4dc..5f41f84 100644 --- a/Untitled1.ipynb +++ b/Untitled1.ipynb @@ -1835,10 +1835,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "id": "ade7026e-8cf2-405f-a2da-9e90f364adab", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "开始训练模型...\n", + "开始训练模型...\n" + ] + } + ], "source": [ "if is_corr:\n", " df = corr_feature(df=df)\n", @@ -1879,14 +1888,328 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 43, "id": "0e5b6f30-b7ca-4718-97a3-48b54156e07f", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "模型训练完成\n", + "模型训练完成\n", + "训练数据绘图ing\n", + "训练数据绘图ing\n", + "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_8336\\3546220967.py:119: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " first_row['ds'] = first_row['ds'].dt.strftime('%Y-%m-%d 00:00:00')\n", + "训练数据绘图end\n", + "训练数据绘图end\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "方差为: 783.5712373318445\n", + "最佳模型两倍方差\n", + " ds NHITS Informer LSTM iTransformer TSMixer \\\n", + "0 2024-11-19 7359.2050 7325.4340 7374.6274 7342.0290 7352.7837 \n", + "1 2024-11-20 7339.6730 7303.2560 7375.4020 7320.6665 7341.1157 \n", + "2 2024-11-21 7313.6357 7310.4240 7380.7524 7315.6226 7321.9478 \n", + "3 2024-11-22 7296.4775 7321.0250 7392.4790 7309.1006 7300.3430 \n", + "4 2024-11-25 7286.6978 7319.3916 7421.4077 7314.2144 7278.5120 \n", + "\n", + " TSMixerx PatchTST RNN GRU TCN BiTCN \\\n", + "0 7343.613 7342.7300 7372.2515 7381.7810 7449.0703 7317.2397 \n", + "1 7339.045 7337.2275 7369.6200 7401.5024 7449.8086 7307.5415 \n", + "2 7387.099 7330.4020 7346.7344 7399.8660 7443.9330 7302.4478 \n", + "3 7376.246 7299.7417 7331.8857 7405.1810 7451.1577 7291.0230 \n", + "4 7335.186 7267.7980 7370.6760 7405.2725 7454.4453 7288.7314 \n", + "\n", + " DilatedRNN MLP DLinear NLinear TFT StemGNN \\\n", + "0 7350.6070 7326.6610 7375.8584 7335.6030 7364.0600 7345.6040 \n", + "1 7353.7030 7321.7114 7326.1914 7327.6973 7355.3086 7343.6250 \n", + "2 7366.7440 7310.2020 7341.9395 7341.7840 7348.7305 7331.5440 \n", + "3 7360.9110 7294.7803 7323.8164 7406.1123 7343.8184 7342.9673 \n", + "4 7384.3545 7295.8447 7330.9560 7369.3687 7341.7007 7353.8390 \n", + "\n", + " MLPMultivariate TiDE DeepNPTS min_model max_model \\\n", + "0 7354.3696 7365.8433 7367.1430 NHITS_var_down NHITS_var_up \n", + "1 7344.1750 7327.1714 7372.8594 NHITS_var_down NHITS_var_up \n", + "2 7333.9355 7305.5030 7363.1160 NHITS_var_down NHITS_var_up \n", + "3 7315.0786 7304.2380 7363.3720 NHITS_var_down NHITS_var_up \n", + "4 7304.8780 7295.6865 7353.2183 NHITS_var_down NHITS_var_up \n", + "\n", + " min_within_quantile max_within_quantile \n", + "0 5792.062525 8926.347475 \n", + "1 5772.530525 8906.815475 \n", + "2 5746.493225 8880.778175 \n", + "3 5729.335025 8863.619975 \n", + "4 5719.555325 8853.840275 \n" + ] + } + ], "source": [ "logger.info('模型训练完成')\n", "# # 模型评估\n", "\n", + "pd.set_option('display.max_columns', 100)\n", + "# 计算预测评估指数\n", + "def model_losss_juxiting(sqlitedb):\n", + " global dataset\n", + " # 数据库查询最佳模型名称\n", + " most_model = [sqlitedb.select_data('most_model',columns=['most_common_model'],order_by='ds desc',limit=1).values[0][0]]\n", + " most_model_name = most_model[0]\n", + "\n", + " # 预测数据处理 predict\n", + " df_combined = loadcsv(os.path.join(dataset,\"cross_validation.csv\")) \n", + " df_combined = dateConvert(df_combined)\n", + " # 删除空列\n", + " df_combined.dropna(axis=1,inplace=True)\n", + " # 删除缺失值,预测过程不能有缺失值\n", + " df_combined.dropna(inplace=True) \n", + " # 其他列转为数值类型\n", + " df_combined = df_combined.astype({col: 'float32' for col in df_combined.columns if col not in ['cutoff','ds'] })\n", + " # 使用 groupby 和 transform 结合 lambda 函数来获取每个分组中 cutoff 的最小值,并创建一个新的列来存储这个最大值\n", + " df_combined['max_cutoff'] = df_combined.groupby('ds')['cutoff'].transform('max')\n", + "\n", + " # 然后筛选出那些 cutoff 等于 max_cutoff 的行,这样就得到了每个分组中 cutoff 最大的行,并保留了其他列\n", + " df_combined = df_combined[df_combined['cutoff'] == df_combined['max_cutoff']]\n", + " # 删除模型生成的cutoff列\n", + " df_combined.drop(columns=['cutoff', 'max_cutoff'], inplace=True)\n", + " # 获取模型名称\n", + " modelnames = df_combined.columns.to_list()[1:] \n", + " if 'y' in modelnames:\n", + " modelnames.remove('y')\n", + " df_combined3 = df_combined.copy() # 备份df_combined,后面画图需要\n", + "\n", + "\n", + " # 空的列表存储每个模型的MSE、RMSE、MAE、MAPE、SMAPE\n", + " cellText = []\n", + "\n", + " # 遍历模型名称,计算模型评估指标 \n", + " for model in modelnames:\n", + " modelmse = mse(df_combined['y'], df_combined[model])\n", + " modelrmse = rmse(df_combined['y'], df_combined[model])\n", + " modelmae = mae(df_combined['y'], df_combined[model])\n", + " # modelmape = mape(df_combined['y'], df_combined[model])\n", + " # modelsmape = smape(df_combined['y'], df_combined[model])\n", + " # modelr2 = r2_score(df_combined['y'], df_combined[model])\n", + " cellText.append([model,round(modelmse, 3), round(modelrmse, 3), round(modelmae, 3)])\n", + " \n", + " model_results3 = pd.DataFrame(cellText,columns=['模型(Model)','平均平方误差(MSE)', '均方根误差(RMSE)', '平均绝对误差(MAE)'])\n", + " # 按MSE降序排列\n", + " model_results3 = model_results3.sort_values(by='平均平方误差(MSE)', ascending=True)\n", + " model_results3.to_csv(os.path.join(dataset,\"model_evaluation.csv\"),index=False)\n", + " modelnames = model_results3['模型(Model)'].tolist()\n", + " allmodelnames = modelnames.copy()\n", + " # 保存5个最佳模型的名称\n", + " if len(modelnames) > 5:\n", + " modelnames = modelnames[0:5]\n", + " with open(os.path.join(dataset,\"best_modelnames.txt\"), 'w') as f:\n", + " f.write(','.join(modelnames) + '\\n')\n", + "\n", + "\n", + " # 根据最接近真实值的预测模型计算波动率,得到在波动率范围内的预测值确定通道边界\n", + "\n", + " best_models = pd.read_csv(os.path.join(dataset,'best_modelnames.txt'),header=None).values.flatten().tolist()\n", + " def find_min_max_within_quantile(row):\n", + " row = row[best_models]\n", + " q10 = row.min()\n", + " q90 = row.max()\n", + " # 获取 row行最大最小值模型名称\n", + " min_model = row[row == q10].idxmin()\n", + " max_model = row[row == q90].idxmin()\n", + " \n", + " # # 判断flot值是否为空值\n", + " # if pd.isna(q10) or pd.isna(q90):\n", + " return pd.Series([q10, q90,min_model,max_model], index=['min_within_quantile','max_within_quantile','min_model','max_model'])\n", + "\n", + " # 遍历行\n", + " df_combined3[['min_within_quantile', 'max_within_quantile','min_model','max_model']] = df_combined3.apply(find_min_max_within_quantile, axis=1)\n", + " df_combined = df_combined.round(4)\n", + " # print(df_combined3)\n", + "\n", + " \n", + " # 去除有空值的行\n", + " df_combined3.dropna(inplace=True)\n", + " # 保存到数据库\n", + " # df_combined3.to_sql('testandpredict_groupby', sqlitedb.connection, if_exists='replace', index=False)\n", + " df_combined3.to_csv(os.path.join(dataset,\"testandpredict_groupby.csv\"),index=False)\n", + "\n", + "\n", + " \n", + " # 预测值与真实值对比图\n", + " plt.rcParams['font.sans-serif'] = ['SimHei']\n", + " plt.figure(figsize=(15, 10))\n", + " # 设置有5个子图的画布\n", + " for n,model in enumerate(modelnames[:5]):\n", + " plt.subplot(3, 2, n+1)\n", + " plt.plot(df_combined3['ds'], df_combined3['y'], label='真实值')\n", + " plt.plot(df_combined3['ds'], df_combined3[model], label=model)\n", + " plt.legend()\n", + " plt.xlabel('日期')\n", + " plt.ylabel('价格')\n", + " plt.title(model+'拟合')\n", + " plt.subplots_adjust(hspace=0.5)\n", + " plt.savefig(os.path.join(dataset,'预测值与真实值对比图.png'), bbox_inches='tight')\n", + " plt.close()\n", + " \n", + " # 历史数据+预测数据\n", + " # 拼接未来时间预测\n", + " df_predict = loadcsv(os.path.join(dataset,'predict.csv'))\n", + " df_predict.drop('unique_id',inplace=True,axis=1)\n", + " df_predict.dropna(axis=1,inplace=True)\n", + "\n", + " try:\n", + " df_predict['ds'] = pd.to_datetime(df_predict['ds'],format=r'%Y-%m-%d')\n", + " except ValueError :\n", + " df_predict['ds'] = pd.to_datetime(df_predict['ds'],format=r'%Y/%m/%d')\n", + "\n", + " # 取第一行数据存储到数据库中\n", + " first_row = df_predict.head(1)\n", + " first_row['ds'] = first_row['ds'].dt.strftime('%Y-%m-%d 00:00:00')\n", + " # 将预测结果保存到数据库\n", + " # if not sqlitedb.check_table_exists('trueandpredict'):\n", + " # first_row.to_sql('trueandpredict',sqlitedb.connection,index=False)\n", + " # else:\n", + " # for col in first_row.columns:\n", + " # sqlitedb.add_column_if_not_exists('trueandpredict',col,'TEXT')\n", + " # for row in first_row.itertuples(index=False):\n", + " # row_dict = row._asdict()\n", + " # columns=row_dict.keys()\n", + " # check_query = sqlitedb.select_data('trueandpredict',where_condition = f\"ds = '{row.ds}'\")\n", + " # if len(check_query) > 0:\n", + " # set_clause = \", \".join([f\"{key} = '{value}'\" for key, value in row_dict.items()])\n", + " # sqlitedb.update_data('trueandpredict',set_clause,where_condition = f\"ds = '{row.ds}'\")\n", + " # continue\n", + " # sqlitedb.insert_data('trueandpredict',tuple(row_dict.values()),columns=columns)\n", + "\n", + " # 计算df_combined3[min_within_quantile] 和 df_combined3[most_model] 的方差\n", + " diff = df_combined3['min_within_quantile']-df_combined3[most_model_name]\n", + " var = diff.var()\n", + " print('方差为:',var)\n", + " df_predict['min_model'] = f'{most_model_name}_var_down'\n", + " df_predict['max_model'] = f'{most_model_name}_var_up'\n", + " # 找到大于最佳模型预测值-2倍方差的值\n", + " df_predict['min_within_quantile'] = df_predict[most_model_name]-var\n", + " df_combined3['min_within_quantile'] = df_combined3[most_model_name]-var\n", + " # 找到小于最佳模型预测值+2倍方差的值\n", + " df_predict['max_within_quantile'] = df_predict[most_model_name]+2*var\n", + " df_combined3['max_within_quantile'] = df_combined3[most_model_name]+var\n", + " print('最佳模型两倍方差')\n", + " print(df_predict)\n", + " df_predict2 = df_predict.copy()\n", + " df_predict2['ds'] = df_predict2['ds'].dt.strftime('%Y-%m-%d 00:00:00')\n", + "\n", + "\n", + " # # 将预测结果保存到数据库\n", + " # # 判断表存在\n", + " # if not sqlitedb.check_table_exists('testandpredict_groupby'):\n", + " # df_predict2.to_sql('testandpredict_groupby',sqlitedb.connection,index=False)\n", + " # else:\n", + " # for