diff --git a/aisenzhecode/沥青/沥青定性模型每日推送-ytj.ipynb b/aisenzhecode/沥青/沥青定性模型每日推送-ytj.ipynb
index 2a88fb9..a9754b4 100644
--- a/aisenzhecode/沥青/沥青定性模型每日推送-ytj.ipynb
+++ b/aisenzhecode/沥青/沥青定性模型每日推送-ytj.ipynb
@@ -18,10 +18,22 @@
"import numpy as np\n",
"# 变量定义\n",
"login_url = \"http://10.200.32.39/jingbo-api/api/server/login\"\n",
- "search_url = \"http://10.200.32.39/jingbo-api/api/warehouse/dwDataItem/queryByItemNos\"\n",
+ "# query_data_list_item_nos_url\n",
+ "search_url = \"http://10.200.32.39/jingbo-api/api/warehouse/dwDataItem/queryByItemNos\" #jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos\n",
"upload_url = \"http://10.200.32.39/jingbo-api/api/dw/dataValue/pushDataValueList\"\n",
"\n",
"\n",
+ "query_data_list_item_nos_data = {\n",
+ " \"funcModule\": \"数据项\",\n",
+ " \"funcOperation\": \"查询\",\n",
+ " \"data\": {\n",
+ " \"dateStart\": \"20200101\",\n",
+ " \"dateEnd\": \"20241231\",\n",
+ " \"dataItemNoList\": [\"Brentzdj\", \"Brentzgj\"] # 数据项编码,代表 brent最低价和最高价\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "\n",
"login_data = {\n",
" \"data\": {\n",
" \"account\": \"api_dev\",\n",
@@ -844,7 +856,7 @@
" # headers1 = {\"Authorization\": token_push}\n",
" # res = requests.post(url=upload_url, headers=headers1, json=data1, timeout=(3, 5))\n",
" \n",
- " \n",
+ "\n",
"\n",
"\n",
"\n",
@@ -960,8 +972,6 @@
" # 保存新的xls文件\n",
" new_workbook.save(\"定性模型数据项12-11.xlsx\")\n",
"\n",
- "\n",
- "\n",
"\n"
]
},
diff --git a/aisenzhecode/沥青/沥青定量价格预测每日推送-ytj.ipynb b/aisenzhecode/沥青/沥青定量价格预测每日推送-ytj.ipynb
index a6e4b52..51725e9 100644
--- a/aisenzhecode/沥青/沥青定量价格预测每日推送-ytj.ipynb
+++ b/aisenzhecode/沥青/沥青定量价格预测每日推送-ytj.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"metadata": {},
"outputs": [
{
@@ -11,23 +11,23 @@
" \n",
+ " \n",
" "
]
},
"metadata": {},
"output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\h5218\\AppData\\Local\\Temp\\ipykernel_25428\\1736143337.py:811: DeprecationWarning:\n",
+ "\n",
+ "The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.\n",
+ "\n"
+ ]
}
],
"source": [
@@ -35,11 +35,14 @@
"import json\n",
"import xlrd\n",
"import xlwt\n",
- "from datetime import datetime\n",
+ "import datetime\n",
"import time\n",
+ "import pandas as pd\n",
+ "\n",
"# 变量定义\n",
"login_url = \"http://10.200.32.39/jingbo-api/api/server/login\"\n",
"search_url = \"http://10.200.32.39/jingbo-api/api/warehouse/dwDataItem/queryByItemNos\"\n",
+ "queryDataListItemNos_url = \"http://10.200.32.39/jingbo-api//api/warehouse/dwDataItem/queryDataListItemNos\"\n",
"\n",
"login_push_url = \"http://10.200.32.39/jingbo-api/api/server/login\"\n",
"upload_url = \"http://10.200.32.39/jingbo-api/api/dw/dataValue/pushDataValueList\"\n",
@@ -756,9 +759,133 @@
" new_workbook.save(\"沥青数据项.xls\")\n",
"\n",
"\n",
+ "\n",
+ "\n",
+ "\n",
+ "def get_queryDataListItemNos_value(token, url, dataItemNoList, dateStart, dateEnd):\n",
+ "\n",
+ " search_data = {\n",
+ " \"funcModule\": \"数据项\",\n",
+ " \"funcOperation\": \"查询\",\n",
+ " \"data\": {\n",
+ " \"dateStart\": dateStart,\n",
+ " \"dateEnd\": dateEnd,\n",
+ " \"dataItemNoList\": dataItemNoList # 数据项编码,代表 brent最低价和最高价\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " headers = {\"Authorization\": token}\n",
+ " search_res = requests.post(url=url, headers=headers, json=search_data, timeout=(3, 5))\n",
+ " search_value = json.loads(search_res.text)[\"data\"]\n",
+ " if search_value:\n",
+ " return search_value\n",
+ " else:\n",
+ " return None\n",
+ "\n",
+ "\n",
+ "\n",
+ "def save_queryDataListItemNos_xls(data_df,dataItemNoList):\n",
+ "\n",
+ " current_year_month = datetime.datetime.now().strftime('%Y-%m')\n",
+ " grouped = data_df.groupby(\"dataDate\")\n",
+ "\n",
+ " # 打开xls文件\n",
+ " workbook = xlrd.open_workbook('沥青数据项.xls')\n",
+ "\n",
+ " # 获取所有sheet的个数\n",
+ " sheet_count = len(workbook.sheet_names())\n",
+ "\n",
+ " # 获取所有sheet的名称\n",
+ " sheet_names = workbook.sheet_names()\n",
+ "\n",
+ " new_workbook = xlwt.Workbook()\n",
+ " for i in range(sheet_count):\n",
+ " # 获取当前sheet\n",
+ " sheet = workbook.sheet_by_index(i)\n",
+ "\n",
+ " # 获取sheet的行数和列数\n",
+ " row_count = sheet.nrows\n",
+ " col_count = sheet.ncols\n",
+ " # 获取原有数据\n",
+ " data = []\n",
+ " for row in range(row_count):\n",
+ " row_data = []\n",
+ " for col in range(col_count):\n",
+ " row_data.append(sheet.cell_value(row, col))\n",
+ " data.append(row_data)\n",
+ "\n",
+ " # 创建xlwt的Workbook对象\n",
+ " # 创建sheet\n",
+ " new_sheet = new_workbook.add_sheet(sheet_names[i])\n",
+ "\n",
+ "\n",
+ " current_year_month_row = 0\n",
+ " # 将原有的数据写入新的sheet\n",
+ " for row in range(row_count):\n",
+ " for col in range(col_count):\n",
+ " col0 = data[row][0]\n",
+ " # print(\"col0\",col0[:7])\n",
+ " if col0[:7] == current_year_month:\n",
+ " current_year_month_row += 1\n",
+ " break\n",
+ " new_sheet.write(row, col, data[row][col])\n",
+ "\n",
+ "\n",
+ " # print(\"current_year_month_row\",current_year_month_row)\n",
+ " if i == 0:\n",
+ " rowFlag = 0\n",
+ " # 查看每组数据\n",
+ " for date, group in grouped:\n",
+ " new_sheet.write(row_count + rowFlag - current_year_month_row, 0, date)\n",
+ " for j in range(len(dataItemNoList)):\n",
+ " dataItemNo = dataItemNoList[j]\n",
+ "\n",
+ " # for dataItemNo in dataItemNoList:\n",
+ " if group[group[\"dataItemNo\"] == dataItemNo][\"dataValue\"].values:\n",
+ "\n",
+ " new_sheet.write(row_count + rowFlag - current_year_month_row, j + 1, group[group[\"dataItemNo\"] == dataItemNo][\"dataValue\"].values[0])\n",
+ "\n",
+ " rowFlag += 1\n",
+ "\n",
+ "\n",
+ " # 保存新的xls文件\n",
+ " new_workbook.save(\"沥青数据项.xls\")\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "def queryDataListItemNos():\n",
+ " df = pd.read_excel('沥青数据项.xls')\n",
+ " dataItemNoList = df.iloc[0].tolist()[1:]\n",
+ "\n",
+ " token = get_head_auth()\n",
+ " if not token:\n",
+ " return\n",
+ "\n",
+ " # 获取当前日期\n",
+ " current_date = datetime.datetime.now()\n",
+ "\n",
+ " # 获取当月1日\n",
+ " first_day_of_month = current_date.replace(day=1)\n",
+ "\n",
+ " # 格式化为 YYYYMMDD 格式\n",
+ " dateEnd = current_date.strftime('%Y%m%d')\n",
+ " dateStart = first_day_of_month.strftime('%Y%m%d')\n",
