{ "cells": [ { "cell_type": "code", "execution_count": 2, "id": "7fadc60c-d710-4b8c-89cd-1d889ece1eaf", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "从eta获取数据...\n", "跳过指标 美国:东海岸地区:炼油厂的投入与使用情况:开工率:四周均值\n", "跳过指标 美国:炼油厂的投入与使用情况:开工率:四周均值\n", "跳过指标 美国:洛基山地区:炼油厂的投入与使用情况:开工率:四周均值\n", "跳过指标 美国:墨西哥湾沿岸:炼油厂的投入与使用情况:开工率:四周均值\n", "跳过指标 美国:西海岸地区:炼油厂的投入与使用情况:开工率:四周均值\n", "跳过指标 美国:中西部地区:炼油厂的投入与使用情况:开工率:四周均值\n", "跳过指标 中国航班执行数/7DMA\n", "跳过指标 美国汽油表需(周度)1周环差负值\n", "跳过指标 美国汽油表需(周度)1周环差\n", "跳过指标 美国汽油产量(周度)1周环差\n", "跳过指标 美国原油周度表需/4WMA\n", "跳过指标 美国油品表需/4WMA\n", "跳过指标 美国油品表需4周环差\n", "跳过指标 道琼斯旅游与休闲/标普500\n", "跳过指标 DOE-柴油产量1周环差\n", "跳过指标 DOE-美国汽油产量1周环差\n", "跳过指标 美国航煤表需一周环差负值\n", "跳过指标 美国馏分油表需一周环差负值\n", "跳过指标 美国汽油表需一周环差负值\n", "跳过指标 欧洲汽油裂差\n", "跳过指标 欧洲柴油裂差\n", "跳过指标 中国主营炼厂产能利用率1周环差\n", "跳过指标 美国零售拥堵指数(周环比)/3WMA\n", "跳过指标 美国炼厂原油输入量1周环差\n", "跳过指标 美国炼厂原油输入量4周均值\n", "跳过指标 美国柴油期货裂差\n", "跳过指标 美国墨西哥湾柴油裂差\n", "跳过指标 美国纽约港柴油裂差\n", "跳过指标 欧洲柴油期货裂差\n", "跳过指标 西北欧轻柴油裂差\n", "跳过指标 新加坡柴油裂差\n", "跳过指标 美国汽油期货裂差\n", "跳过指标 美国墨西哥湾汽油裂差\n", "跳过指标 美国纽约港汽油裂差\n", "跳过指标 欧洲鹿特丹汽油裂差\n", "跳过指标 新加坡汽油裂差\n" ] } ], "source": [ "# 读取配置\n", "from lib.dataread import *\n", "from lib.tools import *\n", "from models.nerulforcastmodels import ex_Model,model_losss,brent_export_pdf,tansuanli_export_pdf,pp_export_pdf,model_losss_juxiting\n", "\n", "import glob\n", "import torch\n", "torch.set_float32_matmul_precision(\"high\")\n", "\n", "sqlitedb = SQLiteHandler(db_name) \n", "sqlitedb.connect()\n", "\n", "signature = BinanceAPI(APPID, SECRET)\n", "etadata = EtaReader(signature=signature,\n", " classifylisturl = classifylisturl,\n", " classifyidlisturl=classifyidlisturl,\n", " edbcodedataurl=edbcodedataurl,\n", " edbcodelist=edbcodelist,\n", " edbdatapushurl=edbdatapushurl,\n", " edbdeleteurl=edbdeleteurl,\n", " edbbusinessurl=edbbusinessurl\n", " )\n", "# 获取数据\n", "if is_eta:\n", " # eta数据\n", " logger.info('从eta获取数据...')\n", " signature = BinanceAPI(APPID, SECRET)\n", " etadata = EtaReader(signature=signature,\n", " classifylisturl = classifylisturl,\n", " classifyidlisturl=classifyidlisturl,\n", " edbcodedataurl=edbcodedataurl,\n", " edbcodelist=edbcodelist,\n", " edbdatapushurl=edbdatapushurl,\n", " edbdeleteurl=edbdeleteurl,\n", " edbbusinessurl=edbbusinessurl,\n", " )\n", " df_zhibiaoshuju,df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(data_set=data_set,dataset=dataset) # 原始数据,未处理\n", "\n", " # 数据处理\n", " df = datachuli(df_zhibiaoshuju,df_zhibiaoliebiao,y = y,dataset=dataset,add_kdj=add_kdj,is_timefurture=is_timefurture,end_time=end_time) \n", "\n", "else:\n", " logger.info('读取本地数据:'+os.path.join(dataset,data_set))\n", " df = getdata(filename=os.path.join(dataset,data_set),y=y,dataset=dataset,add_kdj=add_kdj,is_timefurture=is_timefurture,end_time=end_time) # 原始数据,未处理\n", "\n", "# 更改预测列名称\n", "df.rename(columns={y:'y'},inplace=True)\n", " \n", "if is_edbnamelist:\n", " df = df[edbnamelist] \n", "df.to_csv(os.path.join(dataset,'指标数据.csv'), index=False)\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "ae059224-976c-4839-b455-f81da7f25179", "metadata": {}, "outputs": [], "source": [ "# 保存最新日期的y值到数据库\n", "# 取第一行数据存储到数据库中\n", "first_row = df[['ds','y']].tail(1)\n", "# 将最新真实值保存到数据库\n", "if not sqlitedb.check_table_exists('trueandpredict'):\n", " first_row.to_sql('trueandpredict',sqlitedb.connection,index=False)\n", "else:\n", " for row in first_row.itertuples(index=False):\n", " row_dict = row._asdict()\n", " row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')\n", " check_query = sqlitedb.select_data('trueandpredict',where_condition = f\"ds = '{row.ds}'\")\n", " if len(check_query) > 0:\n", " set_clause = \", \".join([f\"{key} = '{value}'\" for key, value in row_dict.items()])\n", " sqlitedb.update_data('trueandpredict',set_clause,where_condition = f\"ds = '{row.ds}'\")\n", " continue\n", " sqlitedb.insert_data('trueandpredict',tuple(row_dict.values()),columns=row_dict.keys())\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "abb597fc-c5f3-4d76-8099-5eff358cb634", "metadata": {}, "outputs": [], "source": [ "import datetime\n", "# 判断当前日期是不是周一\n", "is_weekday = datetime.datetime.now().weekday() == 1\n", "if is_weekday:\n", " logger.info('今天是周一,更新预测模型')\n", " # 计算最近20天预测残差最低的模型名称\n", "\n", " model_results = sqlitedb.select_data('trueandpredict',order_by = \"ds DESC\",limit = \"20\")\n", " # 删除空值率为40%以上的列\n", " print(model_results.shape)\n", " model_results = model_results.dropna(thresh=len(model_results)*0.6,axis=1)\n", " model_results = model_results.dropna()\n", " print(model_results.shape)\n", " modelnames = model_results.columns.to_list()[2:] \n", " for col in model_results[modelnames].select_dtypes(include=['object']).columns:\n", " model_results[col] = model_results[col].astype(np.float32)\n", " # 计算每个预测值与真实值之间的偏差率\n", " for model in modelnames:\n", " model_results[f'{model}_abs_error_rate'] = abs(model_results['y'] - model_results[model]) / model_results['y']\n", "\n", " # 获取每行对应的最小偏差率值\n", " min_abs_error_rate_values = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)\n", " # 获取每行对应的最小偏差率值对应的列名\n", " min_abs_error_rate_column_name = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)\n", " print(min_abs_error_rate_column_name)\n", " # 将列名索引转换为列名\n", " min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(lambda x: x.split('_')[0])\n", " # 取出现次数最多的模型名称\n", " most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()\n", " logger.info(f\"最近20天预测残差最低的模型名称:{most_common_model}\")\n", "\n", " # 保存结果到数据库\n", " \n", " if not sqlitedb.check_table_exists('most_model'):\n", " sqlitedb.create_table('most_model',columns=\"ds datetime, most_common_model TEXT\")\n", " sqlitedb.insert_data('most_model',(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),most_common_model,),columns=('ds','most_common_model',))\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "ade7026e-8cf2-405f-a2da-9e90f364adab", "metadata": {}, "outputs": [], "source": [ "if is_corr:\n", " df = corr_feature(df=df)\n", "\n", "df1 = df.copy() # 备份一下,后面特征筛选完之后加入ds y 列用\n", "logger.info(f\"开始训练模型...