row in df_predict2.itertuples(index=False):\n", + " # row_dict = row._asdict()\n", + " # check_query = sqlitedb.select_data('testandpredict_groupby',where_condition = f\"ds = '{row.ds}'\")\n", + " # if len(check_query) > 0:\n", + " # set_clause = \", \".join([f\"{key} = '{value}'\" for key, value in row_dict.items()])\n", + " # sqlitedb.update_data('testandpredict_groupby',set_clause,where_condition = f\"ds = '{row.ds}'\")\n", + " # continue\n", + " # sqlitedb.insert_data('testandpredict_groupby',tuple(row_dict.values()),columns=row_dict.keys())\n", + "\n", + " # # 计算每个预测值与真实值之间的偏差率\n", + " # for model in allmodelnames:\n", + " # df_combined3[f'{model}_abs_error_rate'] = abs(df_combined3['y'] - df_combined3[model]) / df_combined3['y']\n", + "\n", + " # # 获取每行对应的最小偏差率值\n", + " # min_abs_error_rate_values = df_combined3.apply(lambda row: row[[f'{model}_abs_error_rate' for model in allmodelnames]].min(), axis=1)\n", + " # # 获取每行对应的最小偏差率值对应的列名\n", + " # min_abs_error_rate_column_name = df_combined3.apply(lambda row: row[[f'{model}_abs_error_rate' for model in allmodelnames]].idxmin(), axis=1)\n", + " # # 将列名索引转换为列名\n", + " # min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(lambda x: x.split('_')[0])\n", + " # # 获取最小偏差率对应的模型的预测值\n", + " # min_abs_error_rate_predictions = df_combined3.apply(lambda row: row[min_abs_error_rate_column_name[row.name]], axis=1)\n", + " # # 将最小偏差率对应的模型的预测值添加到DataFrame中\n", + " # df_combined3['min_abs_error_rate_prediction'] = min_abs_error_rate_predictions\n", + " # df_combined3['min_abs_error_rate_column_name'] = min_abs_error_rate_column_name\n", + " # df_combined3 = pd.concat([df_combined3, df_predict]).reset_index(drop=True)\n", + " # # 判断 df 的数值列转为float\n", + " # for col in df_combined3.columns:\n", + " # try:\n", + " # if col != 'ds':\n", + " # df_combined3[col] = df_combined3[col].astype(float)\n", + " # df_combined3[col] = df_combined3[col].round(2)\n", + " # except ValueError:\n", + " # pass\n", + " # df_combined3.to_csv(os.path.join(dataset,\"df_combined3.csv\"),index=False) \n", + " \n", + " # # 历史价格+预测价格\n", + " # df_combined3 = df_combined3[-50:] # 取50个数据点画图\n", + " # # 历史价格\n", + " # plt.figure(figsize=(20, 10))\n", + " # plt.plot(df_combined3['ds'], df_combined3['y'], label='真实值')\n", + " # # 颜色填充\n", + " # plt.fill_between(df_combined3['ds'], df_combined3['min_within_quantile'], df_combined3['max_within_quantile'], alpha=0.2)\n", + " # # plt.plot(df_combined3['ds'], df_combined3['min_abs_error_rate_prediction'], label='最小绝对误差', linestyle='--', color='orange')\n", + " # # 网格\n", + " # plt.grid(True)\n", + " # # 显示历史值\n", + " # for i, j in zip(df_combined3['ds'], df_combined3['y']):\n", + " # plt.text(i, j, str(j), ha='center', va='bottom')\n", + "\n", + " \n", + "\n", + " # for model in most_model:\n", + " # plt.plot(df_combined3['ds'], df_combined3[model], label=model,marker='o')\n", + " # # 当前日期画竖虚线\n", + " # plt.axvline(x=df_combined3['ds'].iloc[-horizon], color='r', linestyle='--')\n", + " # plt.legend()\n", + " # plt.xlabel('日期')\n", + " # plt.ylabel('价格')\n", + " \n", + " # plt.savefig(os.path.join(dataset,'历史价格-预测值.png'), bbox_inches='tight')\n", + " # plt.close()\n", + " \n", + " # # 预测值表格\n", + " # fig, ax = plt.subplots(figsize=(20, 6))\n", + " # ax.axis('off') # 关闭坐标轴\n", + " # # 数值保留2位小数\n", + " # df_combined3 = df_combined3.round(2)\n", + " # df_combined3 = df_combined3[-horizon:]\n", + " # df_combined3['Day'] = [f'Day_{i}' for i in range(1,horizon+1)]\n", + " # # Day列放到最前面\n", + " # df_combined3 = df_combined3[['Day'] + list(df_combined3.columns[:-1])]\n", + " # table = ax.table(cellText=df_combined3.values, colLabels=df_combined3.columns, loc='center')\n", + " # #加宽表格\n", + " # table.auto_set_font_size(False)\n", + " # table.set_fontsize(10)\n", + "\n", + " # # 设置表格样式,列数据最小的用绿色标识\n", + " # plt.savefig(os.path.join(dataset,'预测值表格.png'), bbox_inches='tight')\n", + " # plt.close()\n", + " # # plt.show()\n", + " \n", + " # # 可视化评估结果\n", + " # plt.rcParams['font.sans-serif'] = ['SimHei']\n", + " # fig, ax = plt.subplots(figsize=(20, 10))\n", + " # ax.axis('off') # 关闭坐标轴\n", + " # table = ax.table(cellText=model_results3.values, colLabels=model_results3.columns, loc='center')\n", + " # # 加宽表格\n", + " # table.auto_set_font_size(False)\n", + " # table.set_fontsize(10)\n", + "\n", + " # # 设置表格样式,列数据最小的用绿色标识\n", + " # plt.savefig(os.path.join(dataset,'模型评估.png'), bbox_inches='tight')\n", + " # plt.close()\n", + " # return model_results3\n", + "\n", + "\n", + "\n", + "\n", "logger.info('训练数据绘图ing')\n", "model_results3 = model_losss_juxiting(sqlitedb)\n", "\n", @@ -1896,10 +2219,1024 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "id": "85b557de-8235-4e27-b5b8-58b36dfe6724", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "制作报告ing\n", + "制作报告ing\n", + "开始绘制价差类指标的相关性直方图\n", + "开始绘制价差类指标的相关性直方图\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "价差下正相关的特征值有: ['PP期货-丙烯价差(山东)/400DMA', 'PP-SC价差(7吨桶比)', '布伦特-PP价差(盘面)', '薄壁-拉丝价差(华北)', 'PP-FEI M4(含税成本)', '油制PP利润(华东)', 'PP-FEI M3(含税成本)', '价差:聚乙烯与乙烯(西北欧)', 'PP-FEI M2(含税成本)', 'PP-FEI M1(含税成本)', 'PP加权利润', '滨化PDH利润(1.169/含税)', 'PDH利润(山东/丙烯)', 'PP-FEI价差', '外采丙烯制聚丙烯利润(华东)', '5-9月差(PP)', '9-1月差(PP)']\n", + "正在绘制第1个特征PP期货-丙烯价差(山东)/400DMA与价格散点图...