diff --git a/aisenzhecode/液化石油气/液化气价格预测ytj.ipynb b/aisenzhecode/液化石油气/液化气价格预测ytj.ipynb
index b8c3e8b..46b3a96 100644
--- a/aisenzhecode/液化石油气/液化气价格预测ytj.ipynb
+++ b/aisenzhecode/液化石油气/液化气价格预测ytj.ipynb
@@ -5,37 +5,36 @@
"execution_count": null,
"metadata": {},
"outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "WARNING:tensorflow:From C:\\Users\\EDY\\AppData\\Roaming\\Python\\Python311\\site-packages\\keras\\src\\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.\n",
- "\n"
- ]
- },
{
"data": {
"text/html": [
" \n",
+ " \n",
" "
]
},
"metadata": {},
"output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "获取的token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJhcGlfZGV2IiwidGgiOiI4YTQ1NzdkYmQ5MTk2NzU3NThkNTc5OTlhMWU4OTFmZSIsImx0IjoiYXBpIiwiaXNzIjoiIiwidG0iOiJQQyIsImV4cCI6MTc0MzEwNTAxMCwianRpIjoiN2QwMjE1N2Q0NzIwNDZjMjk3NTE4ODMzNjA3NzY3OTQifQ.F2QXnRxR_YUmQ8w2GIWkvjy0xLMTZg93rJ-wHkuyIzw\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\h5218\\AppData\\Local\\Temp\\ipykernel_31728\\3153608672.py:885: DeprecationWarning:\n",
+ "\n",
+ "The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.\n",
+ "\n"
+ ]
}
],
"source": [
@@ -49,6 +48,7 @@
"login_url = \"http://10.200.32.39/jingbo-api/api/server/login\"\n",
"search_url = \"http://10.200.32.39/jingbo-api/api/warehouse/dwDataItem/queryByItemNos\"\n",
"# search_url = \"http://10.200.32.39/jingbo-api/api/warehouse/dwDataItem/queryDataListItemNos\" \n",
+ "queryDataListItemNos_url = \"http://10.200.32.39/jingbo-api//api/warehouse/dwDataItem/queryDataListItemNos\"\n",
"\n",
"\n",
"login_push_url = \"http://10.200.32.39/jingbo-api/api/server/login\"\n",
@@ -835,12 +835,146 @@
"\n",
" # 保存新的xls文件\n",
" new_workbook.save(\"液化气数据.xls\")\n",
- "\n"
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "def get_queryDataListItemNos_value(token, url, dataItemNoList, dateStart, dateEnd):\n",
+ "\n",
+ " search_data = {\n",
+ " \"funcModule\": \"数据项\",\n",
+ " \"funcOperation\": \"查询\",\n",
+ " \"data\": {\n",
+ " \"dateStart\": dateStart,\n",
+ " \"dateEnd\": dateEnd,\n",
+ " \"dataItemNoList\": dataItemNoList # 数据项编码,代表 brent最低价和最高价\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " headers = {\"Authorization\": token}\n",
+ " search_res = requests.post(url=url, headers=headers, json=search_data, timeout=(3, 5))\n",
+ " search_value = json.loads(search_res.text)[\"data\"]\n",
+ " if search_value:\n",
+ " return search_value\n",
+ " else:\n",
+ " return None\n",
+ "\n",
+ "\n",
+ "\n",
+ "def save_queryDataListItemNos_xls(data_df,dataItemNoList):\n",
+ "\n",
+ " current_year_month = datetime.now().strftime('%Y-%m')\n",
+ " grouped = data_df.groupby(\"dataDate\")\n",
+ "\n",
+ " # 打开xls文件\n",
+ " workbook = xlrd.open_workbook('液化气数据.xls')\n",
+ "\n",
+ " # 获取所有sheet的个数\n",
+ " sheet_count = len(workbook.sheet_names())\n",
+ "\n",
+ " # 获取所有sheet的名称\n",
+ " sheet_names = workbook.sheet_names()\n",
+ "\n",
+ " new_workbook = xlwt.Workbook()\n",
+ " for i in range(sheet_count):\n",
+ " # 获取当前sheet\n",
+ " sheet = workbook.sheet_by_index(i)\n",
+ "\n",
+ " # 获取sheet的行数和列数\n",
+ " row_count = sheet.nrows\n",