+ "\n",
+ " search_value = get_queryDataListItemNos_value(token, queryDataListItemNos_url, dataItemNoList, dateStart, dateEnd)\n",
+ "\n",
+ "\n",
+ " data_df = pd.DataFrame(search_value)\n",
+ "\n",
+ " data_df[\"dataDate\"] = pd.to_datetime(data_df[\"dataDate\"])\n",
+ " data_df[\"dataDate\"] = data_df[\"dataDate\"].dt.strftime('%Y-%m-%d')\n",
+ " save_queryDataListItemNos_xls(data_df,dataItemNoList)\n",
+ "\n",
+ "\n",
"if __name__ == \"__main__\":\n",
" pass\n",
" # 需要单独运行放开\n",
+ "\n",
"# start()\n",
"\n",
" # 每天定时12点运行\n",
@@ -767,9 +894,17 @@
" # current_time = time.strftime(\"%H:%M:%S\", time.localtime())\n",
" # current_time_1 = time.strftime(\"%H:%M:%S\", time.localtime())\n",
"\n",
+ " # 获取当月的数据写入到指定文件\n",
+ " # queryDataListItemNos()\n",
+ "\n",
" # # 判断当前时间是否为执行任务的时间点\n",
" # if current_time == \"12:00:00\":\n",
" # print(\"执行定时任务\")\n",
+ "\n",
+ " # 这个函数,获取当天数据,\n",
+ " # 预测训练,\n",
+ " # 预测结果上传\n",
+ "\n",
" # start()\n",
"\n",
" # # 休眠1秒钟,避免过多占用CPU资源\n",
@@ -777,6 +912,8 @@
" \n",
" # elif current_time_1 == \"20:00:00\":\n",
" # print(\"更新数据\")\n",
+ "\n",
+ " # 这个函数,获取当天数据,保存\n",
" # start_1()\n",
" # time.sleep(1)\n",
"\n",
@@ -2270,7 +2407,7 @@
],
"metadata": {
"kernelspec": {
- "display_name": "base",
+ "display_name": "Python 3",
"language": "python",
"name": "python3"
},
@@ -2284,7 +2421,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.11.7"
+ "version": "3.12.4"
}
},
"nbformat": 4,
diff --git a/aisenzhecode/沥青/沥青数据项.xls b/aisenzhecode/沥青/沥青数据项.xls
index ce5117c..384c605 100644
Binary files a/aisenzhecode/沥青/沥青数据项.xls and b/aisenzhecode/沥青/沥青数据项.xls differ
diff --git a/aisenzhecode/液化石油气/化工品价格预测准确率.xlsx b/aisenzhecode/液化石油气/化工品价格预测准确率.xlsx
new file mode 100644
index 0000000..31df769
Binary files /dev/null and b/aisenzhecode/液化石油气/化工品价格预测准确率.xlsx differ
diff --git a/config_shiyoujiao.py b/config_shiyoujiao.py
new file mode 100644
index 0000000..c6a6a5d
--- /dev/null
+++ b/config_shiyoujiao.py
@@ -0,0 +1,320 @@
+import logging
+import os
+import logging.handlers
+import datetime
+from lib.tools import MySQLDB,SQLiteHandler
+
+
+# eta 接口token
+APPID = "XNLDvxZHHugj7wJ7"
+SECRET = "iSeU4s6cKKBVbt94htVY1p0sqUMqb2xa"
+
+# eta 接口url
+sourcelisturl = 'http://10.189.2.78:8108/v1/edb/source/list'
+classifylisturl = 'http://10.189.2.78:8108/v1/edb/classify/list?ClassifyType='
+uniquecodedataurl = 'http://10.189.2.78:8108/v1/edb/data?UniqueCode=4991c37becba464609b409909fe4d992&StartDate=2024-02-01'
+classifyidlisturl = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId='
+edbcodedataurl = 'http://10.189.2.78:8108/v1/edb/data?EdbCode='
+edbdatapushurl = 'http://10.189.2.78:8108/v1/edb/push'
+edbdeleteurl = 'http://10.189.2.78:8108/v1/edb/business/edb/del'
+edbbusinessurl = 'http://10.189.2.78:8108/v1/edb/business/data/del'
+edbcodelist = ['ID01385938','lmcads03 lme comdty',
+'GC1 COMB Comdty',
+'C2404171822',
+'dxy curncy',
+'S5443199 ',
+'S5479800',
+'S5443108',
+'H7358586',
+'LC3FM1 INDEX',
+'CNY REGN Curncy',
+'s0105897',
+'M0067419',
+'M0066351',
+'S0266372',
+'S0266438',
+'S0266506',
+'ID01384463']
+
+# 临时写死用指定的列,与上面的edbcode对应,后面更改
+edbnamelist = [
+ 'ds','y',
+ 'LME铜价',
+ '黄金连1合约',
+ 'Brent-WTI',
+ '美元指数',
+ '甲醇鲁南价格',
+ '甲醇太仓港口价格',
+ '山东丙烯主流价',
+ '丙烷(山东)',
+ 'FEI丙烷 M1',
+ '在岸人民币汇率',
+ '南华工业品指数',
+ 'PVC期货主力',
+ 'PE期货收盘价',
+'PP连续-1月',
+'PP连续-5月',
+'PP连续-9月',
+'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)'
+ ]
+
+edbcodenamedict = {
+'ID01385938':'PP:拉丝:1102K:市场价:青州:国家能源宁煤(日)',
+'ID01384463':'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)',
+'lmcads03 lme comdty':'LME铜价',
+'GC1 COMB Comdty':'黄金连1合约',
+'C2404171822':'Brent-WTI',
+'dxy curncy':'美元指数',
+'S5443199 ':'甲醇鲁南价格',
+'S5479800':'甲醇太仓港口价格',
+'S5443108':'山东丙烯主流价',
+'H7358586':'丙烷(山东)',
+'LC3FM1 INDEX':'FEI丙烷 M1',
+'CNY REGN Curncy':'在岸人民币汇率',
+'s0105897':'南华工业品指数',
+'M0067419':'PVC期货主力',
+'M0066351':'PE期货收盘价',
+'S0266372':'PP连续-1月',
+'S0266438':'PP连续-5月',
+'S0266506':'PP连续-9月',
+
+}
+
+# eta自有数据指标编码
+modelsindex = {
+ 'NHITS': 'SELF0000077',
+ 'Informer':'SELF0000078',
+ 'LSTM':'SELF0000079',
+ 'iTransformer':'SELF0000080',
+ 'TSMixer':'SELF0000081',
+ 'TSMixerx':'SELF0000082',
+ 'PatchTST':'SELF0000083',
+ 'RNN':'SELF0000084',
+ 'GRU':'SELF0000085',
+ 'TCN':'SELF0000086',
+ 'BiTCN':'SELF0000087',
+ 'DilatedRNN':'SELF0000088',
+ 'MLP':'SELF0000089',
+ 'DLinear':'SELF0000090',
+ 'NLinear':'SELF0000091',
+ 'TFT':'SELF0000092',
+ 'FEDformer':'SELF0000093',
+ 'StemGNN':'SELF0000094',
+ 'MLPMultivariate':'SELF0000095',
+ 'TiDE':'SELF0000096',
+ 'DeepNPTS':'SELF0000097'
+ }
+
+
+
+# eta 上传预测结果的请求体,后面发起请求的时候更改 model datalist 数据
+data = {
+ "IndexCode": "",
+ "IndexName": "价格预测模型",
+ "Unit": "无",
+ "Frequency": "日度",
+ "SourceName": f"价格预测",
+ "Remark": 'ddd',
+ "DataList": [
+ {
+ "Date": "2024-05-02",
+ "Value": 333444
+ }
+ ]
+ }
+
+# eta 分类
+# level:3才可以获取到数据,所以需要人工把能源化工下所有的level3级都找到
+ # url = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId=1214'
+ #ParentId ":1160, 能源化工
+ # ClassifyId ":1214,原油 3912 石油焦
+ #ParentId ":1214,",就是原油下所有的数据。
+ClassifyId = 3707
+
+
+
+############################################################################################################### 变量定义--测试环境
+server_host = '192.168.100.53'
+
+login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login"
+upload_url = f"http://{server_host}:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
+upload_warning_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
+query_data_list_item_nos_url = f"http://{server_host}:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos"
+
+login_data = {
+ "data": {
+ "account": "api_test",
+ # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
+ "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
+ "tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
+ "terminal": "API"
+ },
+ "funcModule": "API",
+ "funcOperation": "获取token"
+}
+
+upload_data = {
+ "funcModule":'研究报告信息',
+ "funcOperation":'上传聚烯烃PP价格预测报告',
+ "data":{
+ "groupNo":'000128', # 用户组编号
+ "ownerAccount":'arui', #报告所属用户账号
+ "reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
+ "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