\n", + "正在绘制第2个特征PP-SC价差(7吨桶比)与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第3个特征布伦特-PP价差(盘面)与价格散点图...\n", + "正在绘制第4个特征薄壁-拉丝价差(华北)与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第5个特征PP-FEI M4(含税成本)与价格散点图...\n", + "价差下负相关的特征值有: ['L-P价差', 'L-P价差(盘面)', 'PDH制PP利润(山东)', '低熔共聚-拉丝价差(华南)', '外采丙烯制聚丙烯利润(山东)', 'PDH制PP利润(华南)', '京博-滨化价差(不含税/1.13/580)', 'PP现货-丙烯价差(山东)', 'PP-3MA价差(盘面)', 'PP-3*MA主力', '透明-PP盘面价差(华北)', '透明-拉丝价差(华北)', 'PP期货-丙烯价差(山东)', 'PDH制PP利润(华东)指数修匀', 'PDH制PP利润(华东)', '华东拉丝-CP', '透明-PP盘面(华东)', 'LPG-PP价差(盘面)', '拉丝区域价差(华东-华北)', '透明-拉丝价差(华东)', 'PP盘中基差(临沂)', 'PP基差(盘中)', '外采甲醇制PP利润(西北)', '拉丝区域价差(华南-华北)', '滨化丙烷-PP边际贡献(不含税/510/收率1.169)', '滨化丙烯-京博PP边际贡献(不含税/600/收率1.169)', '粉粒价差(山东)', '外采甲醇制PP利润(太仓)', '1-5月差(PP)', '滨化丙烷-PP边际贡献(不含税/580/收率1.13)', '山东拉丝-CP', '山东拉丝-丙烯价差', '拉丝区域价差(华南-华东)']\n", + "正在绘制第1个特征L-P价差与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第2个特征L-P价差(盘面)与价格散点图...\n", + "正在绘制第3个特征PDH制PP利润(山东)与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第4个特征低熔共聚-拉丝价差(华南)与价格散点图...\n", + "正在绘制第5个特征外采丙烯制聚丙烯利润(山东)与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "价差类指标的相关性总和为:11.045084254496823\n", + "价差类指标的相关性总和为:11.045084254496823\n", + "d:\\code\\PriceForecast\\models\\nerulforcastmodels.py:1638: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n", + " grouped_corr = pd.concat([grouped_corr, goup_corr], axis=0, ignore_index=True)\n", + "开始绘制价格类指标的相关性直方图\n", + "开始绘制价格类指标的相关性直方图\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "价格下正相关的特征值有: ['PP神华竞拍(临沂)', 'PP:拉丝:S1003:市场主流价:常州:国能榆林化工(日)', 'PP神华竞拍(华东)', 'BOPP:成本:中国(日)', 'PP:BOPP:1103K:出厂价:华北地区:国家能源宁煤(日)', 'PP拉丝国内现货价格', 'PP:BOPP:1103K:出厂价:华南地区:宁夏神华宁煤(日)', 'PP:BOPP:1103K:出厂价:华东地区:国家能源宁煤(日)', 'PP神华竞拍(西安)', 'PP:薄壁注塑:1040TE:出厂价:华东地区:宁夏神华宁煤(日)', 'PP:薄壁注塑:1040TE:出厂价:华南地区:宁夏神华宁煤(日)', 'PP主力盘中', 'PP:拉丝:S1003:市场主流价:东莞:宝丰能源(日)', 'PP:BOPP:PPH-F03D:出厂价:华南地区:海南炼化装置一(日)', 'PP粉料(山东)/拼接', 'PP.DCE收盘价', 'PP主力收盘价', 'PP无纺布生产成本(日)', 'PP:薄壁注塑:PPH-MN60:出厂价:华南地区:中石化北海(日)', 'PP:低熔共聚:K8003:出厂价:华东地区:东华能源(宁波)(日)', 'PP:薄壁注塑:BZ-70:出厂价:华北地区:寿光鲁清(日)', 'PP:中熔共聚:2043N:出厂价:华南地区:国家能源宁煤(日)', 'PP:中熔共聚:2043N:出厂价:华东地区:国家能源宁煤(日)', 'PP:薄壁注塑:TM6000H:出厂价:华南地区:福建联合石化(日)', 'PP:低熔共聚:2500H:市场价:厦门:国家能源宁煤(日)', 'PP:拉丝:1102K:市场价:临沂:国家能源宁煤(日)', 'PP:低熔共聚:K8003:自提价:广州:宝丰能源(日)', 'PP:透明:R3080T:出厂价:华东地区:浙江鸿基(日)', 'PP:中熔共聚:EP5010C:出厂价:华北地区:中沙天津(日)', 'PP:BOPP:PPH-FL03-S:出厂价:华北地区:青岛炼化(日)', 'PP:中熔共聚:SP179P:出厂价:华北地区:中石化齐鲁化工(日)', 'PP:拉丝:1102K:市场价:青州:国家能源宁煤(日)', 'PP:透明:R3260T:出厂价:华东地区:浙江鸿基(日)', 'PP:低熔共聚:K8003:自提价:宁波:国能榆林化工(日)', 'PP:低熔共聚:K8003:市场价:杭州:东华能源(宁波)(日)', 'PP粉料(山东)', 'PP:中熔共聚:EP440N:出厂价:华南地区:中科炼化(日)', 'PP:中熔共聚:YPJ1215C:出厂价:华东地区:扬子石化(日)', 'DCE:化工产品:期货价格指数收盘价(日)', 'PP:薄壁注塑:PPH-MM60:出厂价:华北地区:石家庄炼化(日)', 'PP:低熔共聚:EPS30R:市场价:临沂:榆能化(日)', 'PP:薄壁注塑:M60ET:出厂价:华东地区:镇海炼化(日)', 'CPP:二元共聚膜:PPR-F08-S:出厂价:华南地区:茂名石化(日)', 'CPP:二元共聚膜:PPR-F08M-S:出厂价:华南地区:茂名石化(日)', '现货价(中间价):均聚聚丙烯(PP-H):CFR远东', 'BOPP:厚光膜:出厂价:华北地区:山东永冠(日)', 'PP:无规共聚:HC-M700B:出厂价:华北地区:山东东明(日)', 'PP:透明:HC-RP340R:出厂价:华北地区:山东东明(日)', 'PP:低熔共聚:2500H:市场价:台州:国家能源宁煤(日)', 'PP:薄壁注塑:K1870-B:市场价:临沂:榆能化(日)', 'PP:高熔共聚:EP300R:市场价:青岛:宝来石化(日)', 'PP:高熔共聚:2240S:出厂价:华南地区:国家能源宁煤(日)', 'PP:高熔共聚:M30RH:市场价:合肥:中安联合(日)', '现货价(中间价):均聚聚丙烯(PP-H):FOB中东', 'DCE:塑料:期货价格指数收盘价(日)', 'PP:透明:HT9025ZK:出厂价:华南地区:中科炼化(日)', 'PP:中熔共聚:K8009:出厂价:华南地区:广州石化(日)', 'PP:透明:PPR-MT75N:出厂价:华中地区:中原中石化(日)', 'PP:透明:PPR-MT25:出厂价:华中地区:中原中石化(日)', 'BOPP:12μ光膜:出厂价:华北地区:凯达包装(日)', 'PP:高熔共聚:EP548R:市场价:临沂:万华化学(日)', 'PP:透明:PPR-B10:出厂价:华中地区:中原中石化(日)', '现货价(中间价):聚丙烯PP(纤维/注塑):CFR东南亚', 'PP:高熔共聚:EP548R:出厂价:华南地区:中海壳牌(日)', '热水管:YPR-503:出厂价:华东地区:扬子石化(日)', '热水管:T4401:出厂价:华南地区:茂名石化(日)', 'CPP:二元共聚膜:DY-W0723F:市场主流价:天津:独山子石化(日)', 'PP:高熔共聚:EP548R:市场价:广州:中科炼化(日)', 'PP:透明:HT9025NX:出厂价:华南地区:茂名石化(日)', '热水管:PA14D:出厂价:华东地区:大庆炼化(日)', '热水管:PPR-4220:出厂价:华南地区:广州石化(日)', '再生PP市场价/山东(日)', '现货价(中间价):聚丙烯PP(纤维/注塑):FAS休斯敦', '现货价(中间价):聚丙烯PP(纤维/注塑):FOB西北欧', 'CPP:二元共聚膜:F800EDF:出厂价:华东地区:上海石化(日)', '热水管:PA14D:市场价:青州:大庆炼化(日)', 'PP:透明:HT9025NX:市场主流价:广州:中石化茂名(日)', '西北欧:现货价:FOB低密度聚乙烯', 'PP:BOPP:F03BT:出厂价:华东地区:镇海炼化(日)', 'PP:高熔共聚:2240S:自提价:常州:国家能源宁煤(日)', '塑编:透明:30cm*45cm:市场价:山东(日)', 'BOPP:生产毛利:中国(日)', '塑编原材料库存天数', 'BOPP:18μ光膜:市场低端价:青岛(日)', 'PP:透明:M26ET:出厂价:华东地区:镇海炼化(日)', 'PP:透明:M08ETN:出厂价:华东地区:镇海炼化(日)', 'PP无纺布开工率', '塑编产成品库存', 'PET瓶片:利润:中国(日)7DMA', '塑编产成品库存天数', '塑编订单天数', 'PP:低熔共聚:市场价:华南地区(日)', 'CPP薄膜成本(日)', '中国BOPP订单天数', '中国BOPP原料库存天数', 'PP多空情绪强弱指数', 'PP主力收盘价拟合残差/丙烷 CP M1', 'PE注塑开工率/周', 'PP:BOPP:L5D98:出厂价:华南地区:广东石化(日)', 'PP:看升比例:中国(周)', '美国-中国PS(GPPS)价差', 'PP无纺布:生产毛利:中国(周)', '塑编整体开工率', '华南聚丙烯基差(折盘面收盘价)', '中国PP下游平均开工率', '华东聚丙烯基差(折盘面收盘价)', 'PP看空情绪指数环差', 'PP:看平比例:中国(周)']\n", + "正在绘制第1个特征PP神华竞拍(临沂)与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第2个特征PP:拉丝:S1003:市场主流价:常州:国能榆林化工(日)与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第3个特征PP神华竞拍(华东)与价格散点图...