+ " col_count = sheet.ncols\n",
+ " # 获取原有数据\n",
+ " data = []\n",
+ " for row in range(row_count):\n",
+ " row_data = []\n",
+ " for col in range(col_count):\n",
+ " row_data.append(sheet.cell_value(row, col))\n",
+ " data.append(row_data)\n",
+ "\n",
+ " # 创建xlwt的Workbook对象\n",
+ " # 创建sheet\n",
+ " new_sheet = new_workbook.add_sheet(sheet_names[i])\n",
+ "\n",
+ "\n",
+ " current_year_month_row = 0\n",
+ " # 将原有的数据写入新的sheet\n",
+ " for row in range(row_count):\n",
+ " for col in range(col_count):\n",
+ " col0 = data[row][0]\n",
+ " # print(\"col0\",col0[:7])\n",
+ " if col0[:7] == current_year_month:\n",
+ " current_year_month_row += 1\n",
+ " break\n",
+ " new_sheet.write(row, col, data[row][col])\n",
+ "\n",
+ "\n",
+ " # print(\"current_year_month_row\",current_year_month_row)\n",
+ " if i == 0:\n",
+ " rowFlag = 0\n",
+ " # 查看每组数据\n",
+ " for date, group in grouped:\n",
+ " new_sheet.write(row_count + rowFlag - current_year_month_row, 0, date)\n",
+ " for j in range(len(dataItemNoList)):\n",
+ " dataItemNo = dataItemNoList[j]\n",
+ "\n",
+ " # for dataItemNo in dataItemNoList:\n",
+ " if group[group[\"dataItemNo\"] == dataItemNo][\"dataValue\"].values and (not str(group[group[\"dataItemNo\"] == dataItemNo][\"dataValue\"].values[0]) == 'nan'):\n",
+ " # if group[group[\"dataItemNo\"] == dataItemNo][\"dataValue\"].values:\n",
+ "\n",
+ " new_sheet.write(row_count + rowFlag - current_year_month_row, j + 1, group[group[\"dataItemNo\"] == dataItemNo][\"dataValue\"].values[0])\n",
+ "\n",
+ " rowFlag += 1\n",
+ "\n",
+ "\n",
+ " # 保存新的xls文件\n",
+ " new_workbook.save(\"液化气数据.xls\")\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "def queryDataListItemNos():\n",
+ " df = pd.read_excel('液化气数据.xls')\n",
+ " dataItemNoList = df.iloc[0].tolist()[1:]\n",
+ "\n",
+ " token = get_head_auth()\n",
+ " if not token:\n",
+ " return\n",
+ "\n",
+ " # 获取当前日期\n",
+ " current_date = datetime.now()\n",
+ "\n",
+ " # 获取当月1日\n",
+ " first_day_of_month = current_date.replace(day=1)\n",
+ "\n",
+ " # 格式化为 YYYYMMDD 格式\n",
+ " dateEnd = current_date.strftime('%Y%m%d')\n",
+ " dateStart = first_day_of_month.strftime('%Y%m%d')\n",
+ "\n",
+ " search_value = get_queryDataListItemNos_value(token, queryDataListItemNos_url, dataItemNoList, dateStart, dateEnd)\n",
+ "\n",
+ "\n",
+ " data_df = pd.DataFrame(search_value)\n",
+ "\n",
+ " data_df[\"dataDate\"] = pd.to_datetime(data_df[\"dataDate\"])\n",
+ " data_df[\"dataDate\"] = data_df[\"dataDate\"].dt.strftime('%Y-%m-%d')\n",
+ " save_queryDataListItemNos_xls(data_df,dataItemNoList)\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# if __name__ == \"__main__\":\n",
+ "\n",
+ "# # 获取当月的数据写入到指定文件\n",
+ "# queryDataListItemNos()\n"
]
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"metadata": {
"scrolled": true
},
@@ -862,6 +996,11 @@
"# current_time_1 = time.strftime(\"%H:%M:%S\", time.localtime())\n",
"# # print(current_time_1)\n",
"\n",
+ "\n",
+ " # 获取当月的数据写入到指定文件\n",
+ " # queryDataListItemNos()\n",
+ "\n",
+ "\n",
"# # 判断当前时间是否为执行任务的时间点\n",
"# if current_time == \"09:15:00\":\n",
"# print(\"执行定时任务\")\n",