+ "fileBase64": '' ,#文件内容base64
+ "categoryNo":'yyjgycbg', # 研究报告分类编码
+ "smartBusinessClassCode":'JXTJGYCBG', #分析报告分类编码
+ "reportEmployeeCode":"E40116", # 报告人
+ "reportDeptCode" :"D0044" ,# 报告部门
+ "productGroupCode":"RAW_MATERIAL" # 商品分类
+ }
+}
+
+
+warning_data = {
+ "groupNo":'000128', # 用户组编号
+ "funcModule":'原油特征停更预警',
+ "funcOperation":'原油特征停更预警',
+ "data":{
+ 'WARNING_TYPE_NAME':'特征数据停更预警',
+ 'WARNING_CONTENT':'',
+ 'WARNING_DATE':''
+ }
+}
+
+query_data_list_item_nos_data = {
+ "funcModule": "数据项",
+ "funcOperation": "查询",
+ "data": {
+ "dateStart":"20200101",
+ "dateEnd":"20241231",
+ "dataItemNoList":["Brentzdj","Brentzgj"] # 数据项编码,代表 brent最低价和最高价
+ }
+}
+
+
+# 北京环境数据库
+host = '192.168.101.27'
+port = 3306
+dbusername ='root'
+password = '123456'
+dbname = 'jingbo_test'
+table_name = 'v_tbl_crude_oil_warning'
+
+
+### 开关
+is_train = False # 是否训练
+is_debug = True # 是否调试
+is_eta = True # 是否使用eta接口
+is_market = False # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
+is_timefurture = True # 是否使用时间特征
+is_fivemodels = False # 是否使用之前保存的最佳的5个模型
+is_edbcode = False # 特征使用edbcoding列表中的
+is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
+is_update_eta = False # 预测结果上传到eta
+is_update_report = True # 是否上传报告
+is_update_warning_data = False # 是否上传预警数据
+is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
+is_del_tow_month = True # 是否删除两个月不更新的特征
+
+
+
+# 连接到数据库
+db_mysql = MySQLDB(host=host, user=dbusername, password=password, database=dbname)
+db_mysql.connect()
+print("数据库连接成功",host,dbname,dbusername)
+
+
+# 数据截取日期
+start_year = 2020 # 数据开始年份
+end_time = '' # 数据截取日期
+freq = 'B' # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日
+delweekenday = True if freq == 'B' else False # 是否删除周末数据
+is_corr = False # 特征是否参与滞后领先提升相关系数
+add_kdj = False # 是否添加kdj指标
+if add_kdj and is_edbnamelist:
+ edbnamelist = edbnamelist+['K','D','J']
+
+### 模型参数
+y = 'AVG-金能大唐久泰青州'
+avg_cols = [
+ 'PP:拉丝:1102K:出厂价:青州:国家能源宁煤(日)',
+ 'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)',
+ 'PP:拉丝:L5E89:出厂价:河北、鲁北:大唐内蒙多伦(日)',
+ 'PP:拉丝:HP550J:市场价:青岛:金能化学(日)'
+]
+offsite = 80
+offsite_col = ['PP:拉丝:HP550J:市场价:青岛:金能化学(日)']
+horizon =5 # 预测的步长
+input_size = 40 # 输入序列长度
+train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数
+val_check_steps = 30 # 评估频率
+early_stop_patience_steps = 5 # 早停的耐心步数
+# --- 交叉验证用的参数
+test_size = 200 # 测试集大小,定义100,后面使用的时候重新赋值
+val_size = test_size # 验证集大小,同测试集大小
+
+### 特征筛选用到的参数
+k = 100 # 特征筛选数量,如果是0或者值比特征数量大,代表全部特征
+corr_threshold = 0.6 # 相关性大于0.6的特征
+rote = 0.06 # 绘图上下界阈值
+
+### 计算准确率
+weight_dict = [0.4,0.15,0.1,0.1,0.25] # 权重
+
+
+### 文件
+data_set = '石油焦指标数据.xlsx' # 数据集文件
+dataset = 'shiyoujiaodataset' # 数据集文件夹
+
+# 数据库名称
+db_name = os.path.join(dataset,'jbsh_juxiting.db')
+sqlitedb = SQLiteHandler(db_name)
+sqlitedb.connect()
+
+settings = f'{input_size}-{horizon}-{train_steps}--{k}-{data_set}-{y}'
+# 获取日期时间
+# now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') # 获取当前日期时间
+now = datetime.datetime.now().strftime('%Y-%m-%d') # 获取当前日期时间
+reportname = f'PP大模型预测报告--{end_time}.pdf' # 报告文件名
+reportname = reportname.replace(':', '-') # 替换冒号
+if end_time == '':
+ end_time = now
+### 邮件配置
+username='1321340118@qq.com'
+passwd='wgczgyhtyyyyjghi'
+# recv=['liurui_test@163.com','52585119@qq.com']
+recv=['liurui_test@163.com']
+# recv=['liurui_test@163.com']
+title='reportname'
+content=y+'预测报告请看附件'
+file=os.path.join(dataset,'reportname')
+# file=os.path.join(dataset,'14-7-50--100-原油指标数据.xlsx-Brent连1合约价格--20240731175936-预测报告.pdf')
+ssl=True
+
+
+### 日志配置
+
+# 创建日志目录(如果不存在)
+log_dir = 'logs'
+if not os.path.exists(log_dir):
+ os.makedirs(log_dir)
+
+# 配置日志记录器
+logger = logging.getLogger('my_logger')
+logger.setLevel(logging.INFO)
+
+# 配置文件处理器,将日志记录到文件
+file_handler = logging.handlers.RotatingFileHandler(os.path.join(log_dir, 'pricepredict.log'), maxBytes=1024 * 1024, backupCount=5)
+file_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
+
+# 配置控制台处理器,将日志打印到控制台
+console_handler = logging.StreamHandler()
+console_handler.setFormatter(logging.Formatter('%(message)s'))
+
+# 将处理器添加到日志记录器
+logger.addHandler(file_handler)
+logger.addHandler(console_handler)
+
+# logger.info('当前配置:'+settings)
+
diff --git a/config_shiyoujiao_lvyong.py b/config_shiyoujiao_lvyong.py
index bb3b82d..fe0329b 100644
--- a/config_shiyoujiao_lvyong.py
+++ b/config_shiyoujiao_lvyong.py
@@ -295,7 +295,7 @@ bdwd_items = {
# 京博测试环境
host = 'rm-2zehj3r1n60ttz9x5ko.mysql.rds.aliyuncs.com'
port = 3306
-dbusername ='jingbo'
+dbusername = 'jingbo'
password = 'shihua@123'
dbname = 'jingbo-test'
@@ -338,7 +338,7 @@ if add_kdj and is_edbnamelist:
edbnamelist = edbnamelist+['K', 'D', 'J']
# 模型参数
-y = '煅烧焦山东高硫(高端S < 3.5,普货)(元/吨)'
+y = '煅烧焦华东中硫(高端S < 3.0,钒 < 400)(元/吨)'
avg_cols = [
]
diff --git a/config_shiyoujiao_puhuo.py b/config_shiyoujiao_puhuo.py
index e271eb1..75c0661 100644
--- a/config_shiyoujiao_puhuo.py
+++ b/config_shiyoujiao_puhuo.py
@@ -18,93 +18,140 @@ edbcodedataurl = 'http://10.189.2.78:8108/v1/edb/data?EdbCode='
edbdatapushurl = 'http://10.189.2.78:8108/v1/edb/push'
edbdeleteurl = 'http://10.189.2.78:8108/v1/edb/business/edb/del'
edbbusinessurl = 'http://10.189.2.78:8108/v1/edb/business/data/del'
-edbcodelist = ['ID01385938', 'lmcads03 lme comdty',
- 'GC1 COMB Comdty',
- 'C2404171822',
- 'dxy curncy',
- 'S5443199 ',
- 'S5479800',
- 'S5443108',
- 'H7358586',
- 'LC3FM1 INDEX',
- 'CNY REGN Curncy',
- 's0105897',
- 'M0067419',
- 'M0066351',
- 'S0266372',
- 'S0266438',
- 'S0266506',
- 'ID01384463']
-
-# 临时写死用指定的列,与上面的edbcode对应,后面更改
-edbnamelist = [
- 'ds', 'y',
- 'LME铜价',
- '黄金连1合约',
- 'Brent-WTI',
- '美元指数',
- '甲醇鲁南价格',
- '甲醇太仓港口价格',
- '山东丙烯主流价',
- '丙烷(山东)',
- 'FEI丙烷 M1',
- '在岸人民币汇率',
- '南华工业品指数',
- 'PVC期货主力',
- 'PE期货收盘价',
- 'PP连续-1月',
- 'PP连续-5月',
- 'PP连续-9月',
- 'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)'
-]
edbcodenamedict = {
- 'ID01385938': 'PP:拉丝:1102K:市场价:青州:国家能源宁煤(日)',
- 'ID01384463': 'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)',
- 'lmcads03 lme comdty': 'LME铜价',
- 'GC1 COMB Comdty': '黄金连1合约',
- 'C2404171822': 'Brent-WTI',
- 'dxy curncy': '美元指数',
- 'S5443199 ': '甲醇鲁南价格',