\n", + "正在绘制第4个特征BOPP:成本:中国(日)与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第5个特征PP:BOPP:1103K:出厂价:华北地区:国家能源宁煤(日)与价格散点图...\n", + "价格下负相关的特征值有: ['中国PP无纺布原料库存天数', '中国PP无纺布成品库存天数', '中国PP无纺布原料库存量', 'PP无纺布:厂内库存:中国(周)', '中国BOPP成品库存量', '中国BOPP成品库存天数', '印度粉矿:57%Fe:品牌价格:青岛港', 'PP:看跌比例:中国(周)', 'PP管材开工率', 'PP:低熔共聚:2500HY:市场价:临沂:国家能源宁煤(日)', '煤制聚丙烯利润', 'CPP:二元共聚膜:F08EC:出厂价:华东地区:镇海炼化(日)', 'PP:低熔共聚:K8003:出厂价:临沂:宝丰能源(日)', 'BOPP开工率', 'PP:低熔共聚:K8003:出厂价:常州:宝丰能源(日)', 'PP:低熔共聚:K8003:出厂价:河北、鲁北:大唐内蒙多伦(日)', '华北聚丙烯基差(折盘面收盘价)', 'DCE:工业产品:期货价格综合指数收盘价(日)']\n", + "正在绘制第1个特征中国PP无纺布原料库存天数与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第2个特征中国PP无纺布成品库存天数与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第3个特征中国PP无纺布原料库存量与价格散点图...\n", + "正在绘制第4个特征PP无纺布:厂内库存:中国(周)与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "价格类指标的相关性总和为:91.9826336555467\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第5个特征中国BOPP成品库存量与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "价格类指标的相关性总和为:91.9826336555467\n", + "开始绘制供应类指标的相关性直方图\n", + "开始绘制供应类指标的相关性直方图\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "供应下正相关的特征值有: ['PP开工率(1MMA)', 'PP周度开工率', 'PP开工率/7DMA', 'PP开工率/2WMA', 'PP日度开工率', 'PP/开工率/东北地区(日)', 'PP开工率/华中地区(日)', 'PP开工率/华南地区(日)', 'PP开工率/华北地区(日)', 'PP下游综合开工率(少注塑&CPP)', 'PP无纺布生产毛利', 'CPP:均聚:生产比例:中国(日)', 'PP:高熔纤维:生产比例:中国(日)', '中国再生PP周度开工负荷率同差', '冷水管:生产比例:中国(日)', 'PP粉料开工率(4WMA)', 'PP开工率/西北地区(日)', '中国再生PP周度开工负荷率', 'PP:拉丝:生产比例:中国(日)', 'BOPP开工率(隆众)同差', 'BOPP开工率同差', 'PP粉料开工率', 'PP:涂覆料:生产比例:中国(日)', 'PP:薄壁注塑:生产比例:中国(日)', 'PP开工率/西南地区(日)', 'PP下游综合开工率/2WMA', 'PP:低熔共聚:生产比例:中国(日)', 'PP开工率/华东地区(日)', 'PP:中熔共聚:生产比例:中国(日)', 'PP:均聚注塑:生产比例:中国(日)', 'PP日产/PE日产']\n", + "正在绘制第1个特征PP开工率(1MMA)与价格散点图...\n", + "正在绘制第2个特征PP周度开工率与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第3个特征PP开工率/7DMA与价格散点图...\n", + "正在绘制第4个特征PP开工率/2WMA与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第5个特征PP日度开工率与价格散点图...\n", + "供应下负相关的特征值有: ['PP粉检修减损量(周)', 'PP日度产量(粒料+粉料)', 'PP周度产量', 'PP日度产量7DMA', 'PP日度产量', 'PP周度产量变频', 'PP日度产量(1MMA)', 'PP周度产量/4WMA', 'PP管材开工率同差', 'PP周度产量同差', 'PP开工率同差', 'PP检修减损量', 'PP周度产量同比', 'PP日度产量同差', 'PP检修损失量(万吨/年)', 'PP检修减损量(日)', 'PP日度产量同比', 'PP下游综合开工率同差', 'PP粉料产量(钢联)7DMA', 'PP周度检修率', 'PP粉产量/中国(日)', 'CPP:三元共聚薄膜:生产比例:中国(日)', 'PP下游综合开工率/3年超季节性', 'CPP:二元共聚膜:生产比例:中国(日)', 'PP:透明:生产比例:中国(日)', 'BOPP开工率(4WMA)', 'PP周度产量周环差', 'PP:中熔纤维:生产比例:中国(日)', 'PP无纺布开工率同差', 'PP下游开工/PE下游开工', 'PP:无规共聚:生产比例:中国(日)', '热水管:生产比例:中国(日)', 'PP:高熔共聚:生产比例:中国(日)', 'PP日度产量1000天百分位', 'PP日度产量环差']\n", + "正在绘制第1个特征PP粉检修减损量(周)与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第2个特征PP日度产量(粒料+粉料)与价格散点图...\n", + "正在绘制第3个特征PP周度产量与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第4个特征PP日度产量7DMA与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "供应类指标的相关性总和为:19.676577761750373\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第5个特征PP日度产量与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "供应类指标的相关性总和为:19.676577761750373\n", + "开始绘制其他类指标的相关性直方图\n", + "开始绘制其他类指标的相关性直方图\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "其他下正相关的特征值有: ['PP连续-1月', 'PP连续-9月', 'PP连续-5月', '山东丙烯主流价', 'FEI丙烷 M1', 'PVC期货主力', '丙烷(山东)', '甲醇鲁南价格', '甲醇太仓港口价格', 'PE期货收盘价', 'LME铜价']\n", + "正在绘制第1个特征PP连续-1月与价格散点图...\n", + "正在绘制第2个特征PP连续-9月与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第3个特征PP连续-5月与价格散点图...\n", + "正在绘制第4个特征山东丙烯主流价与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第5个特征FEI丙烷 M1与价格散点图...\n", + "其他下负相关的特征值有: ['在岸人民币汇率', '黄金连1合约', '美元指数', 'Brent-WTI', '南华工业品指数']\n", + "正在绘制第1个特征在岸人民币汇率与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第2个特征黄金连1合约与价格散点图...\n", + "正在绘制第3个特征美元指数与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第4个特征Brent-WTI与价格散点图...\n", + "正在绘制第5个特征南华工业品指数与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "其他类指标的相关性总和为:12.061155519572203\n", + "其他类指标的相关性总和为:12.061155519572203\n", + "开始绘制库存类指标的相关性直方图\n", + "开始绘制库存类指标的相关性直方图\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "库存下正相关的特征值有: ['PP贸易商库存(钢联)同比', 'PP期末库存/天津港(周)', '塑编原材料库存', 'PP下游原料库存', 'BOPP订单天数-产成品库存天数(隆众)', 'PP期末库存/厦门港(周)', '中国BOPP原料库存量', 'PP粉料库存', 'PP库存 (地方炼厂)', '聚烯烃两油库存', 'PP:期末库存:青岛港(周)', 'PP库存(PDH)超季节性(3Y)', 'PP贸易商库存(钢联)', 'PP拉丝期末库存(周)', '聚烯烃两油库存同比', 'PP周度总库存', 'PP炼厂库存+PDH库存', 'PP期末库存/宁波港(周)', '中国BOPP周度原料库存天数(T)', 'PP粉料库存(吨)变化', 'PP上游库存(两油+煤+PDH+地方)']\n", + "正在绘制第1个特征PP贸易商库存(钢联)同比与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第2个特征PP期末库存/天津港(周)与价格散点图...\n", + "正在绘制第3个特征塑编原材料库存与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第4个特征PP下游原料库存与价格散点图...\n", + "正在绘制第5个特征BOPP订单天数-产成品库存天数(隆众)与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "库存下负相关的特征值有: ['中国BOPP周度产成品库存天数(T)', 'PP下游原料库存天数', '中国CPP成品库存天数', '中国再生PP样本企业周度库存', 'PP库存(PDH)', '聚烯烃两油库存1000天百分位', '中国CPP原料库存天数', '中国CPP成品库存量', 'PP期末库存/广州港(周)', 'BOPP原料库存+产成品库存天数', 'PP期末库存/上海港(周)', '中国PP港口期末库存', 'PP上游库存(两油+煤+PDH)', 'PP两油+煤制库存', 'PP两桶油/库存(周)', 'PP库存(煤制)', '中国BOPP原料库存天数同差']\n", + "正在绘制第1个特征中国BOPP周度产成品库存天数(T)与价格散点图...