diff --git a/config_juxiting.py b/config_juxiting.py index 928c722..f84c822 100644 --- a/config_juxiting.py +++ b/config_juxiting.py @@ -86,6 +86,11 @@ bdwdname = [ '次日' ] +# 数据库预测结果表八大维度列名 +price_columns = [ + 'day_price', 'week_price', 'second_week_price', 'next_week_price', + 'next_month_price', 'next_february_price', 'next_march_price', 'next_april_price' +] modelsindex = [{ 'NHITS': 'SELF0000077', diff --git a/lib/dataread.py b/lib/dataread.py index 36cf617..6253b03 100644 --- a/lib/dataread.py +++ b/lib/dataread.py @@ -51,6 +51,7 @@ global_config = { 'baicangidnamedict': None, # 百川id名称映射 'modelsindex': None, # 模型索引 'bdwdname': None, + 'price_columns': None, # 模型参数 'data_set': None, # 数据集名称 @@ -746,6 +747,25 @@ def calculate_kdj(data, n=9): # data = data.dropna() return data +# 计算因子与预测目标的相关性 + + +def calculate_correlation(df): + try: + yy = df['y'] + # 去掉ds y + df = df.drop(columns=['ds', 'y']) + # 计算相关系数 + corr = df.corrwith(yy) + # 输出相关系数 + print(corr) + # 保存结果 + corr.to_csv(os.path.join(config.dataset, '相关系数.csv')) + except Exception as e: + config.logger.info('计算相关系数错误:', e) + finally: + config.logger.info('计算相关系数完成') + def check_column(df, col_name, two_months_ago): ''' @@ -1080,6 +1100,7 @@ def datachuli_juxiting(df_zhibiaoshuju, df_zhibiaoliebiao, datecol='date', end_t if add_kdj: df = calculate_kdj(df) + calculate_correlation(df=df) featureAnalysis(df, dataset=dataset, y=y) return df diff --git a/lib/pydantic_models.py b/lib/pydantic_models.py index ef3cf3e..6e3085d 100644 --- a/lib/pydantic_models.py +++ b/lib/pydantic_models.py @@ -40,3 +40,39 @@ class PredictionResult(BaseModel): create_date: Optional[datetime] = None update_user: Optional[str] = None update_date: Optional[datetime] = None + + +class PpPredictionResult(BaseModel): + feature_factor_frequency: str + strategy_id: int + oil_code: Optional[str] = 'PP' + oil_name: Optional[str] = 'PP期货' + data_date: Optional[datetime] = None + market_price: Optional[Decimal] = None + day_price: Optional[Decimal] = None + week_price: Optional[Decimal] = None + second_week_price: Optional[Decimal] = None + next_week_price: Optional[Decimal] = None + next_month_price: Optional[Decimal] = None + next_february_price: Optional[Decimal] = None + next_march_price: Optional[Decimal] = None + next_april_price: Optional[Decimal] = None + model_evaluation_id: int + model_id: int + tenant_code: Optional[str] = None + reserved_str1: Optional[str] = None + reserved_str2: Optional[str] = None + reserved_str3: Optional[str] = None + reserved_str4: Optional[str] = None + reserved_str5: Optional[str] = None + reserved_num1: Optional[Decimal] = None + reserved_num2: Optional[Decimal] = None + reserved_num3: Optional[Decimal] = None + reserved_num4: Optional[Decimal] = None + reserved_num5: Optional[Decimal] = None + version_num: Decimal = Decimal(1) + delete_flag: str = '0' + create_user: Optional[str] = None + create_date: Optional[datetime] = None + update_user: Optional[str] = None + update_date: Optional[datetime] = None diff --git a/lib/tools.py b/lib/tools.py index d11671d..72d0074 100644 --- a/lib/tools.py +++ b/lib/tools.py @@ -37,7 +37,7 @@ import time