- 'S5479800': '甲醇太仓港口价格',
- 'S5443108': '山东丙烯主流价',
- 'H7358586': '丙烷(山东)',
- 'LC3FM1 INDEX': 'FEI丙烷 M1',
- 'CNY REGN Curncy': '在岸人民币汇率',
- 's0105897': '南华工业品指数',
- 'M0067419': 'PVC期货主力',
- 'M0066351': 'PE期货收盘价',
- 'S0266372': 'PP连续-1月',
- 'S0266438': 'PP连续-5月',
- 'S0266506': 'PP连续-9月',
-
+ 'C2403287411': '华北高硫焦与等热值动力煤价格对比',
+ 'C2403282801': '华东高硫焦与等热值动力煤价格对比',
+ 'ID00150321': '石油焦:2 # A:市场低端价:山东(日)',
+ 'ID00150329': '石油焦:2 # A:市场主流价:山东(日)',
+ 'ID00150325': '石油焦:2 # A:市场高端价:山东(日)',
+ 'ID00150333': '石油焦:2 # B:市场低端价:山东(日)',
+ 'ID00150357': '石油焦:2 # B:市场主流价:山东(日)',
+ 'ID00150345': '石油焦:2 # B:市场高端价:山东(日)',
+ 'ID01101276': '高硫焦:4B:出厂价:山东:青岛炼化(日)',
+ 'ID00150417': '石油焦:高硫焦:市场低端价:华北地区(日)',
+ 'ID00150425': '石油焦:高硫焦:市场低端价:华南地区(日)',
+ 'ID00150437': '石油焦:高硫焦:市场高端价:华北地区(日)',
+ 'ID00150441': '石油焦:高硫焦:市场高端价:华东地区(日)',
+ 'ID00150445': '石油焦:高硫焦:市场高端价:华南地区(日)',
+ 'ID00150449': '石油焦:高硫焦:市场高端价:西北地区(日)',
+ 'ID00150453': '石油焦:高硫焦:市场高端价:西南地区(日)',
+ 'ID01300358': '石油焦:3 # C:市场低端价:山东(日)',
+ 'ID01300357': '石油焦:3 # C:市场高端价:山东(日)',
+ 'ID00150377': '石油焦:3 # :市场主流价:华中地区(日)',
+ 'ID01387678': '煅烧焦:中硫:3 % S:市场价:华中地区(日)',
+ 'ID01387656': '煅烧焦:中硫:3 % S:市场价:山东(日)',
+ 'ID00150381': '石油焦:3 # A:市场低端价:山东(日)',
+ 'ID00150397': '石油焦:3 # B:市场低端价:山东(日)',
+ 'ID00150405': '石油焦:3 # B:市场高端价:山东(日)',
+ 'ID00150429': '石油焦:高硫焦:市场低端价:西北地区(日)',
+ 'ID00150433': '石油焦:高硫焦:市场低端价:西南地区(日)',
+ 'ID00150457': '石油焦:高硫焦:市场主流价:华北地区(日)',
+ 'ID00150461': '石油焦:高硫焦:市场主流价:华东地区(日)',
+ 'ID00150465': '石油焦:高硫焦:市场主流价:华南地区(日)',
+ 'ID00150469': '石油焦:高硫焦:市场主流价:西北地区(日)',
+ 'ID00150473': '石油焦:高硫焦:市场主流价:西南地区(日)',
+ 'B3e90b34e4b9e7a6ea3': '石油焦市场均价(元/吨)',
+ 'B8a0ab5357569c385a9': '石油焦海绵焦市场均价(元/吨)',
+ 'B8a920b59fe7effd116': '石油焦4 # -5#市场均价(元/吨)',
+ 'B81e66c7dc542809035': '石油焦海绵焦华东高硫焦(低端)(元/吨)(百川)',
+ 'B6fc631d20e277ce496': '石油焦海绵焦华东高硫焦(高端)(元/吨)(百川)',
+ 'Be9ed3ebd44ad291a3c': '石油焦海绵焦华南高硫焦(低端)(元/吨)(百川)',
+ 'B347350473783e640dc': '石油焦海绵焦华南高硫焦(高端)(元/吨)(百川)',
+ 'B7acab268ac4a419f77': '煅烧焦华北中硫(低端S < 3.0,普货)(元/吨)',
+ 'Beecfb2678481997f68': '煅烧焦山东中硫(高端S < 3.0,普货)(元/吨)',
+ 'B4bc4d186dc0f7d6d96': '煅烧焦华中中硫(高端S < 3.0,普货)(元/吨)',
+ 'B46cc7d0a90155b5bfd': '煅烧焦山东高硫(高端S < 3.5,普货)(元/吨)',
+ 'B4501068048575cd6f1': '煅烧焦西北高硫(S < 4.0,普货)(元/吨)',
+ 'Bfccb234f4c4e047314': '煅烧焦中硫普货市场均价(硫 < 3.0 %)(元/吨)',
+ 'B1133e458cc493d7728': '煅烧焦高硫普货市场均价(元/吨)(百川)',
+ 'B185a597decfc71915a': '预焙阳极山东低端(元/吨)(百川)',
+ 'B16b98ff5f959dfdcad': '负极材料市场参考价(元/吨)(百川)',
+ 'B7ce1371e09479bee56': '人造石墨负极材料中端(元/吨)',
+ 'Bab0904b23e968a3068': '天然石墨负极材料中端(元/吨)',
+ 'B180e67aaa174414553': '中间相碳微球负极材料高端(元/吨)',
+ 'B41c03de42ea84d5c2f': '中间相碳微球负极材料中端(元/吨)',
+ 'B5c3b60680b7bbd92af': '负极材料石墨化国内低端价(元/吨)',
+ 'B1bcde6130de031bd42': '山西 改质沥青(元/吨)',
+ 'Bb9f4a1f6dd32b4ad8a': '山东 改质沥青(元/吨)',
+ 'C2411261557491549': '石油焦市场均价(元/吨)/4DMA',
+ 'C2411271143174617': '石油焦市场均价(元/吨)/9DMA',
+ 'RE00010074': '煅烧焦:中硫焦:生产毛利:山东(周)',
+ 'B9d1acaf80383683da3': '石油焦总产量(周)(吨)',
+ 'Bdaa719a38936c8dd76': '石油焦开工率(周)(% )',
+ 'B9459d549a332b200e7': '石油焦行业总库存(周)(吨)',
+ 'Bce6e098b9518370cff': '石油焦工厂库存(周)(吨)',
+ 'B577ce2809772779710': '石油焦市场库存(周)(吨)',
+ 'B5d8c564c62f3e6b77f': '石油焦成本(周)(吨)',
+ 'B43baa98bcaa06c11a5': '石油焦利润(周)(吨)',
+ 'Bdd0c1361d94081211c': '煅烧石油焦总产量(周)(吨)',
+ 'B65315111fa28951b1e': '煅烧石油焦开工率(周)(% )',
+ 'B2aff5f2632a20027d0': '煅烧石油焦行业总库存(周)(吨)',
+ 'B29fbd31128cd71b212': '煅烧石油焦工厂库存(周)(吨)',
+ 'B7a88313a89d1261c53': '煅烧石油焦成本(周)(吨)',
+ 'Bd4fa36b4decec0aafa': '煅烧石油焦利润(周)(吨)',
+ 'B9bd80eac7df81ffbd4': '预焙阳极总产量(周)(吨)',
+ 'B27074786605f4660d2': '预焙阳极开工率(周)(% )',
+ 'Bdc2a5985ecb56b6a0c': '预焙阳极行业总库存(周)(吨)',
+ 'Bce8511f899e487e5b6': '预焙阳极工厂库存(周)(吨)',
+ 'B13ec89105bd866a2bd': '预焙阳极成本(周)(吨)',
+ 'B66c3abcfa15a2e611c': '预焙阳极利润(周)(吨)',
+ 'Ba3bcf63e6e846cd3f8': '负极材料总产量(周)(吨)',
+ 'B10b8f4c702b72f4ee4': '负极材料开工率(周)(% )',
+ 'Bc25e82dd595c5f92fc': '负极材料行业总库存(周)(吨)',
+ 'B0a14d1936a5e072f25': '负极材料工厂库存(周)(吨)',
+ 'Ba9d192464b78194a48': '负极材料成本(周)(吨)',
+ 'B15d62d9f48ccfa5984': '负极材料利润(周)(吨)',
+ 'B7478e77ca116386afd': '针状焦总产量(周)(吨)',
+ 'Bbe316d65258a4d47f4': '针状焦行业总库存(周)(吨)',
+ 'Bf036a360a5eecb591d': '针状焦工厂库存(周)(吨)',
+ 'Bc43a790c62aa57fc9d': '针状焦成本(周)(吨)',
+ 'B23ebedbb88ff412952': '针状焦利润(周)(吨)',
+ 'C2403286685': '黄骅港动力煤等热值',
+ 'C2403285171': '黄骅等热值动力煤',
+ 'C2403287884': '中硫石油焦煅烧利润',
+ 'W000294': '国内主要港口石油焦出货量(隆重)',
+ 'W000293': '日照港库存(隆重)',
+ 'W000292': '港口总库存(隆重)',
+ 'W000283': '主营石油焦产量(隆重)',
+ 'W000282': '地炼石油焦产量(隆重)',
+ 'W000281': '中国石油焦产量(隆重)',
+ 'W000280': '主营石油焦开工负荷率(隆重)',
+ 'W000279': '地炼石油焦开工负荷率(隆重)',
}
-# eta自有数据指标编码
+
+edbcodelist = edbcodenamedict.keys()
+# 临时写死用指定的列,与上面的edbcode对应,后面更改
+edbnamelist = ['ds', 'y']+[edbcodenamedict[edbcodename]
+ for edbcodename in edbcodelist]
+
+# eta自有数据指标编码,石油焦铝用还没新增,暂且留空
modelsindex = {
- 'NHITS': 'SELF0000077',
- 'Informer': 'SELF0000078',
- 'LSTM': 'SELF0000079',
- 'iTransformer': 'SELF0000080',
- 'TSMixer': 'SELF0000081',
- 'TSMixerx': 'SELF0000082',
- 'PatchTST': 'SELF0000083',
- 'RNN': 'SELF0000084',
- 'GRU': 'SELF0000085',
- 'TCN': 'SELF0000086',
- 'BiTCN': 'SELF0000087',
- 'DilatedRNN': 'SELF0000088',
- 'MLP': 'SELF0000089',
- 'DLinear': 'SELF0000090',
- 'NLinear': 'SELF0000091',
- 'TFT': 'SELF0000092',
- 'FEDformer': 'SELF0000093',
- 'StemGNN': 'SELF0000094',
- 'MLPMultivariate': 'SELF0000095',
- 'TiDE': 'SELF0000096',
- 'DeepNPTS': 'SELF0000097'
}
+# 百川数据指标编码
+baichuanidnamedict = {
+ '1588348470396480901': '石油焦滨州-友泰',
+ '1588348470396480903': '石油焦东营-海科瑞林',
+ '1588348470396480911': '石油焦东营-亚通',
+ '1588348470396480888': '石油焦沧州-鑫海',
+ '1588348470396480888': '江苏鑫海',
+ '1588348470396480917': '石油焦东营-万通',
+ '1588348470396480925': '石油焦东营-齐润',
+ '1588348470396481084': '石油焦东营-尚能4 # ',
+ '1588348470396480930': '石油焦潍坊-寿光鲁清',
+ '1588348470396480929': '石油焦滨州-鑫岳',
+ '1588348470396480650': '煅烧石油焦东营-启德-1',
+ '1588348470396481053': '煅烧石油焦东营-启德-2',
+ '1588348470396480645': '煅烧石油焦东营-山东汇宇-1',
+ '1588348470396481049': '煅烧石油焦东营-山东汇宇-2',
+ '1588348470396481098': '煅烧石油焦东营-山东汇宇-3',
+ '1588348470396481108': '煅烧石油焦东营-山东汇宇-4'
+}
+
+
+# baichuanidnamedict = {'1588348470396475286': 'test1', '1666': 'test2'} # 北京环境测试用
# eta 上传预测结果的请求体,后面发起请求的时候更改 model datalist 数据
data = {
@@ -132,12 +179,17 @@ ClassifyId = 3707
# 变量定义--测试环境
-server_host = '192.168.100.53'
-