@@ -927,7 +1066,7 @@
],
"metadata": {
"kernelspec": {
- "display_name": "base",
+ "display_name": "Python 3",
"language": "python",
"name": "python3"
},
@@ -941,7 +1080,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.11.7"
+ "version": "3.12.4"
}
},
"nbformat": 4,
diff --git a/aisenzhecode/液化石油气/液化气数据.xls b/aisenzhecode/液化石油气/液化气数据.xls
index e211593..549d483 100644
Binary files a/aisenzhecode/液化石油气/液化气数据.xls and b/aisenzhecode/液化石油气/液化气数据.xls differ
diff --git a/aisenzhecode/石油苯/纯苯价格预测-自定义日期ytj.ipynb b/aisenzhecode/石油苯/纯苯价格预测-自定义日期ytj.ipynb
index 7ffd738..b2e2801 100644
--- a/aisenzhecode/石油苯/纯苯价格预测-自定义日期ytj.ipynb
+++ b/aisenzhecode/石油苯/纯苯价格预测-自定义日期ytj.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"metadata": {},
"outputs": [
{
@@ -11,23 +11,23 @@
" \n",
+ " \n",
" "
]
},
"metadata": {},
"output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\h5218\\AppData\\Local\\Temp\\ipykernel_35936\\3451377547.py:725: DeprecationWarning:\n",
+ "\n",
+ "The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.\n",
+ "\n"
+ ]
}
],
"source": [
@@ -43,6 +43,7 @@
"\n",
"login_push_url = \"http://10.200.32.39/jingbo-api/api/server/login\"\n",
"upload_url = \"http://10.200.32.39/jingbo-api/api/dw/dataValue/pushDataValueList\"\n",
+ "queryDataListItemNos_url = \"http://10.200.32.39/jingbo-api//api/warehouse/dwDataItem/queryDataListItemNos\"\n",
"\n",
"login_data = {\n",
" \"data\": {\n",
@@ -674,7 +675,132 @@
" new_workbook.save(\"纯苯数据项.xls\")\n",
"\n",
"\n",
+ "\n",
+ "\n",
+ "def get_queryDataListItemNos_value(token, url, dataItemNoList, dateStart, dateEnd):\n",
+ "\n",
+ " search_data = {\n",
+ " \"funcModule\": \"数据项\",\n",
+ " \"funcOperation\": \"查询\",\n",
+ " \"data\": {\n",
+ " \"dateStart\": dateStart,\n",
+ " \"dateEnd\": dateEnd,\n",
+ " \"dataItemNoList\": dataItemNoList # 数据项编码,代表 brent最低价和最高价\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " headers = {\"Authorization\": token}\n",
+ " search_res = requests.post(url=url, headers=headers, json=search_data, timeout=(3, 5))\n",
+ " search_value = json.loads(search_res.text)[\"data\"]\n",
+ " if search_value:\n",
+ " return search_value\n",
+ " else:\n",
+ " return None\n",
+ "\n",
+ "\n",
+ "\n",
+ "def save_queryDataListItemNos_xls(data_df,dataItemNoList):\n",
+ "\n",
+ " current_year_month = datetime.datetime.now().strftime('%Y-%m')\n",
+ " grouped = data_df.groupby(\"dataDate\")\n",
+ "\n",
+ " # 打开xls文件\n",
+ " workbook = xlrd.open_workbook('纯苯数据项.xls')\n",
+ "\n",
+ " # 获取所有sheet的个数\n",
+ " sheet_count = len(workbook.sheet_names())\n",
+ "\n",
+ " # 获取所有sheet的名称\n",
+ " sheet_names = workbook.sheet_names()\n",
+ "\n",
+ " new_workbook = xlwt.Workbook()\n",
+ " for i in range(sheet_count):\n",
+ " # 获取当前sheet\n",
+ " sheet = workbook.sheet_by_index(i)\n",
+ "\n",
+ " # 获取sheet的行数和列数\n",
+ " row_count = sheet.nrows\n",
+ " col_count = sheet.ncols\n",
+ " # 获取原有数据\n",
+ " data = []\n",
+ " for row in range(row_count):\n",
+ " row_data = []\n",
+ " for col in range(col_count):\n",
+ " row_data.append(sheet.cell_value(row, col))\n",
+ " data.append(row_data)\n",
+ "\n",
+ " # 创建xlwt的Workbook对象\n",