\n", + "正在绘制第2个特征PP下游原料库存天数与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第3个特征中国CPP成品库存天数与价格散点图...\n", + "正在绘制第4个特征中国再生PP样本企业周度库存与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "库存类指标的相关性总和为:11.265124823866078\n", + "库存类指标的相关性总和为:11.265124823866078\n", + "开始绘制进出口类指标的相关性直方图\n", + "开始绘制进出口类指标的相关性直方图\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第5个特征PP库存(PDH)与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "进出口下正相关的特征值有: ['聚丙烯出口利润']\n", + "正在绘制第1个特征聚丙烯出口利润与价格散点图...\n", + "进出口下负相关的特征值有: ['聚丙烯进口利润']\n", + "正在绘制第1个特征聚丙烯进口利润与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "进出口类指标的相关性总和为:1.621285695326623\n", + "进出口类指标的相关性总和为:1.621285695326623\n", + "开始绘制需求类指标的相关性直方图\n", + "开始绘制需求类指标的相关性直方图\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "需求下正相关的特征值有: ['中国:华东地区:市场平均价:BOPP厚光膜', 'BOPP利润(华东地区)', '中国BOPP订单天数/4WMA', 'PP部分下游订单天数', 'BOPP 订单-成品天数', 'BOPP订单天数变频', 'BOPP完工订单工作量(周)', 'BOPP开工率超季节性/3年', 'BOPP新订单量(7DMA)', '中国再生PP周度样本成交量', 'BOPP日度新订单量(T)', '中国BOPP订单天数同差', '中国BOPP成品库存量同差']\n", + "正在绘制第1个特征中国:华东地区:市场平均价:BOPP厚光膜与价格散点图...\n", + "正在绘制第2个特征BOPP利润(华东地区)与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第3个特征中国BOPP订单天数/4WMA与价格散点图...\n", + "正在绘制第4个特征PP部分下游订单天数与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第5个特征BOPP 订单-成品天数与价格散点图...\n", + "需求下负相关的特征值有: ['PP下游成品库存天数', '中国CPP订单天数']\n", + "正在绘制第1个特征PP下游成品库存天数与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "需求类指标的相关性总和为:6.76636659497056\n", + "需求类指标的相关性总和为:6.76636659497056\n", + "开始绘制相关性总和的气泡图\n", + "开始绘制相关性总和的气泡图\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "正在绘制第2个特征中国CPP订单天数与价格散点图...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "绘制相关性总和的气泡图结束\n", + "绘制相关性总和的气泡图结束\n", + "制作报告end\n", + "制作报告end\n", + "模型训练完成\n", + "模型训练完成\n" + ] + } + ], "source": [ "# 模型报告\n", "\n", diff --git a/juxitingdataset/BOPP 订单-成品天数与价格散点图.png b/juxitingdataset/BOPP 订单-成品天数与价格散点图.png new file mode 100644 index 0000000..a1315c4 Binary files /dev/null and b/juxitingdataset/BOPP 订单-成品天数与价格散点图.png differ diff --git a/juxitingdataset/BOPP利润(华东地区)与价格散点图.png b/juxitingdataset/BOPP利润(华东地区)与价格散点图.png new file mode 100644 index 0000000..a719615 Binary files /dev/null and b/juxitingdataset/BOPP利润(华东地区)与价格散点图.png differ diff --git a/juxitingdataset/BOPP订单天数-产成品库存天数(隆众)与价格散点图.png b/juxitingdataset/BOPP订单天数-产成品库存天数(隆众)与价格散点图.png new file mode 100644 index 0000000..457c43b Binary files /dev/null and b/juxitingdataset/BOPP订单天数-产成品库存天数(隆众)与价格散点图.png differ diff --git a/juxitingdataset/BOPP:成本:中国(日)与价格散点图.png b/juxitingdataset/BOPP:成本:中国(日)与价格散点图.png new file mode 100644 index 0000000..3c87376 Binary files /dev/null and b/juxitingdataset/BOPP:成本:中国(日)与价格散点图.png differ diff --git a/juxitingdataset/Brent-WTI与价格散点图.png b/juxitingdataset/Brent-WTI与价格散点图.png new file mode 100644 index 0000000..bd76936 Binary files /dev/null and b/juxitingdataset/Brent-WTI与价格散点图.png differ diff --git a/juxitingdataset/FEI丙烷 M1与价格散点图.png b/juxitingdataset/FEI丙烷 M1与价格散点图.png new file mode 100644 index 0000000..2d07ada Binary files /dev/null and b/juxitingdataset/FEI丙烷 M1与价格散点图.png differ diff --git a/juxitingdataset/L-P价差与价格散点图.png b/juxitingdataset/L-P价差与价格散点图.png new file mode 100644 index 0000000..cf7a5b8 Binary files /dev/null and b/juxitingdataset/L-P价差与价格散点图.png differ diff --git a/juxitingdataset/L-P价差(盘面)与价格散点图.png b/juxitingdataset/L-P价差(盘面)与价格散点图.png new file mode 100644 index 0000000..4300750 Binary files /dev/null and b/juxitingdataset/L-P价差(盘面)与价格散点图.png differ diff --git a/juxitingdataset/PDH制PP利润(山东)与价格散点图.png b/juxitingdataset/PDH制PP利润(山东)与价格散点图.png new file mode 100644 index 0000000..b93ea40 Binary files /dev/null and b/juxitingdataset/PDH制PP利润(山东)与价格散点图.png differ diff --git a/juxitingdataset/PP-FEI M4(含税成本)与价格散点图.png b/juxitingdataset/PP-FEI M4(含税成本)与价格散点图.png new file mode 100644 index 0000000..ca3b964 Binary files /dev/null and b/juxitingdataset/PP-FEI M4(含税成本)与价格散点图.png differ diff --git a/juxitingdataset/PP-SC价差(7吨桶比)与价格散点图.png b/juxitingdataset/PP-SC价差(7吨桶比)与价格散点图.png new file mode 100644 index 0000000..66e98a6 Binary files /dev/null and b/juxitingdataset/PP-SC价差(7吨桶比)与价格散点图.png differ diff --git a/juxitingdataset/PP下游原料库存与价格散点图.png b/juxitingdataset/PP下游原料库存与价格散点图.png new file mode 100644 index 0000000..c0587c5 Binary files /dev/null and b/juxitingdataset/PP下游原料库存与价格散点图.png differ diff --git a/juxitingdataset/PP下游原料库存天数与价格散点图.png b/juxitingdataset/PP下游原料库存天数与价格散点图.png new file mode 100644 index 0000000..b5f3598 Binary files /dev/null and b/juxitingdataset/PP下游原料库存天数与价格散点图.png differ diff --git a/juxitingdataset/PP下游成品库存天数与价格散点图.png b/juxitingdataset/PP下游成品库存天数与价格散点图.png new file mode 100644 index 0000000..247d885 Binary files /dev/null and b/juxitingdataset/PP下游成品库存天数与价格散点图.png differ diff --git a/juxitingdataset/PP周度产量与价格散点图.png