+server_host = '192.168.100.53' # 内网
+# server_host = '183.242.74.28' # 外网
login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login"
+# 上传报告
upload_url = f"http://{server_host}:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
+# 停更预警
upload_warning_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
+# 查询数据项编码
query_data_list_item_nos_url = f"http://{server_host}:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos"
+# 上传数据项值
+push_data_value_list_url = f"http://{server_host}:8080/jingbo-dev/api/dw/dataValue/pushDataValueList"
login_data = {
"data": {
@@ -152,16 +204,16 @@ login_data = {
}
upload_data = {
+ "groupNo": '', # 用户组id
"funcModule": '研究报告信息',
- "funcOperation": '上传聚烯烃PP价格预测报告',
+ "funcOperation": '上传原油价格预测报告',
"data": {
- "groupNo": '000128', # 用户组编号
"ownerAccount": 'arui', # 报告所属用户账号
"reportType": 'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', # 文件名称
"fileBase64": '', # 文件内容base64
"categoryNo": 'yyjgycbg', # 研究报告分类编码
- "smartBusinessClassCode": 'JXTJGYCBG', # 分析报告分类编码
+ "smartBusinessClassCode": 'YCJGYCBG', # 分析报告分类编码
"reportEmployeeCode": "E40116", # 报告人
"reportDeptCode": "D0044", # 报告部门
"productGroupCode": "RAW_MATERIAL" # 商品分类
@@ -170,7 +222,7 @@ upload_data = {
warning_data = {
- "groupNo": '000128', # 用户组编号
+ "groupNo": '', # 用户组id
"funcModule": '原油特征停更预警',
"funcOperation": '原油特征停更预警',
"data": {
@@ -190,19 +242,60 @@ query_data_list_item_nos_data = {
}
}
+push_data_value_list_data = {
+ "funcModule": "数据表信息列表",
+ "funcOperation": "新增",
+ "data": [
+ {"dataItemNo": "91230600716676129",
+ "dataDate": "20230113",
+ "dataStatus": "add",
+ "dataValue": 100.11
+ },
+ {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY",
+ "dataDate": "20230113",
+ "dataStatus": "add",
+ "dataValue": 100.55
+ },
+ {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY",
+ "dataDate": "20230113",
+ "dataStatus": "add",
+ "dataValue": 100.55
+ }
+ ]
+}
+# 八大维度数据项编码
+bdwd_items = {
+ 'ciri': 'syjphycbdwdcr',
+ 'benzhou': 'syjphycbdwdbz',
+ 'cizhou': 'syjlyycbdwdcz',
+ 'gezhou': 'syjlyycbdwdgz',
+ 'ciyue': 'syjlyycbdwdcy',
+ 'cieryue': 'syjlyycbdwdcey',
+ 'cisanyue': 'syjlyycbdwdcsy',
+ 'cisiyue': 'syjlyycbdwdcsiy',
+}
# 北京环境数据库
-host = '192.168.101.27'
+# host = '192.168.101.27'
+# port = 3306
+# dbusername = 'root'
+# password = '123456'
+# dbname = 'jingbo_test'
+
+# 京博测试环境
+host = 'rm-2zehj3r1n60ttz9x5ko.mysql.rds.aliyuncs.com'
port = 3306
-dbusername = 'root'
-password = '123456'
-dbname = 'jingbo_test'
+dbusername = 'jingbo'
+password = 'shihua@123'
+dbname = 'jingbo-test'
+
+
table_name = 'v_tbl_crude_oil_warning'
baichuan_table_name = 'V_TBL_BAICHUAN_YINGFU_VALUE'
# select BAICHUAN_ID, DATA_DATE, DATA_VALUE from V_TBL_BAICHUAN_YINGFU_VALUE where BAICHUAN_ID in ('1588348470396475286', '1666')
# 开关
-is_train = False # 是否训练
-is_debug = True # 是否调试
+is_train = True # 是否训练
+is_debug = False # 是否调试
is_eta = True # 是否使用eta接口
is_market = False # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
is_timefurture = True # 是否使用时间特征
@@ -212,6 +305,7 @@ is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
is_update_eta = False # 预测结果上传到eta
is_update_report = True # 是否上传报告
is_update_warning_data = False # 是否上传预警数据
+is_update_predict_value = True # 是否上传预测值到市场信息平台
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
is_del_tow_month = True # 是否删除两个月不更新的特征
@@ -234,15 +328,12 @@ if add_kdj and is_edbnamelist:
edbnamelist = edbnamelist+['K', 'D', 'J']
# 模型参数
-y = 'AVG-金能大唐久泰青州'
+y = '煅烧焦山东高硫(高端S < 3.5,普货)(元/吨)'
avg_cols = [
- 'PP:拉丝:1102K:出厂价:青州:国家能源宁煤(日)',
- 'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)',
- 'PP:拉丝:L5E89:出厂价:河北、鲁北:大唐内蒙多伦(日)',
- 'PP:拉丝:HP550J:市场价:青岛:金能化学(日)'
+
]
offsite = 80
-offsite_col = ['PP:拉丝:HP550J:市场价:青岛:金能化学(日)']
+offsite_col = []
horizon = 5 # 预测的步长
input_size = 40 # 输入序列长度
train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数
@@ -262,19 +353,19 @@ weight_dict = [0.4, 0.15, 0.1, 0.1, 0.25] # 权重
# 文件
-data_set = '石油焦指标数据.xlsx' # 数据集文件
-dataset = 'shiyoujiaodataset' # 数据集文件夹
+data_set = '石油焦铝用指标数据.xlsx' # 数据集文件
+dataset = 'shiyoujiaolvyongdataset' # 数据集文件夹
# 数据库名称
-db_name = os.path.join(dataset, 'jbsh_juxiting.db')
+db_name = os.path.join(dataset, 'jbsh_shiyoujiao_lvyong.db')
sqlitedb = SQLiteHandler(db_name)
sqlitedb.connect()
-settings = f'{input_size}-{horizon}-{train_steps}--{k}-{data_set}-{y}'
+settings = f'{input_size}-{horizon}-{train_steps}--{k}-{data_set}'
# 获取日期时间
# now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') # 获取当前日期时间
now = datetime.datetime.now().strftime('%Y-%m-%d') # 获取当前日期时间
-reportname = f'PP大模型预测报告--{end_time}.pdf' # 报告文件名
+reportname = f'石油焦铝用大模型日度预测报告--{end_time}.pdf' # 报告文件名
reportname = reportname.replace(':', '-') # 替换冒号
if end_time == '':
end_time = now
diff --git a/main_shiyoujiao.py b/main_shiyoujiao.py
new file mode 100644
index 0000000..c706c9f
--- /dev/null
+++ b/main_shiyoujiao.py
@@ -0,0 +1,301 @@
+# 读取配置
+from lib.dataread import *
+from lib.tools import SendMail,exception_logger
+from models.nerulforcastmodels import ex_Model_Juxiting,model_losss,model_losss_juxiting,brent_export_pdf,tansuanli_export_pdf,pp_export_pdf,model_losss_juxiting
+
+import glob
+import torch
+torch.set_float32_matmul_precision("high")
+
+
+
+def predict_main():
+ """
+ 主预测函数,用于从 ETA 获取数据、处理数据、训练模型并进行预测。
+
+ 参数:
+ signature (BinanceAPI): Binance API 实例。
+ etadata (EtaReader): ETA 数据读取器实例。
+ is_eta (bool): 是否从 ETA 获取数据。
+ data_set (str): 数据集名称。
+ dataset (str): 数据集路径。
+ add_kdj (bool): 是否添加 KDJ 指标。
+ is_timefurture (bool): 是否添加时间衍生特征。
+ end_time (str): 结束时间。
+ is_edbnamelist (bool): 是否使用 EDB 名称列表。
+ edbnamelist (list): EDB 名称列表。
+ y (str): 预测目标列名。
+ sqlitedb (SQLiteDB): SQLite 数据库实例。
+ is_corr (bool): 是否进行相关性分析。
+ horizon (int): 预测时域。
+ input_size (int): 输入数据大小。
+ train_steps (int): 训练步数。
+ val_check_steps (int): 验证检查步数。
+ early_stop_patience_steps (int): 早停耐心步数。
+ is_debug (bool): 是否调试模式。
+ dataset (str): 数据集名称。
+ is_train (bool): 是否训练模型。
+ is_fivemodels (bool): 是否使用五个模型。
+ val_size (float): 验证集大小。
+ test_size (float): 测试集大小。
+ settings (dict): 模型设置。
+ now (str): 当前时间。
+ etadata (EtaReader): ETA 数据读取器实例。
+ modelsindex (list): 模型索引列表。