+ " # 创建sheet\n",
+ " new_sheet = new_workbook.add_sheet(sheet_names[i])\n",
+ "\n",
+ "\n",
+ " current_year_month_row = 0\n",
+ " # 将原有的数据写入新的sheet\n",
+ " for row in range(row_count):\n",
+ " for col in range(col_count):\n",
+ " col0 = data[row][0]\n",
+ " # print(\"col0\",col0[:7])\n",
+ " if col0[:7] == current_year_month:\n",
+ " current_year_month_row += 1\n",
+ " break\n",
+ " new_sheet.write(row, col, data[row][col])\n",
+ "\n",
+ "\n",
+ " # print(\"current_year_month_row\",current_year_month_row)\n",
+ " if i == 0:\n",
+ " rowFlag = 0\n",
+ " # 查看每组数据\n",
+ " for date, group in grouped:\n",
+ " new_sheet.write(row_count + rowFlag - current_year_month_row, 0, date)\n",
+ " for j in range(len(dataItemNoList)):\n",
+ " dataItemNo = dataItemNoList[j]\n",
+ "\n",
+ " if group[group[\"dataItemNo\"] == dataItemNo][\"dataValue\"].values and (not str(group[group[\"dataItemNo\"] == dataItemNo][\"dataValue\"].values[0]) == 'nan'):\n",
+ "\n",
+ " new_sheet.write(row_count + rowFlag - current_year_month_row, j + 1, group[group[\"dataItemNo\"] == dataItemNo][\"dataValue\"].values[0])\n",
+ "\n",
+ " rowFlag += 1\n",
+ "\n",
+ "\n",
+ " # 保存新的xls文件\n",
+ " new_workbook.save(\"纯苯数据项.xls\")\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "def queryDataListItemNos():\n",
+ " df = pd.read_excel('纯苯数据项.xls')\n",
+ " dataItemNoList = df.iloc[0].tolist()[1:]\n",
+ "\n",
+ " token = get_head_auth()\n",
+ " if not token:\n",
+ " return\n",
+ "\n",
+ " # 获取当前日期\n",
+ " current_date = datetime.datetime.now()\n",
+ "\n",
+ " # 获取当月1日\n",
+ " first_day_of_month = current_date.replace(day=1)\n",
+ "\n",
+ " # 格式化为 YYYYMMDD 格式\n",
+ " dateEnd = current_date.strftime('%Y%m%d')\n",
+ " dateStart = first_day_of_month.strftime('%Y%m%d')\n",
+ "\n",
+ " search_value = get_queryDataListItemNos_value(token, queryDataListItemNos_url, dataItemNoList, dateStart, dateEnd)\n",
+ "\n",
+ "\n",
+ " data_df = pd.DataFrame(search_value)\n",
+ "\n",
+ " data_df[\"dataDate\"] = pd.to_datetime(data_df[\"dataDate\"])\n",
+ " data_df[\"dataDate\"] = data_df[\"dataDate\"].dt.strftime('%Y-%m-%d')\n",
+ " save_queryDataListItemNos_xls(data_df,dataItemNoList)\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
"if __name__ == \"__main__\":\n",
+ " # queryDataListItemNos()\n",
" pass\n",
" # 需要单独运行放开\n",
" # start_1()\n",
@@ -684,6 +810,9 @@
" # # 获取当前时间\n",
" # current_time = time.strftime(\"%H:%M:%S\", time.localtime())\n",
" # current_time_1 = time.strftime(\"%H:%M:%S\", time.localtime())\n",
+ " # # 获取当月的数据写入到指定文件\n",
+ " # queryDataListItemNos()\n",
+ "\n",
"\n",
" # # 判断当前时间是否为执行任务的时间点\n",
" # if current_time == \"09:15:00\":\n",
@@ -1654,7 +1783,7 @@
],
"metadata": {
"kernelspec": {
- "display_name": "base",
+ "display_name": "Python 3",
"language": "python",
"name": "python3"
},
@@ -1668,7 +1797,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.11.7"
+ "version": "3.12.4"
}
},
"nbformat": 4,
diff --git a/aisenzhecode/石油苯/纯苯数据项.xls b/aisenzhecode/石油苯/纯苯数据项.xls
index 076c47f..5594fe5 100644
Binary files a/aisenzhecode/石油苯/纯苯数据项.xls and b/aisenzhecode/石油苯/纯苯数据项.xls differ