import logging from dotenv import load_dotenv -from lib.pydantic_models import PredictionResult +from lib.pydantic_models import PredictionResult, PpPredictionResult load_dotenv() global logger @@ -642,6 +642,105 @@ def get_week_date(end_time): return create_dates, ds_dates +def get_bdwd_date(date=''): + ''' + 计算当前日期date对应的明天,五班后,下周日,下下周日,下月最后一天,下两月最后一天,下三月最后一天,下四月最后一天的日期 + + 参数: + date (str): 输入的日期,格式为 '%Y-%m-%d',默认为空字符串,表示当前日期 + + 返回: + dict: 包含所需日期的字典,键分别为 'tomorrow', 'five_working_days_later', 'next_sunday', + 'next_next_sunday', 'next_month_last_day', 'next_two_months_last_day', + 'next_three_months_last_day', 'next_four_months_last_day' + ''' + import datetime + if not date: + current_date = datetime.date.today() + else: + current_date = datetime.datetime.strptime(date, '%Y-%m-%d').date() + + # 计算明天的日期 + tomorrow = current_date + datetime.timedelta(days=1) + + # 计算五班后的日期 + five_working_days_later = current_date + working_days_count = 0 + while working_days_count < 5: + five_working_days_later += datetime.timedelta(days=1) + if five_working_days_later.weekday() < 5: # 周一到周五是工作日 + working_days_count += 1 + + # 计算下周日的日期 + days_to_next_sunday = (6 - current_date.weekday()) % 7 + if days_to_next_sunday == 0: + days_to_next_sunday = 7 + next_sunday = current_date + datetime.timedelta(days=days_to_next_sunday) + + # 计算下下周周日的日期 + next_next_sunday = next_sunday + datetime.timedelta(days=7) + + # 计算下下下周周日的日期 + next_next_next_sunday = next_next_sunday + datetime.timedelta(days=7) + + # 计算下月最后一天的日期 + next_month = current_date.replace(day=28) + datetime.timedelta(days=4) + next_month_last_day = next_month.replace( + day=1) - datetime.timedelta(days=1) + + # 计算下两月最后一天的日期 + next_two_months = next_month.replace(day=28) + datetime.timedelta(days=4) + next_two_months_last_day = next_two_months.replace( + day=1) - datetime.timedelta(days=1) + + # 计算下三月最后一天的日期 + next_three_months = next_two_months.replace( + day=28) + datetime.timedelta(days=4) + next_three_months_last_day = next_three_months.replace( + day=1) - datetime.timedelta(days=1) + + # 计算下四月最后一天的日期 + next_four_months = next_three_months.replace( + day=28) + datetime.timedelta(days=4) + next_four_months_last_day = next_four_months.replace( + day=1) - datetime.timedelta(days=1) + + # 计算下五月最后一天的日期 + next_five_months = next_four_months.replace( + day=28) + datetime.timedelta(days=4) + next_five_months_last_day = next_five_months.replace( + day=1) - datetime.timedelta(days=1) + + return { + 'tomorrow': tomorrow.strftime('%Y-%m-%d'), + 'five_working_days_later': five_working_days_later.strftime('%Y-%m-%d'), + # 'next_sunday': next_sunday.strftime('%Y-%m-%d'), + 'next_next_sunday': next_next_sunday.strftime('%Y-%m-%d'), + 'next_next_next_sunday': next_next_next_sunday.strftime('%Y-%m-%d'), + # 'next_month_last_day': next_month_last_day.strftime('%Y-%m-%d'), + 'next_two_months_last_day': next_two_months_last_day.strftime('%Y-%m-%d'), + 'next_three_months_last_day': next_three_months_last_day.strftime('%Y-%m-%d'), + 'next_four_months_last_day': next_four_months_last_day.strftime('%Y-%m-%d'), + 'next_five_months_last_day': next_five_months_last_day.strftime('%Y-%m-%d'), + } + + +def