+ data (str): 数据类型。
+ is_eta (bool): 是否从 ETA 获取数据。
+
+ 返回:
+ None
+ """
+ global end_time
+ signature = BinanceAPI(APPID, SECRET)
+ etadata = EtaReader(signature=signature,
+ classifylisturl=classifylisturl,
+ classifyidlisturl=classifyidlisturl,
+ edbcodedataurl=edbcodedataurl,
+ edbcodelist=edbcodelist,
+ edbdatapushurl=edbdatapushurl,
+ edbdeleteurl=edbdeleteurl,
+ edbbusinessurl=edbbusinessurl
+ )
+ # 获取数据
+ if is_eta:
+ logger.info('从eta获取数据...')
+ signature = BinanceAPI(APPID, SECRET)
+ etadata = EtaReader(signature=signature,
+ classifylisturl=classifylisturl,
+ classifyidlisturl=classifyidlisturl,
+ edbcodedataurl=edbcodedataurl,
+ edbcodelist=edbcodelist,
+ edbdatapushurl=edbdatapushurl,
+ edbdeleteurl=edbdeleteurl,
+ edbbusinessurl=edbbusinessurl,
+ )
+ df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_shiyoujiao_data(data_set=data_set, dataset=dataset) # 原始数据,未处理
+
+ if is_market:
+ logger.info('从市场信息平台获取数据...')
+ try:
+ # 如果是测试环境,最高价最低价取excel文档
+ if server_host == '192.168.100.53':
+ logger.info('从excel文档获取最高价最低价')
+ df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
+ else:
+ logger.info('从市场信息平台获取数据')
+ df_zhibiaoshuju = get_market_data(end_time,df_zhibiaoshuju)
+
+ except :
+ logger.info('最高最低价拼接失败')
+
+ # 保存到xlsx文件的sheet表
+ with pd.ExcelWriter(os.path.join(dataset,data_set)) as file:
+ df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
+ df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
+
+
+ # 数据处理
+ df = datachuli_juxiting(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
+ end_time=end_time)
+
+ else:
+ # 读取数据
+ logger.info('读取本地数据:' + os.path.join(dataset, data_set))
+ df,df_zhibiaoliebiao = getdata_juxiting(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
+ is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
+
+ # 更改预测列名称
+ df.rename(columns={y: 'y'}, inplace=True)
+
+ if is_edbnamelist:
+ df = df[edbnamelist]
+ df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False)
+ # 保存最新日期的y值到数据库
+ # 取第一行数据存储到数据库中
+ first_row = df[['ds', 'y']].tail(1)
+ # 判断y的类型是否为float
+ if not isinstance(first_row['y'].values[0], float):
+ logger.info(f'{end_time}预测目标数据为空,跳过')
+ return None
+
+ # 将最新真实值保存到数据库
+ if not sqlitedb.check_table_exists('trueandpredict'):
+ first_row.to_sql('trueandpredict', sqlitedb.connection, index=False)
+ else:
+ for row in first_row.itertuples(index=False):
+ row_dict = row._asdict()
+ row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
+ check_query = sqlitedb.select_data('trueandpredict', where_condition=f"ds = '{row.ds}'")
+ if len(check_query) > 0:
+ set_clause = ", ".join([f"{key} = '{value}'" for key, value in row_dict.items()])
+ sqlitedb.update_data('trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
+ continue
+ sqlitedb.insert_data('trueandpredict', tuple(row_dict.values()), columns=row_dict.keys())
+
+ # 更新accuracy表的y值
+ if not sqlitedb.check_table_exists('accuracy'):
+ pass
+ else:
+ update_y = sqlitedb.select_data('accuracy',where_condition="y is null")
+ if len(update_y) > 0:
+ logger.info('更新accuracy表的y值')
+ # 找到update_y 中ds且df中的y的行
+ update_y = update_y[update_y['ds']<=end_time]
+ logger.info(f'要更新y的信息:{update_y}')
+ # try:
+ for row in update_y.itertuples(index=False):
+ try:
+ row_dict = row._asdict()
+ yy = df[df['ds']==row_dict['ds']]['y'].values[0]
+ LOW = df[df['ds']==row_dict['ds']]['Brentzdj'].values[0]
+ HIGH = df[df['ds']==row_dict['ds']]['Brentzgj'].values[0]
+ sqlitedb.update_data('accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
+ except:
+ logger.info(f'更新accuracy表的y值失败:{row_dict}')
+ # except Exception as e:
+ # logger.info(f'更新accuracy表的y值失败:{e}')
+
+ import datetime
+ # 判断当前日期是不是周一
+ is_weekday = datetime.datetime.now().weekday() == 0
+ if is_weekday:
+ logger.info('今天是周一,更新预测模型')
+ # 计算最近60天预测残差最低的模型名称
+ model_results = sqlitedb.select_data('trueandpredict', order_by="ds DESC", limit="60")
+ # 删除空值率为90%以上的列
+ if len(model_results) > 10:
+ model_results = model_results.dropna(thresh=len(model_results)*0.1,axis=1)
+ # 删除空行
+ model_results = model_results.dropna()
+ modelnames = model_results.columns.to_list()[2:-1]
+ for col in model_results[modelnames].select_dtypes(include=['object']).columns:
+ model_results[col] = model_results[col].astype(np.float32)
+ # 计算每个预测值与真实值之间的偏差率
+ for model in modelnames:
+ model_results[f'{model}_abs_error_rate'] = abs(model_results['y'] - model_results[model]) / model_results['y']
+ # 获取每行对应的最小偏差率值
+ min_abs_error_rate_values = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
+ # 获取每行对应的最小偏差率值对应的列名
+ min_abs_error_rate_column_name = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
+ # 将列名索引转换为列名
+ min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(lambda x: x.split('_')[0])
+ # 取出现次数最多的模型名称
+ most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
+ logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}")
+ # 保存结果到数据库
+ if not sqlitedb.check_table_exists('most_model'):
+ sqlitedb.create_table('most_model', columns="ds datetime, most_common_model TEXT")
+ sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
+
+ try:
+ if is_weekday:
+ # if True:
+ logger.info('今天是周一,发送特征预警')
+ # 上传预警信息到数据库
+ warning_data_df = df_zhibiaoliebiao.copy()
+ warning_data_df = warning_data_df[warning_data_df['停更周期']> 3 ][['指标名称', '指标id', '频度','更新周期','指标来源','最后更新时间','停更周期']]
+ # 重命名列名
+ warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY', '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
+ from sqlalchemy import create_engine
+ import urllib
+ global password
+ if '@' in password:
+ password = urllib.parse.quote_plus(password)
+
+ engine = create_engine(f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
+ warning_data_df['WARNING_DATE'] = datetime.date.today().strftime("%Y-%m-%d %H:%M:%S")
+ warning_data_df['TENANT_CODE'] = 'T0004'
+ # 插入数据之前查询表数据然后新增id列
+ existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
+ if not existing_data.empty:
+ max_id = existing_data['ID'].astype(int).max()
+ warning_data_df['ID'] = range(max_id + 1, max_id + 1 + len(warning_data_df))
+ else:
+ warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