b/juxitingdataset/PP周度产量与价格散点图.png new file mode 100644 index 0000000..73ace07 Binary files /dev/null and b/juxitingdataset/PP周度产量与价格散点图.png differ diff --git a/juxitingdataset/PP周度开工率与价格散点图.png b/juxitingdataset/PP周度开工率与价格散点图.png new file mode 100644 index 0000000..73cf82d Binary files /dev/null and b/juxitingdataset/PP周度开工率与价格散点图.png differ diff --git a/juxitingdataset/PP库存(PDH)与价格散点图.png b/juxitingdataset/PP库存(PDH)与价格散点图.png new file mode 100644 index 0000000..a852511 Binary files /dev/null and b/juxitingdataset/PP库存(PDH)与价格散点图.png differ diff --git a/juxitingdataset/PP开工率-2WMA与价格散点图.png b/juxitingdataset/PP开工率-2WMA与价格散点图.png new file mode 100644 index 0000000..9bd8881 Binary files /dev/null and b/juxitingdataset/PP开工率-2WMA与价格散点图.png differ diff --git a/juxitingdataset/PP开工率-7DMA与价格散点图.png b/juxitingdataset/PP开工率-7DMA与价格散点图.png new file mode 100644 index 0000000..0610b36 Binary files /dev/null and b/juxitingdataset/PP开工率-7DMA与价格散点图.png differ diff --git a/juxitingdataset/PP开工率(1MMA)与价格散点图.png b/juxitingdataset/PP开工率(1MMA)与价格散点图.png new file mode 100644 index 0000000..761436a Binary files /dev/null and b/juxitingdataset/PP开工率(1MMA)与价格散点图.png differ diff --git a/juxitingdataset/PP无纺布:厂内库存:中国(周)与价格散点图.png b/juxitingdataset/PP无纺布:厂内库存:中国(周)与价格散点图.png new file mode 100644 index 0000000..a63db1b Binary files /dev/null and b/juxitingdataset/PP无纺布:厂内库存:中国(周)与价格散点图.png differ diff --git a/juxitingdataset/PP日度产量7DMA与价格散点图.png b/juxitingdataset/PP日度产量7DMA与价格散点图.png new file mode 100644 index 0000000..feb7e0c Binary files /dev/null and b/juxitingdataset/PP日度产量7DMA与价格散点图.png differ diff --git a/juxitingdataset/PP日度产量与价格散点图.png b/juxitingdataset/PP日度产量与价格散点图.png new file mode 100644 index 0000000..2825191 Binary files /dev/null and b/juxitingdataset/PP日度产量与价格散点图.png differ diff --git a/juxitingdataset/PP日度产量(粒料+粉料)与价格散点图.png b/juxitingdataset/PP日度产量(粒料+粉料)与价格散点图.png new file mode 100644 index 0000000..0986109 Binary files /dev/null and b/juxitingdataset/PP日度产量(粒料+粉料)与价格散点图.png differ diff --git a/juxitingdataset/PP日度开工率与价格散点图.png b/juxitingdataset/PP日度开工率与价格散点图.png new file mode 100644 index 0000000..25e911b Binary files /dev/null and b/juxitingdataset/PP日度开工率与价格散点图.png differ diff --git a/juxitingdataset/PP期末库存-天津港(周)与价格散点图.png b/juxitingdataset/PP期末库存-天津港(周)与价格散点图.png new file mode 100644 index 0000000..f41c7b2 Binary files /dev/null and b/juxitingdataset/PP期末库存-天津港(周)与价格散点图.png differ diff --git a/juxitingdataset/PP期货-丙烯价差(山东)-400DMA与价格散点图.png b/juxitingdataset/PP期货-丙烯价差(山东)-400DMA与价格散点图.png new file mode 100644 index 0000000..441e66a Binary files /dev/null and b/juxitingdataset/PP期货-丙烯价差(山东)-400DMA与价格散点图.png differ diff --git a/juxitingdataset/PP神华竞拍(临沂)与价格散点图.png b/juxitingdataset/PP神华竞拍(临沂)与价格散点图.png new file mode 100644 index 0000000..acc7d41 Binary files /dev/null and b/juxitingdataset/PP神华竞拍(临沂)与价格散点图.png differ diff --git a/juxitingdataset/PP神华竞拍(华东)与价格散点图.png b/juxitingdataset/PP神华竞拍(华东)与价格散点图.png new file mode 100644 index 0000000..a86b78f Binary files /dev/null and b/juxitingdataset/PP神华竞拍(华东)与价格散点图.png differ diff --git a/juxitingdataset/PP粉检修减损量(周)与价格散点图.png b/juxitingdataset/PP粉检修减损量(周)与价格散点图.png new file mode 100644 index 0000000..4df2d8b Binary files /dev/null and b/juxitingdataset/PP粉检修减损量(周)与价格散点图.png differ diff --git a/juxitingdataset/PP贸易商库存(钢联)同比与价格散点图.png b/juxitingdataset/PP贸易商库存(钢联)同比与价格散点图.png new file mode 100644 index 0000000..26b96ae Binary files /dev/null and b/juxitingdataset/PP贸易商库存(钢联)同比与价格散点图.png differ diff --git a/juxitingdataset/PP连续-1月与价格散点图.png b/juxitingdataset/PP连续-1月与价格散点图.png new file mode 100644 index 0000000..2f18963 Binary files /dev/null and b/juxitingdataset/PP连续-1月与价格散点图.png differ diff --git a/juxitingdataset/PP连续-5月与价格散点图.png b/juxitingdataset/PP连续-5月与价格散点图.png new file mode 100644 index 0000000..92781fe Binary files /dev/null and b/juxitingdataset/PP连续-5月与价格散点图.png differ diff --git a/juxitingdataset/PP连续-9月与价格散点图.png b/juxitingdataset/PP连续-9月与价格散点图.png new file mode 100644 index 0000000..b182fe4 Binary files /dev/null and b/juxitingdataset/PP连续-9月与价格散点图.png differ diff --git a/juxitingdataset/PP部分下游订单天数与价格散点图.png b/juxitingdataset/PP部分下游订单天数与价格散点图.png new file mode 100644 index 0000000..5b51319 Binary files /dev/null and b/juxitingdataset/PP部分下游订单天数与价格散点图.png differ diff --git a/juxitingdataset/PP:BOPP:1103K:出厂价:华北地区:国家能源宁煤(日)与价格散点图.png b/juxitingdataset/PP:BOPP:1103K:出厂价:华北地区:国家能源宁煤(日)与价格散点图.png new file mode 100644 index 0000000..10f3298 Binary files /dev/null and b/juxitingdataset/PP:BOPP:1103K:出厂价:华北地区:国家能源宁煤(日)与价格散点图.png differ diff --git a/juxitingdataset/PP:拉丝:S1003:市场主流价:常州:国能榆林化工(日)与价格散点图.png b/juxitingdataset/PP:拉丝:S1003:市场主流价:常州:国能榆林化工(日)与价格散点图.png new file mode 100644 index 0000000..ff892ab Binary files /dev/null and b/juxitingdataset/PP:拉丝:S1003:市场主流价:常州:国能榆林化工(日)与价格散点图.png differ diff --git a/juxitingdataset/jbsh_juxiting.db b/juxitingdataset/jbsh_juxiting.db