get_bdwd_price(date, true_price, global_config): + ''' + 计算当前日期date对应的明天,五班后,下周日,下下周日,下月最后一天,下两月最后一天,下三月最后一天,下四月最后一天的价格 + ''' + bdwd_price = {} + for wd in global_config['price_columns']: + if wd == 'day_price': + bdwd_price[wd] = true_price[true_price['ds'] == date][wd].values[0] + if wd == 'week_price': + + bdwd_price[wd] = true_price[true_price['ds'] == date][wd].values[0] + true_price[wd] = pd.to_numeric(true_price[wd]) + + return + + class DeepSeek(): def __init__(self): pass @@ -674,6 +773,17 @@ class DeepSeek(): return summary +def get_model_id_name_dict(global_config): + ''' + 预测结果和模型表求子集得到模型名称 + ''' + tb = 'v_tbl_predict_models' + sql = f'select model_name,id from {tb} ' + modelsname = global_config['db_mysql'].execute_query(sql) + model_id_name_dict = {row['id']: row['model_name'] for row in modelsname} + return model_id_name_dict + + def get_modelsname(df, global_config): ''' 预测结果和模型表求子集得到模型名称 @@ -682,7 +792,7 @@ def get_modelsname(df, global_config): tb = 'v_tbl_predict_models' sql = f'select model_name,id from {tb} ' modelsname = global_config['db_mysql'].execute_query(sql) - model_id_name_dict = {row['id']: row['model_name'] for row in modelsname} + model_id_name_dict = get_model_id_name_dict(global_config=global_config) model_name_list = [row['model_name'] for row in modelsname] model_name_list = set(columns) & set(model_name_list) model_name_list = list(model_name_list) @@ -709,5 +819,248 @@ def convert_df_to_pydantic(df_predict, model_id_name_dict, global_config): return results +def convert_df_to_pydantic_pp(df_predict, model_id_name_dict, global_config): + reverse_model_id_name_dict = { + value: key for key, value in model_id_name_dict.items()} + results = [] + data = global_config['DEFAULT_CONFIG'].copy() + data['data_date'] = df_predict['created_dt'].values[0] + if isinstance(data['data_date'], np.datetime64): + data['data_date'] = pd.Timestamp( + data['data_date']).to_pydatetime() + for c in df_predict.columns: + if c not in ['ds', 'created_dt']: + data['model_id'] = reverse_model_id_name_dict[c] + data['predicted_price'] = Decimal( + round(df_predict[c].values[0], 2)) + result = PpPredictionResult(**data) + results.append(result) + return results + + +# 查找上一交易日各维度的最佳模型 +def find_best_models(date='', global_config=None): + + best_models = {} + model_id_name_dict = get_model_id_name_dict(global_config=global_config) + + import datetime + if date == '': + date = datetime.datetime.now().strftime('%Y-%m-%d') + else: + date = datetime.datetime.strptime( + date, '%Y-%m-%d').strftime('%Y-%m-%d') + + # 获取真实价格的八个维度价格 + true_price = pd.read_csv(os.path.join( + global_config['dataset'], '指标数据.csv')) + true_price = true_price[['ds', 'y']] + + year = int(date.split('-')[0]) + month = int(date.split('-')[1]) + day = int(date.split('-')[2]) + + # 计算六月前的年月 + if month <= 6: + year = int(year) - 1 + month = 12 + else: + month = month - 6 + + tb = 'v_tbl_predict_pp_prediction_results' + sql = f'select * from {tb} where data_date >= \'{year}-{month}-01\'' + # 数据库查询对应日期的预测值 + predictresult = global_config['db_mysql'].execute_query(sql) + if len(predictresult) == 0: + print('没有预测结果') + return + df = pd.DataFrame(predictresult) + df = df[['data_date', 'model_id']+global_config['price_columns']] + print('预测结果数量:', df.shape) + print('预测结果日期范围:', df['data_date'].min(), '到', df['data_date'].max()) + + # 遍历全局配置中的价格列 + for i, wd in enumerate(global_config['price_columns']): + # 为每个价格列初始化一个空字典,用于存储最佳模型信息 + best_models[wd] = {} + # 处理第一个价格列,计算次日的最佳模型 + if i == 0: + # 计算当前日期的前一天日期 + ciridate = (pd.Timestamp(date) - pd.Timedelta(days=1) + ).strftime('%Y-%m-%d') + # 记录日志,提示开始计算次日的最佳模型 + global_config['logger'].info(f'计算预测{date}的次日{ciridate}最佳模型') + # 记录日志,输出当前日期的真实价格 + global_config['logger'].info( + f'{date}真实价格:{true_price[true_price["ds"] == date]["y"].values[0]}') + # 从数据框中选取需要的列 + price = df[['data_date', wd, 'model_id']] + # 筛选出数据日期在 ciridate 到 date 之间的数据 + price = price[(price['data_date'] == ciridate) + | (price['data_date'] == date)] + # 将价格列的数据类型转换为 float + price[wd] = price[wd].astype(float) + # 删除价格列中包含缺失值的行 + price = price.dropna(subset=[wd]) + # 判断价格趋势,若当前日期价格大于前一天价格,趋势为 1,否则为 -1 + trend = 1 if true_price[true_price['ds'] == date]['y'].values[0] - \ + true_price[true_price['ds'] == ciridate]['y'].values[0] > 0 else -1 + # 为数据框添加真实价格列 + price['trueprice'] = true_price[true_price['ds'] + == date]['y'].values[0] + # 根据预测价格与真实价格的差值判断趋势,大于 0 为 1,否则为 -1 + price['trend'] = np.where( + price['trueprice'] - price[wd] > 0, 1, -1) + # 计算预测价格与真实价格差值的绝对值 + price['abs'] = (price['trueprice'] - price[wd]).abs() + # 筛选出趋势与整体趋势一致的数据 + price = price[price['trend'] == + trend] + # 筛选出预测价格与真实价格差值绝对值最小的数据 + price = price[price['abs'] == price['abs'].min()] + # 记录日志,输出筛选后的价格数据 + global_config['logger'].info(price) + # 获取最佳模型的 ID + best_model_id = price.iloc[0]['model_id'] + # 记录日志,输出次日预测最准确的模型 ID + global_config['logger'].info(f'{ciridate}预测最准确的模型:{best_model_id}') + # 将最佳模型的 ID 存入字典 + best_models[wd]['model_id'] = best_model_id + # 根据模型 ID 获取模型名称并存入字典 + best_models[wd]['model_name'] = model_id_name_dict[best_model_id] + # 记录日志,输出次日预测最准确的模型名称 + global_config['logger'].info(f'{ciridate}预测最准确的模型名称:{best_models}') + + if i == 1: + # 计算五个工作日之前的日期 + benzhoudate = (pd.Timestamp(date) - pd.Timedelta(days=7) + ).strftime('%Y-%m-%d') + + # 记录日志,提示开始计算五天前的最佳模型 + global_config['logger'].info(f'计算预测{date}的五天前{benzhoudate}最佳模型') + # 记录日志,输出当前日期的真实价格 + global_config['logger'].info( + f'{date}真实价格:{true_price[true_price["ds"] == date]["y"].values[0]}') + # 从数据框中选取需要的列 + price = df[['data_date', wd, 'model_id']] + # 筛选出数据日期在 benzhoudate 到 date 之间的数据 + price = price[(price['data_date'] == benzhoudate) + | (price['data_date'] == date)] + # 将价格列的数据类型转换为 float + price[wd] = price[wd].astype(float) + # 删除价格列中包含缺失值的行 + price = price.dropna(subset=[wd]) + # 判断价格趋势,若当前日期价格大于前一天价格,趋势为 1,否则为 -1 + trend = 1 if true_price[true_price['ds'] == date]['y'].values[0] - \ + true_price[true_price['ds'] == benzhoudate]['y'].values[0] > 0 else -1 + # 记录日志,输出五天前预测最准确的模型名称 + global_config['logger'].info(f'实际趋势是:{trend}') + # 为数据框添加真实价格列 + price['trueprice'] = true_price[true_price['ds'] + == date]['y'].values[0] + # 根据预测价格与真实价格的差值判断趋势,大于 0 为 1,否则为 -1 + price['trend'] = np.where( + price['trueprice'] - price[wd] > 0, 1, -1) + # 计算预测价格与真实价格差值的绝对值 + price['abs'] = (price['trueprice'] - price[wd]).abs() + # 筛选出趋势与整体趋势一致的数据 + price = price[price['trend'] == + trend] + # 筛选出预测价格与真实价格差值绝对值最小的数据 + price = price[price['abs'] == price['abs'].min()] + # 记录日志,输出筛选后的价格数据 + global_config['logger'].info(price) + # 获取最佳模型的 ID + best_model_id = price.iloc[0]['model_id'] + # 记录日志,输出五天前预测最准确的模型 ID + global_config['logger'].info( + f'{benzhoudate}预测最准确的模型:{best_model_id}') + # 将最佳模型的 ID 存入字典 + best_models[wd]['model_id'] = best_model_id + # 根据模型 ID 获取模型名称并存入字典 + best_models[wd]['model_name'] = model_id_name_dict[best_model_id] + # 记录日志,输出五天前预测最准确的模型名称 + global_config['logger'].info( + f'{benzhoudate}预测最准确的模型名称:{best_models}') + + if i == 2: + # 计算当前周的前两周的周一和周日的日期 + current_date = datetime.datetime.strptime(date, '%Y-%m-%d') + # 计算前两一周周一 + one_weeks_ago_monday = current_date - \ + datetime.timedelta(days=current_date.weekday() + 7) + # 计算前一周周日 + one_weeks_ago_sunday = one_weeks_ago_monday + \ + datetime.timedelta(days=6) + cizhoudate = f"{one_weeks_ago_monday.strftime('%Y-%m-%d')} - {one_weeks_ago_sunday.strftime('%Y-%m-%d')}" + print(f'计算预测{date}次周最佳模型,前一周日期区间: {cizhoudate}') + if i == 3: + # 计算当前周的前两周的周一和周日的日期 + current_date = datetime.datetime.strptime(date, '%Y-%m-%d') + # 计算前两周周一 + two_weeks_ago_monday = current_date - \ + datetime.timedelta(days=current_date.weekday() + 14) + # 计算前两周周日 + two_weeks_ago_sunday = two_weeks_ago_monday + \ + datetime.timedelta(days=6) + gezhoudate = f"{two_weeks_ago_monday.strftime('%Y-%m-%d')} - {two_weeks_ago_sunday.strftime('%Y-%m-%d')}" + print(f'计算预测{date}隔周最佳模型,前两周日期区间: {gezhoudate}') + if i == 4: + # 计算当上月的1日及最后一日 + current_date = pd.Timestamp(date) + # 获取上月第一天 + last_month_first_day = ( + current_date - pd.offsets.MonthBegin(2)).strftime('%Y-%m-%d') + # 获取上月最后一天 + last_month_last_day = (pd.Timestamp( + last_month_first_day) + pd.offsets.MonthEnd(0)).strftime('%Y-%m-%d') + print( + f'计算预测{date}次月最佳模型,上月日期区间: {last_month_first_day} - {last_month_last_day}') + if i == 5: + # 计算两月前的1日及最后一日 + current_date = pd.Timestamp(date) + # 获取上上月第一天 + last_month_first_day = ( + current_date - pd.offsets.MonthBegin(3)).strftime('%Y-%m-%d') + # 获取上上月最后一天 + last_month_last_day = (pd.Timestamp( + last_month_first_day) + pd.offsets.MonthEnd(0)).strftime('%Y-%m-%d') + print( + f'计算预测{date}次二月最佳模型,两月前日期区间: {last_month_first_day} - {last_month_last_day}') + if i == 6: + # 计算三月前的1日及最后一日 + current_date = pd.Timestamp(date) + # 获取前三月第一天 + last_month_first_day = ( + current_date - pd.offsets.MonthBegin(4)).strftime('%Y-%m-%d') + # 获取前三月最后一天 + last_month_last_day = (pd.Timestamp( + last_month_first_day) + pd.offsets.MonthEnd(0)).strftime('%Y-%m-%d') + print( + f'计算预测{date}次三月最佳模型,三月前日期区间: {last_month_first_day} - {last_month_last_day}') + if i == 7: + # 计算四月前的1日及最后一日 + current_date = pd.Timestamp(date) + # 获取前四月第一天 + last_month_first_day = ( + current_date - pd.offsets.MonthBegin(5)).strftime('%Y-%m-%d') + # 获取前四月最后一天 + last_month_last_day = (pd.Timestamp( + last_month_first_day) + pd.offsets.MonthEnd(0)).strftime('%Y-%m-%d') + print( + f'计算预测{date}次四月最佳模型,四月前日期区间: {last_month_first_day} - {last_month_last_day}') + + # # 获取真实价格的八个维度价格 + # true_price = pd.read_csv(os.path.join( + # global_config['dataset'], '指标数据.csv')) + # true_price = true_price[['ds', 'y']] + # print(true_price.head()) + + # # 根据当前日期date,计算对应八个维度的价格 + # bdwd_price = get_bdwd_price(date, true_price) + + return predictresult + + if __name__ == '__main__': print('This is a tool, not a script.') diff --git a/main_juxiting.py b/main_juxiting.py index 7b2ae63..dd35d77 100644 --- a/main_juxiting.py +++ b/main_juxiting.py @@ -2,7 +2,7 @@ from lib.dataread import * from config_juxiting import * -from lib.tools import SendMail, exception_logger, convert_df_to_pydantic, exception_logger, get_modelsname +from lib.tools import SendMail, exception_logger, convert_df_to_pydantic_pp, exception_logger, get_modelsname from models.nerulforcastmodels import ex_Model_Juxiting, model_losss_juxiting, pp_export_pdf import datetime import torch @@ -24,6 +24,7 @@ global_config.update({ 'settings': settings, 'bdwdname': bdwdname, + 'price_columns': price_columns, # 模型参数 @@ -169,10 +170,7 @@ def sql_inset_predict(global_config): wd = ['day_price', 'week_price'] model_name_list, model_id_name_dict = get_modelsname(df, global_config) - PRICE_COLUMNS = [ - 'day_price', 'week_price', 'second_week_price', 'next_week_price', - 'next_month_price', 'next_february_price', 'next_march_price', 'next_april_price' - ] + PRICE_COLUMNS = global_config['price_columns'] params_list = [] for df, price_type in zip([next_day_df, this_week_df], wd): @@ -208,7 +206,7 @@ def sql_inset_predict(global_config): next_day_df = df[['ds', 'created_dt'] + model_name_list] - pydantic_results = convert_df_to_pydantic( + pydantic_results = convert_df_to_pydantic_pp( next_day_df, model_id_name_dict, global_config) if pydantic_results: @@ -556,7 +554,9 @@ if __name__ == '__main__': # logger.info(f'预测失败:{e}') # continue - predict_main() + # predict_main() # push_market_value() # sql_inset_predict(global_config) + from lib.tools import find_best_models + find_best_models(date='2025-07-18', global_config=global_config) diff --git a/main_juxiting_yuedu.py b/main_juxiting_yuedu.py index 6063256..011ae4d 100644 --- a/main_juxiting_yuedu.py +++ b/main_juxiting_yuedu.py @@ -2,7 +2,7 @@ from lib.dataread import * from config_juxiting_yuedu import * -from lib.tools import SendMail, convert_df_to_pydantic, exception_logger, get_modelsname +from lib.tools import SendMail, convert_df_to_pydantic_pp, exception_logger, get_modelsname from models.nerulforcastmodels import ex_Model, model_losss_juxiting, pp_export_pdf import datetime import torch @@ -218,7 +218,7 @@ def sql_inset_predict(global_config): next_day_df = df[['ds', 'created_dt'] + model_name_list] - pydantic_results = convert_df_to_pydantic( + pydantic_results = convert_df_to_pydantic_pp( next_day_df, model_id_name_dict, global_config) if pydantic_results: @@ -252,7 +252,6 @@ def sql_inset_predict(global_config): config.db_mysql.close() - def predict_main(): """ 主预测函数,用于从 ETA 获取数据、处理数据、训练模型并进行预测。 @@ -307,7 +306,7 @@ def predict_main(): # # 获取数据 # if is_eta: # logger.info('从eta获取数据...') - + # df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_pp_data( # data_set=data_set, dataset=dataset) # 原始数据,未处理 diff --git a/main_juxiting_zhoudu.py b/main_juxiting_zhoudu.py index 30438a0..95930c3 100644 --- a/main_juxiting_zhoudu.py +++ b/main_juxiting_zhoudu.py @@ -2,7 +2,7 @@ from lib.dataread import * from config_juxiting_zhoudu import * -from lib.tools import SendMail, exception_logger, convert_df_to_pydantic, exception_logger, get_modelsname +from lib.tools import SendMail, exception_logger, convert_df_to_pydantic_pp, exception_logger, get_modelsname from models.nerulforcastmodels import ex_Model_Juxiting, model_losss_juxiting, pp_export_pdf import datetime import torch @@ -205,7 +205,7 @@ def sql_inset_predict(global_config): next_day_df = df[['ds', 'created_dt'] + model_name_list] - pydantic_results = convert_df_to_pydantic( + pydantic_results = convert_df_to_pydantic_pp( next_day_df, model_id_name_dict, global_config) if pydantic_results: @@ -238,6 +238,7 @@ def sql_inset_predict(global_config): config.logger.info(f"成功插入或更新 {affected_rows} 条记录") config.db_mysql.close() + def predict_main(): """ 主预测函数,用于从 ETA 获取数据、处理数据、训练模型并进行预测。 @@ -318,7 +319,7 @@ def predict_main(): # 数据处理 df = zhoududatachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=global_config['y'], dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture, - end_time=end_time) + end_time=end_time) else: # 读取数据 diff --git a/up_week_dates.csv b/up_week_dates.csv deleted file mode 100644 index 919e1c3..0000000 --- a/up_week_dates.csv +++ /dev/null @@ -1,17 +0,0 @@ -ds,NHITS,Informer,LSTM,iTransformer,TSMixer,TSMixerx,PatchTST,RNN,GRU,TCN,BiTCN,DilatedRNN,MLP,DLinear,NLinear,TFT,StemGNN,MLPMultivariate,TiDE,DeepNPTS,y,min_within_quantile,max_within_quantile,min_price,max_price,id,CREAT_DATE,序号,LOW_PRICE,HIGH_PRICE,ACCURACY -2024-12-09,71.63069,72.14122,70.19943,69.644196,71.80898,70.52471,71.53064,67.38501,70.75815,73.546684,71.92033,70.327484,71.95594,71.18323,71.882935,71.90951,73.94965,72.28691,71.25138,73.34018,72.13999938964844,67.38501,73.94965,67.38501,73.94965,51,2024-12-06,5.0,70.92,72.65,1.0 -2024-12-10,71.14343,71.9462,70.405106,69.48242,71.70601,70.66241,71.57484,67.23587,70.46323,73.37324,71.720894,70.45846,71.88132,72.34705,71.75997,72.41326,73.74943,72.31887,71.47953,72.78831,72.19000244140625,67.23587,73.74943,67.23587,73.74943,52,2024-12-06,4.0,70.73,71.77,1.0 -2024-12-11,71.71588,72.31544,70.175125,69.58213,71.59609,70.91783,71.54794,67.433334,70.518196,73.76477,71.84062,70.746284,72.27111,71.85789,70.77939,72.912704,73.91716,72.42111,71.47695,72.61624,73.5199966430664,67.433334,73.91716,67.433334,73.91716,53,2024-12-06,3.0,72.15,73.75,1.0 -2024-12-12,72.46348,71.87648,70.26041,69.922165,71.65103,70.689384,71.72716,67.54506,70.99872,73.52567,71.78495,70.777115,72.34328,72.756325,70.9607,73.391495,73.944244,72.465836,71.445244,71.69109,73.88999938964844,67.54506,73.944244,67.54506,73.944244,54,2024-12-06,2.0,72.42,74.0,0.9647113924050618 -2024-12-13,72.85073,72.36679,70.489136,69.759766,71.78641,70.69935,71.60861,67.47295,70.81146,73.85618,71.966835,70.923485,72.63866,72.29209,71.11011,73.777534,73.82516,72.58803,71.807915,72.6083,,67.47295,73.85618,67.47295,73.85618,55,2024-12-06,1.0,73.3,74.59,0.43114728682170156 -2024-12-10,71.97169,73.11586,71.41545,70.59598,71.81998,71.541016,72.397606,68.78458,71.30409,73.65467,71.78349,71.03456,71.8188,71.85696,72.014534,72.33824,73.77812,72.2061,71.36985,72.46154,72.19000244140625,68.78458,73.77812,68.78458,73.77812,56,2024-12-09,4.0,70.73,71.77,1.0 -2024-12-11,72.35509,73.087166,71.63927,70.430176,71.82658,71.76624,72.57018,68.59579,71.03884,73.45442,71.75791,71.15297,72.066956,72.28318,72.36303,72.75233,73.594864,72.24322,71.16944,72.39418,73.5199966430664,68.59579,73.594864,68.59579,73.594864,57,2024-12-09,3.0,72.15,73.75,0.9030400000000004 -2024-12-12,73.268654,73.31714,71.39498,70.65145,71.76794,71.6176,73.038315,68.85988,71.12751,73.84763,71.82094,71.41621,72.99199,72.42496,71.474464,73.17588,73.74838,72.31574,71.692444,72.48112,73.88999938964844,68.85988,73.84763,68.85988,73.84763,58,2024-12-09,2.0,72.42,74.0,0.9035632911392374 -2024-12-13,73.11824,73.70929,71.442184,70.72518,71.878975,71.82435,73.13541,68.760376,71.51967,73.62109,71.86448,71.44768,72.952484,72.107254,72.57947,73.61362,73.77317,72.3857,71.873566,72.40313,,68.760376,73.77317,68.760376,73.77317,59,2024-12-09,1.0,73.3,74.59,0.36679844961239827 -2024-12-11,72.372795,72.6546,71.37516,71.41169,71.977135,72.13211,72.774284,69.25488,71.62906,73.70365,72.27147,71.489716,72.77891,71.61932,72.090294,72.166916,73.72794,72.78662,71.960884,72.473854,73.5199966430664,69.25488,73.72794,69.25488,73.72794,61,2024-12-10,3.0,72.15,73.75,0.9862125000000024 -2024-12-12,72.91286,72.80857,71.612946,71.193184,72.05397,72.48625,72.85768,69.06833,71.35641,73.5444,72.19988,71.585815,73.47307,72.22734,72.219765,72.48997,73.544106,72.96339,71.66363,72.122116,73.88999938964844,69.06833,73.5444,69.06833,73.5444,62,2024-12-10,2.0,72.42,74.0,0.7116455696202503 -2024-12-13,73.01643,72.78796,71.3701,71.516174,72.21711,72.4036,73.66599,69.338615,71.467476,73.9247,72.2582,71.84913,73.643265,71.70761,72.41268,72.85244,73.69811,72.91225,71.75731,71.76489,,69.338615,73.9247,69.338615,73.9247,63,2024-12-10,1.0,73.3,74.59,0.4842635658914738 -2024-12-12,73.82699,73.58274,72.81162,73.18572,72.8827,72.958374,74.36039,71.09452,72.673904,74.025635,73.17438,72.72577,73.668365,72.48243,73.224655,74.286606,73.70824,73.668076,72.934685,73.16352,73.88999938964844,71.09452,74.36039,71.09452,74.36039,66,2024-12-11,2.0,72.42,74.0,1.0 -2024-12-13,74.025696,73.275696,73.0588,72.85848,72.719444,73.238945,74.05083,71.060295,72.455666,73.90173,72.966385,72.81345,73.77382,72.488365,73.78919,74.5482,73.52537,73.58226,72.8307,73.26384,,71.060295,74.5482,71.060295,74.5482,67,2024-12-11,1.0,73.3,74.59,0.9675968992247993 -2024-12-13,73.624176,73.15132,73.069374,73.517944,73.56706,74.08185,73.880775,71.83479,73.23418,74.28763,73.372154,73.431366,73.51813,73.90266,73.87494,74.43155,73.691505,73.46715,73.56533,73.50562,,71.83479,74.43155,71.83479,74.43155,71,2024-12-12,1.0,73.3,74.59,0.877170542635658 -2024-12-13,73.624176,73.15132,73.069374,73.517944,73.56706,74.08185,73.880775,71.83479,73.23418,74.28763,73.372154,73.431366,73.51813,73.90266,73.87494,74.43155,73.691505,73.46715,73.56533,73.50562,,71.83479,74.43155,71.83479,74.43155,76,2024-12-13,1.0,73.3,74.59,0.877170542635658