+ warning_data_df.to_sql(table_name, con=engine, if_exists='append', index=False)
+ if is_update_warning_data:
+ upload_warning_info(len(warning_data_df))
+ except:
+ logger.info('上传预警信息到数据库失败')
+
+ if is_corr:
+ df = corr_feature(df=df)
+
+ df1 = df.copy() # 备份一下,后面特征筛选完之后加入ds y 列用
+ logger.info(f"开始训练模型...")
+ row, col = df.shape
+
+ now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
+ ex_Model_Juxiting(df,
+ horizon=horizon,
+ input_size=input_size,
+ train_steps=train_steps,
+ val_check_steps=val_check_steps,
+ early_stop_patience_steps=early_stop_patience_steps,
+ is_debug=is_debug,
+ dataset=dataset,
+ is_train=is_train,
+ is_fivemodels=is_fivemodels,
+ val_size=val_size,
+ test_size=test_size,
+ settings=settings,
+ now=now,
+ etadata=etadata,
+ modelsindex=modelsindex,
+ data=data,
+ is_eta=is_eta,
+ end_time=end_time,
+ )
+
+
+ logger.info('模型训练完成')
+
+ logger.info('训练数据绘图ing')
+ model_results3 = model_losss_juxiting(sqlitedb)
+ logger.info('训练数据绘图end')
+
+ # 模型报告
+ logger.info('制作报告ing')
+ title = f'{settings}--{end_time}-预测报告' # 报告标题
+ reportname = f'PP大模型预测报告--{end_time}.pdf' # 报告文件名
+ reportname = reportname.replace(':', '-') # 替换冒号
+ pp_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
+ reportname=reportname,sqlitedb=sqlitedb),
+
+ logger.info('制作报告end')
+ logger.info('模型训练完成')
+
+ # # LSTM 单变量模型
+ # ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset)
+
+ # # lstm 多变量模型
+ # ex_Lstm_M(df,n_days=input_size,out_days=horizon,is_debug=is_debug,datasetpath=dataset)
+
+ # # GRU 模型
+ # # ex_GRU(df)
+
+ # 发送邮件
+ m = SendMail(
+ username=username,
+ passwd=passwd,
+ recv=recv,
+ title=title,
+ content=content,
+ file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
+ ssl=ssl,
+ )
+ # m.send_mail()
+
+
+if __name__ == '__main__':
+ # global end_time
+ # is_on = True
+ # # 遍历2024-11-25 到 2024-12-3 之间的工作日日期
+ # for i_time in pd.date_range('2025-1-20', '2025-2-6', freq='B'):
+ # end_time = i_time.strftime('%Y-%m-%d')
+ # try:
+ # predict_main()
+ # except:
+ # pass
+
+ predict_main()
\ No newline at end of file
diff --git a/main_shiyoujiao_puhuo.py b/main_shiyoujiao_puhuo.py
index 2d94e58..b54cfc5 100644
--- a/main_shiyoujiao_puhuo.py
+++ b/main_shiyoujiao_puhuo.py
@@ -1,9 +1,9 @@
# 读取配置
from lib.dataread import *
-from config_shiyoujiao_puhuo import *
+from config_shiyoujiao_lvyong import *
from lib.tools import SendMail, exception_logger
-from models.nerulforcastmodels import ex_Model, model_losss_juxiting, tansuanli_export_pdf, pp_export_pdf
+from models.nerulforcastmodels import ex_Model, model_losss, shiyoujiao_lvyong_export_pdf
import datetime
import torch
torch.set_float32_matmul_precision("high")
@@ -13,14 +13,12 @@ global_config.update({
'logger': logger,
'dataset': dataset,
'y': y,
- 'offsite_col': offsite_col,
- 'avg_cols': avg_cols,
- 'offsite': offsite,
- 'edbcodenamedict': edbcodenamedict,
'is_debug': is_debug,
'is_train': is_train,
'is_fivemodels': is_fivemodels,
'settings': settings,
+ 'weight_dict': weight_dict,
+ 'baichuanidnamedict': baichuanidnamedict,
# 模型参数
@@ -33,6 +31,8 @@ global_config.update({
'test_size': test_size,
'modelsindex': modelsindex,
'rote': rote,
+ 'bdwd_items': bdwd_items,
+ 'baichuanidnamedict': baichuanidnamedict,
# 特征工程开关
'is_del_corr': is_del_corr,
@@ -40,6 +40,7 @@ global_config.update({
'is_eta': is_eta,
'is_update_eta': is_update_eta,
'is_fivemodels': is_fivemodels,
+ 'is_update_predict_value': is_update_predict_value,
'early_stop_patience_steps': early_stop_patience_steps,
# 时间参数
@@ -58,6 +59,10 @@ global_config.update({
'query_data_list_item_nos_url': query_data_list_item_nos_url,
'query_data_list_item_nos_data': query_data_list_item_nos_data,
+ # 上传数据项
+ 'push_data_value_list_url': push_data_value_list_url,
+ 'push_data_value_list_data': push_data_value_list_data,
+
# eta 配置
'APPID': APPID,
'SECRET': SECRET,
@@ -69,14 +74,71 @@ global_config.update({
'edbdatapushurl': edbdatapushurl,
'edbdeleteurl': edbdeleteurl,
'edbbusinessurl': edbbusinessurl,
+ 'edbcodenamedict': edbcodenamedict,
'ClassifyId': ClassifyId,
'classifylisturl': classifylisturl,
# 数据库配置
'sqlitedb': sqlitedb,
+ 'db_mysql': db_mysql,
+ 'baichuan_table_name': baichuan_table_name,
})
+def push_market_value():
+ logger.info('发送预测结果到市场信息平台')
+ # 读取预测数据和模型评估数据
+ predict_file_path = os.path.join(config.dataset, 'predict.csv')
+ model_eval_file_path = os.path.join(config.dataset, 'model_evaluation.csv')
+ try:
+ predictdata_df = pd.read_csv(predict_file_path)
+ top_models_df = pd.read_csv(model_eval_file_path)
+ except FileNotFoundError as e:
+ logger.error(f"文件未找到: {e}")
+ return
+
+ predictdata = predictdata_df.copy()
+
+ # 取模型前十
+ top_models = top_models_df['模型(Model)'].head(10).tolist()
+
+ # 计算前十模型的均值
+ predictdata_df['top_models_mean'] = predictdata_df[top_models].mean(axis=1)
+
+ # 打印日期和前十模型均值
+ print(predictdata_df[['ds', 'top_models_mean']])
+
+ # 准备要推送的数据
+ first_mean = predictdata_df['top_models_mean'].iloc[0]
+ last_mean = predictdata_df['top_models_mean'].iloc[-1]
+ # 保留两位小数
+ first_mean = round(first_mean, 2)
+ last_mean = round(last_mean, 2)
+
+ predictdata = [
+ {
+ "dataItemNo": global_config['bdwd_items']['ciri'],
+ "dataDate": global_config['end_time'].replace('-', ''),
+ "dataStatus": "add",
+ "dataValue": first_mean
+ },
+ {
+ "dataItemNo": global_config['bdwd_items']['benzhou'],
+ "dataDate": global_config['end_time'].replace('-', ''),
+ "dataStatus": "add",
+ "dataValue": last_mean
+ }
+ ]
+
+ print(predictdata)
+
+ # 推送数据到市场信息平台
+ try:
+ push_market_data(predictdata)
+ except Exception as e:
+ logger.error(f"推送数据失败: {e}")
+
+
def predict_main():
"""
主预测函数,用于从 ETA 获取数据、处理数据、训练模型并进行预测。
@@ -116,31 +178,23 @@ def predict_main():
返回:
None
"""
- global end_time
- signature = BinanceAPI(APPID, SECRET)
- etadata = EtaReader(signature=signature,
- classifylisturl=classifylisturl,
- classifyidlisturl=classifyidlisturl,
- edbcodedataurl=edbcodedataurl,
- edbcodelist=edbcodelist,
- edbdatapushurl=edbdatapushurl,
- edbdeleteurl=edbdeleteurl,
- edbbusinessurl=edbbusinessurl
- )
+
+ end_time = global_config['end_time']
# 获取数据
if is_eta:
logger.info('从eta获取数据...')