index 5efe749..f333d13 100644 Binary files a/juxitingdataset/jbsh_juxiting.db and b/juxitingdataset/jbsh_juxiting.db differ diff --git a/juxitingdataset/中国BOPP周度产成品库存天数(T)与价格散点图.png b/juxitingdataset/中国BOPP周度产成品库存天数(T)与价格散点图.png new file mode 100644 index 0000000..be4d4aa Binary files /dev/null and b/juxitingdataset/中国BOPP周度产成品库存天数(T)与价格散点图.png differ diff --git a/juxitingdataset/中国BOPP成品库存量与价格散点图.png b/juxitingdataset/中国BOPP成品库存量与价格散点图.png new file mode 100644 index 0000000..cf20a74 Binary files /dev/null and b/juxitingdataset/中国BOPP成品库存量与价格散点图.png differ diff --git a/juxitingdataset/中国BOPP订单天数-4WMA与价格散点图.png b/juxitingdataset/中国BOPP订单天数-4WMA与价格散点图.png new file mode 100644 index 0000000..346829a Binary files /dev/null and b/juxitingdataset/中国BOPP订单天数-4WMA与价格散点图.png differ diff --git a/juxitingdataset/中国CPP成品库存天数与价格散点图.png b/juxitingdataset/中国CPP成品库存天数与价格散点图.png new file mode 100644 index 0000000..11a52c5 Binary files /dev/null and b/juxitingdataset/中国CPP成品库存天数与价格散点图.png differ diff --git a/juxitingdataset/中国CPP订单天数与价格散点图.png b/juxitingdataset/中国CPP订单天数与价格散点图.png new file mode 100644 index 0000000..bd428cc Binary files /dev/null and b/juxitingdataset/中国CPP订单天数与价格散点图.png differ diff --git a/juxitingdataset/中国PP无纺布原料库存天数与价格散点图.png b/juxitingdataset/中国PP无纺布原料库存天数与价格散点图.png new file mode 100644 index 0000000..7f20084 Binary files /dev/null and b/juxitingdataset/中国PP无纺布原料库存天数与价格散点图.png differ diff --git a/juxitingdataset/中国PP无纺布原料库存量与价格散点图.png b/juxitingdataset/中国PP无纺布原料库存量与价格散点图.png new file mode 100644 index 0000000..8157c31 Binary files /dev/null and b/juxitingdataset/中国PP无纺布原料库存量与价格散点图.png differ diff --git a/juxitingdataset/中国PP无纺布成品库存天数与价格散点图.png b/juxitingdataset/中国PP无纺布成品库存天数与价格散点图.png new file mode 100644 index 0000000..1d84c70 Binary files /dev/null and b/juxitingdataset/中国PP无纺布成品库存天数与价格散点图.png differ diff --git a/juxitingdataset/中国再生PP样本企业周度库存与价格散点图.png b/juxitingdataset/中国再生PP样本企业周度库存与价格散点图.png new file mode 100644 index 0000000..d60928f Binary files /dev/null and b/juxitingdataset/中国再生PP样本企业周度库存与价格散点图.png differ diff --git a/juxitingdataset/中国:华东地区:市场平均价:BOPP厚光膜与价格散点图.png b/juxitingdataset/中国:华东地区:市场平均价:BOPP厚光膜与价格散点图.png new file mode 100644 index 0000000..2280010 Binary files /dev/null and b/juxitingdataset/中国:华东地区:市场平均价:BOPP厚光膜与价格散点图.png differ diff --git a/juxitingdataset/低熔共聚-拉丝价差(华南)与价格散点图.png b/juxitingdataset/低熔共聚-拉丝价差(华南)与价格散点图.png new file mode 100644 index 0000000..08bc23a Binary files /dev/null and b/juxitingdataset/低熔共聚-拉丝价差(华南)与价格散点图.png differ diff --git a/juxitingdataset/南华工业品指数与价格散点图.png b/juxitingdataset/南华工业品指数与价格散点图.png new file mode 100644 index 0000000..d46419b Binary files /dev/null and b/juxitingdataset/南华工业品指数与价格散点图.png differ diff --git a/juxitingdataset/历史价格-预测值.png b/juxitingdataset/历史价格-预测值.png index 344c714..4eba0b5 100644 Binary files a/juxitingdataset/历史价格-预测值.png and b/juxitingdataset/历史价格-预测值.png differ diff --git a/juxitingdataset/在岸人民币汇率与价格散点图.png b/juxitingdataset/在岸人民币汇率与价格散点图.png new file mode 100644 index 0000000..b9afc8b Binary files /dev/null and b/juxitingdataset/在岸人民币汇率与价格散点图.png differ diff --git a/juxitingdataset/塑编原材料库存与价格散点图.png b/juxitingdataset/塑编原材料库存与价格散点图.png new file mode 100644 index 0000000..d7ae722 Binary files /dev/null and b/juxitingdataset/塑编原材料库存与价格散点图.png differ diff --git a/juxitingdataset/外采丙烯制聚丙烯利润(山东)与价格散点图.png b/juxitingdataset/外采丙烯制聚丙烯利润(山东)与价格散点图.png new file mode 100644 index 0000000..fe8d4ad Binary files /dev/null and b/juxitingdataset/外采丙烯制聚丙烯利润(山东)与价格散点图.png differ diff --git a/juxitingdataset/山东丙烯主流价与价格散点图.png b/juxitingdataset/山东丙烯主流价与价格散点图.png new file mode 100644 index 0000000..f340473 Binary files /dev/null and b/juxitingdataset/山东丙烯主流价与价格散点图.png differ diff --git a/juxitingdataset/布伦特-PP价差(盘面)与价格散点图.png b/juxitingdataset/布伦特-PP价差(盘面)与价格散点图.png new file mode 100644 index 0000000..e72f75a Binary files /dev/null and b/juxitingdataset/布伦特-PP价差(盘面)与价格散点图.png differ diff --git a/juxitingdataset/美元指数与价格散点图.png b/juxitingdataset/美元指数与价格散点图.png new file mode 100644 index 0000000..5e05d53 Binary files /dev/null and b/juxitingdataset/美元指数与价格散点图.png differ diff --git a/juxitingdataset/聚丙烯出口利润与价格散点图.png b/juxitingdataset/聚丙烯出口利润与价格散点图.png new file mode 100644 index 0000000..35ae932 Binary files /dev/null and b/juxitingdataset/聚丙烯出口利润与价格散点图.png differ diff --git a/juxitingdataset/聚丙烯进口利润与价格散点图.png b/juxitingdataset/聚丙烯进口利润与价格散点图.png new file mode 100644 index 0000000..49e356b Binary files /dev/null and b/juxitingdataset/聚丙烯进口利润与价格散点图.png differ diff --git a/juxitingdataset/薄壁-拉丝价差(华北)与价格散点图.png b/juxitingdataset/薄壁-拉丝价差(华北)与价格散点图.png new file mode 100644 index 0000000..32fcee4 Binary files /dev/null and b/juxitingdataset/薄壁-拉丝价差(华北)与价格散点图.png differ diff --git a/juxitingdataset/黄金连1合约与价格散点图.png b/juxitingdataset/黄金连1合约与价格散点图.png new file mode 100644 index 0000000..58c9371 Binary files /dev/null and b/juxitingdataset/黄金连1合约与价格散点图.png differ