signature = BinanceAPI(APPID, SECRET)
etadata = EtaReader(signature=signature,
- classifylisturl=classifylisturl,
- classifyidlisturl=classifyidlisturl,
- edbcodedataurl=edbcodedataurl,
- edbcodelist=edbcodelist,
- edbdatapushurl=edbdatapushurl,
- edbdeleteurl=edbdeleteurl,
- edbbusinessurl=edbbusinessurl,
+ classifylisturl=global_config['classifylisturl'],
+ classifyidlisturl=global_config['classifyidlisturl'],
+ edbcodedataurl=global_config['edbcodedataurl'],
+ edbcodelist=global_config['edbcodelist'],
+ edbdatapushurl=global_config['edbdatapushurl'],
+ edbdeleteurl=global_config['edbdeleteurl'],
+ edbbusinessurl=global_config['edbbusinessurl'],
+ classifyId=global_config['ClassifyId'],
)
- df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_shiyoujiao_data(
+ df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_shiyoujiao_lvyong_data(
data_set=data_set, dataset=dataset) # 原始数据,未处理
if is_market:
@@ -158,20 +212,33 @@ def predict_main():
except:
logger.info('最高最低价拼接失败')
+ if len(global_config['baichuanidnamedict']) > 0:
+ logger.info('从市场数据库获取百川数据...')
+ baichuandf = get_baichuan_data(global_config['baichuanidnamedict'])
+ df_zhibiaoshuju = pd.merge(
+ df_zhibiaoshuju, baichuandf, on='date', how='outer')
+ # 指标列表添加百川数据
+ df_baichuanliebiao = pd.DataFrame(
+ global_config['baichuanidnamedict'].items(), columns=['指标id', '指标名称'])
+ df_baichuanliebiao['指标分类'] = '石油焦对标炼厂价格'
+ df_baichuanliebiao['频度'] = '其他'
+ df_zhibiaoliebiao = pd.concat(
+ [df_zhibiaoliebiao, df_baichuanliebiao], axis=0)
+
# 保存到xlsx文件的sheet表
with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
# 数据处理
- df = datachuli_juxiting(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
- end_time=end_time)
+ df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=global_config['y'], dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
+ end_time=end_time)
else:
# 读取数据
logger.info('读取本地数据:' + os.path.join(dataset, data_set))
- df, df_zhibiaoliebiao = getdata_juxiting(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
- is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
+ df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
+ is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
# 更改预测列名称
df.rename(columns={y: 'y'}, inplace=True)
@@ -193,7 +260,18 @@ def predict_main():
else:
for row in first_row.itertuples(index=False):
row_dict = row._asdict()
- row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
+ config.logger.info(f'要保存的真实值:{row_dict}')
+ # 判断ds是否为字符串类型,如果不是则转换为字符串类型
+ if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)):
+ row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
+ elif not isinstance(row_dict['ds'], str):
+ try:
+ row_dict['ds'] = pd.to_datetime(
+ row_dict['ds']).strftime('%Y-%m-%d')
+ except:
+ logger.warning(f"无法解析的时间格式: {row_dict['ds']}")
+ # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
+ # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
check_query = sqlitedb.select_data(
'trueandpredict', where_condition=f"ds = '{row.ds}'")
if len(check_query) > 0:
@@ -230,7 +308,6 @@ def predict_main():
# except Exception as e:
# logger.info(f'更新accuracy表的y值失败:{e}')
- import datetime
# 判断当前日期是不是周一
is_weekday = datetime.datetime.now().weekday() == 0
if is_weekday:
@@ -315,76 +392,64 @@ def predict_main():
row, col = df.shape
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
- ex_Model_Juxiting(df,
- horizon=horizon,
- input_size=input_size,
- train_steps=train_steps,
- val_check_steps=val_check_steps,
- early_stop_patience_steps=early_stop_patience_steps,
- is_debug=is_debug,
- dataset=dataset,
- is_train=is_train,
- is_fivemodels=is_fivemodels,
- val_size=val_size,
- test_size=test_size,
- settings=settings,
- now=now,
- etadata=etadata,
- modelsindex=modelsindex,
- data=data,
- is_eta=is_eta,
- end_time=end_time,
- )
+ ex_Model(df,
+ horizon=global_config['horizon'],
+ input_size=global_config['input_size'],
+ train_steps=global_config['train_steps'],
+ val_check_steps=global_config['val_check_steps'],
+ early_stop_patience_steps=global_config['early_stop_patience_steps'],
+ is_debug=global_config['is_debug'],
+ dataset=global_config['dataset'],
+ is_train=global_config['is_train'],
+ is_fivemodels=global_config['is_fivemodels'],
+ val_size=global_config['val_size'],
+ test_size=global_config['test_size'],
+ settings=global_config['settings'],
+ now=now,
+ etadata=global_config['etadata'],
+ modelsindex=global_config['modelsindex'],
+ data=data,
+ is_eta=global_config['is_eta'],
+ end_time=global_config['end_time'],
+ )
logger.info('模型训练完成')
logger.info('训练数据绘图ing')
- model_results3 = model_losss_juxiting(sqlitedb)
+ model_results3 = model_losss(sqlitedb, end_time=end_time)
logger.info('训练数据绘图end')
# 模型报告
logger.info('制作报告ing')
title = f'{settings}--{end_time}-预测报告' # 报告标题
- reportname = f'PP大模型预测报告--{end_time}.pdf' # 报告文件名
+ reportname = f'石油焦铝用大模型日度预测--{end_time}.pdf' # 报告文件名
reportname = reportname.replace(':', '-') # 替换冒号
- pp_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time,
- reportname=reportname, sqlitedb=sqlitedb),
+ shiyoujiao_lvyong_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time,
+ reportname=reportname, sqlitedb=sqlitedb),
logger.info('制作报告end')
logger.info('模型训练完成')
- # # LSTM 单变量模型
- # ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset)
-
- # # lstm 多变量模型
- # ex_Lstm_M(df,n_days=input_size,out_days=horizon,is_debug=is_debug,datasetpath=dataset)
-
- # # GRU 模型
- # # ex_GRU(df)
+ push_market_value()
# 发送邮件
- m = SendMail(
- username=username,
- passwd=passwd,
- recv=recv,
- title=title,
- content=content,
- file=max(glob.glob(os.path.join(dataset, '*.pdf')),
- key=os.path.getctime),
- ssl=ssl,
- )
+ # m = SendMail(
+ # username=username,
+ # passwd=passwd,
+ # recv=recv,
+ # title=title,
+ # content=content,
+ # file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
+ # ssl=ssl,
+ # )
# m.send_mail()
if __name__ == '__main__':
# global end_time
- # is_on = True
# # 遍历2024-11-25 到 2024-12-3 之间的工作日日期
- # for i_time in pd.date_range('2025-1-20', '2025-2-6', freq='B'):
+ # for i_time in pd.date_range('2024-12-1', '2025-2-26', freq='W'):
# end_time = i_time.strftime('%Y-%m-%d')
- # try:
- # predict_main()
- # except:
- # pass
+ # predict_main()
predict_main()