\")\n", "row,col = df.shape\n" ] }, { "cell_type": "code", "execution_count": null, "id": "dfef57d8-36da-423b-bbe7-05a13e15f71b", "metadata": {}, "outputs": [], "source": [ "now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')\n", "ex_Model(df,\n", " horizon=horizon,\n", " input_size=input_size,\n", " train_steps=train_steps,\n", " val_check_steps=val_check_steps,\n", " early_stop_patience_steps=early_stop_patience_steps,\n", " is_debug=is_debug,\n", " dataset=dataset,\n", " is_train=is_train,\n", " is_fivemodels=is_fivemodels,\n", " val_size=val_size,\n", " test_size=test_size,\n", " settings=settings,\n", " now=now,\n", " etadata = etadata,\n", " modelsindex = modelsindex,\n", " data = data,\n", " is_eta=is_eta,\n", " )\n" ] }, { "cell_type": "code", "execution_count": null, "id": "0e5b6f30-b7ca-4718-97a3-48b54156e07f", "metadata": {}, "outputs": [], "source": [ "logger.info('模型训练完成')\n", "# # 模型评估\n", "\n", "pd.set_option('display.max_columns', 100)\n", "# 计算预测评估指数\n", "def model_losss_juxiting(sqlitedb):\n", " global dataset\n", " # 数据库查询最佳模型名称\n", " most_model = [sqlitedb.select_data('most_model',columns=['most_common_model'],order_by='ds desc',limit=1).values[0][0]]\n", " most_model_name = most_model[0]\n", "\n", " # 预测数据处理 predict\n", " df_combined = loadcsv(os.path.join(dataset,\"cross_validation.csv\")) \n", " df_combined = dateConvert(df_combined)\n", " # 删除空列\n", " df_combined.dropna(axis=1,inplace=True)\n", " # 删除缺失值,预测过程不能有缺失值\n", " df_combined.dropna(inplace=True) \n", " # 其他列转为数值类型\n", " df_combined = df_combined.astype({col: 'float32' for col in df_combined.columns if col not in ['cutoff','ds'] })\n", " # 使用 groupby 和 transform 结合 lambda 函数来获取每个分组中 cutoff 的最小值,并创建一个新的列来存储这个最大值\n", " df_combined['max_cutoff'] = df_combined.groupby('ds')['cutoff'].transform('max')\n", "\n", " # 然后筛选出那些 cutoff 等于 max_cutoff 的行,这样就得到了每个分组中 cutoff 最大的行,并保留了其他列\n", " df_combined = df_combined[df_combined['cutoff'] == df_combined['max_cutoff']]\n", " # 删除模型生成的cutoff列\n", " df_combined.drop(columns=['cutoff', 'max_cutoff'], inplace=True)\n", " # 获取模型名称\n", " modelnames = df_combined.columns.to_list()[1:] \n", " if 'y' in modelnames:\n", " modelnames.remove('y')\n", " df_combined3 = df_combined.copy() # 备份df_combined,后面画图需要\n", "\n", "\n", " # 空的列表存储每个模型的MSE、RMSE、MAE、MAPE、SMAPE\n", " cellText = []\n", "\n", " # 遍历模型名称,计算模型评估指标 \n", " for model in modelnames:\n", " modelmse = mse(df_combined['y'], df_combined[model])\n", " modelrmse = rmse(df_combined['y'], df_combined[model])\n", " modelmae = mae(df_combined['y'], df_combined[model])\n", " # modelmape = mape(df_combined['y'], df_combined[model])\n", " # modelsmape = smape(df_combined['y'], df_combined[model])\n", " # modelr2 = r2_score(df_combined['y'], df_combined[model])\n", " cellText.append([model,round(modelmse, 3), round(modelrmse, 3), round(modelmae, 3)])\n", " \n", " model_results3 = pd.DataFrame(cellText,columns=['模型(Model)','平均平方误差(MSE)', '均方根误差(RMSE)', '平均绝对误差(MAE)'])\n", " # 按MSE降序排列\n", " model_results3 = model_results3.sort_values(by='平均平方误差(MSE)', ascending=True)\n", " model_results3.to_csv(os.path.join(dataset,\"model_evaluation.csv\"),index=False)\n", " modelnames = model_results3['模型(Model)'].tolist()\n", " allmodelnames = modelnames.copy()\n", " # 保存5个最佳模型的名称\n", " if len(modelnames) > 5:\n", " modelnames = modelnames[0:5]\n", " with open(os.path.join(dataset,\"best_modelnames.txt\"), 'w') as f:\n", " f.write(','.join(modelnames) + '\\n')\n", "\n", "\n", " # 去掉方差最大的模型,其余模型预测最大最小值确定通道边界\n", " best_models = pd.read_csv(os.path.join(dataset,'best_modelnames.txt'),header=None).values.flatten().tolist()\n", " \n", "\n", " # 预测值与真实值对比图\n", " plt.rcParams['font.sans-serif'] = ['SimHei']\n", " plt.figure(figsize=(15, 10))\n", " # 设置有5个子图的画布\n", " for n,model in enumerate(modelnames[:5]):\n", " plt.subplot(3, 2, n+1)\n", " plt.plot(df_combined3['ds'], df_combined3['y'], label='真实值')\n", " plt.plot(df_combined3['ds'], df_combined3[model], label=model)\n", " plt.legend()\n", " plt.xlabel('日期')\n", " plt.ylabel('价格')\n", " plt.title(model+'拟合')\n", " plt.subplots_adjust(hspace=0.5)\n", " plt.savefig(os.path.join(dataset,'预测值与真实值对比图.png'), bbox_inches='tight')\n", " plt.close()\n", " \n", " # 历史数据+预测数据\n", " # 拼接未来时间预测\n", " df_predict = loadcsv(os.path.join(dataset,'predict.csv'))\n", " df_predict.drop('unique_id',inplace=True,axis=1)\n", " df_predict.dropna(axis=1,inplace=True)\n", " df_predict2 = df_predict.copy()\n", " try:\n", " df_predict['ds'] = pd.to_datetime(df_predict['ds'],format=r'%Y-%m-%d')\n", " except ValueError :\n", " df_predict['ds'] = pd.to_datetime(df_predict['ds'],format=r'%Y/%m/%d')\n", "\n", " # 取第一行数据存储到数据库中\n", " first_row = df_predict.head(1)\n", " first_row['ds'] = first_row['ds'].dt.strftime('%Y-%m-%d 00:00:00')\n", "\n", " # # 将预测结果保存到数据库\n", " # # 判断表存在\n", " if not sqlitedb.check_table_exists('testandpredict_groupby'):\n", " df_predict2.to_sql('testandpredict_groupby',sqlitedb.connection,index=False)\n", " else:\n", " for row in df_predict2.itertuples(index=False):\n", " row_dict = row._asdict()\n", " check_query = sqlitedb.select_data('testandpredict_groupby',where_condition = f\"ds = '{row.ds}'\")\n", " if len(check_query) > 0:\n", " set_clause = \", \".join([f\"{key} = '{value}'\" for key, value in row_dict.items()])\n", " sqlitedb.update_data('testandpredict_groupby',set_clause,where_condition = f\"ds = '{row.ds}'\")\n", " continue\n", " sqlitedb.insert_data('testandpredict_groupby',tuple(row_dict.values()),columns=row_dict.keys())\n", "\n", " df_combined3 = pd.concat([df_combined3, df_predict]).reset_index(drop=True)\n", "\n", " # # 判断 df 的数值列转为float\n", " for col in df_combined3.columns:\n", " try:\n", " if col != 'ds':\n", " df_combined3[col] = df_combined3[col].astype(float)\n", " df_combined3[col] = df_combined3[col].round(2)\n", " except ValueError:\n", " pass\n", " df_combined3.to_csv(os.path.join(dataset,\"df_combined3.csv\"),index=False) \n", " df_combined3.to_sql('testandpredict_groupby', sqlitedb.connection, if_exists='replace', index=False)\n", " df_combined3.to_csv(os.path.join(dataset,\"testandpredict_groupby.csv\"),index=False)\n", " \n", " \n", " ten_models = allmodelnames\n", " # 计算每个模型的方差\n", " variances = df_combined3[ten_models].var()\n", " # 找到方差最大的模型\n", " max_variance_model = variances.idxmax()\n", " # 打印方差最大的模型\n", " print(\"方差最大的模型是:\", max_variance_model)\n", " # 去掉方差最大的模型\n", " df_combined3 = df_combined3.drop(columns=[max_variance_model])\n", " if max_variance_model in allmodelnames:\n", " allmodelnames.remove(max_variance_model)\n", " df_combined3['min'] = df_combined3[allmodelnames].min(axis=1)\n", " df_combined3['max'] = df_combined3[allmodelnames].max(axis=1)\n", " print(df_combined3[['min','max']])\n", " # 历史价格+预测价格\n", " df_combined3 = df_combined3[-50:] # 取50个数据点画图\n", " plt.figure(figsize=(20, 10))\n", " plt.plot(df_combined3['ds'], df_combined3['y'], label='真实值',marker='o')\n", " plt.plot(df_combined3['ds'], df_combined3[most_model], label=most_model_name)\n", " plt.fill_between(df_combined3['ds'], df_combined3['min'], df_combined3['max'], alpha=0.2)\n", " plt.grid(True)\n", " # 当前日期画竖虚线\n", " plt.axvline(x=df_combined3['ds'].iloc[-horizon], color='r', linestyle='--')\n", " plt.legend()\n", " plt.xlabel('日期')\n", " plt.ylabel('价格')\n", "\n", " # # 显示历史值\n", " for i, j in zip(df_combined3['ds'][:-5], df_combined3['y'][:-5]):\n", " plt.text(i, j, str(j), ha='center', va='bottom')\n", " plt.savefig(os.path.join(dataset,'历史价格-预测值.png'), bbox_inches='tight')\n", " plt.show()\n", " plt.close()\n", " \n", " # 预测值表格\n", " fig, ax = plt.subplots(figsize=(20, 6))\n", " ax.axis('off') # 关闭坐标轴\n", " # 数值保留2位小数\n", " df_combined3 = df_combined3.round(2)\n", " df_combined3 = df_combined3[-horizon:]\n", " df_combined3['Day'] = [f'Day_{i}' for i in range(1,horizon+1)]\n", " # Day列放到最前面\n", " df_combined3 = df_combined3[['Day'] + list(df_combined3.columns[:-1])]\n", " table = ax.table(cellText=df_combined3.values, colLabels=df_combined3.columns, loc='center')\n", " #加宽表格\n", " table.auto_set_font_size(False)\n", " table.set_fontsize(10)\n", "\n", " # 设置表格样式,列数据最小的用绿色标识\n", " plt.savefig(os.path.join(dataset,'预测值表格.png'), bbox_inches='tight')\n", " plt.close()\n", " # plt.show()\n", " \n", " # 可视化评估结果\n", " plt.rcParams['font.sans-serif'] = ['SimHei']\n", " fig, ax = plt.subplots(figsize=(20, 10))\n", " ax.axis('off') # 关闭坐标轴\n", " table = ax.table(cellText=model_results3.values, colLabels=model_results3.columns, loc='center')\n", " # 加宽表格\n", " table.auto_set_font_size(False)\n", " table.set_fontsize(10)\n", "\n", " # 设置表格样式,列数据最小的用绿色标识\n", " plt.savefig(os.path.join(dataset,'模型评估.png'), bbox_inches='tight')\n", " plt.close()\n", " return model_results3\n", "\n", "\n", "\n", "\n", "logger.info('训练数据绘图ing')\n", "model_results3 = model_losss_juxiting(sqlitedb)\n", "\n", "logger.info('训练数据绘图end')\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "85b557de-8235-4e27-b5b8-58b36dfe6724", "metadata": {}, "outputs": [], "source": [ "# 模型报告\n", "\n", "logger.info('制作报告ing')\n", "title = f'{settings}--{now}-预测报告' # 报告标题\n", "\n", "pp_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,\n", " reportname=reportname,sqlitedb=sqlitedb),\n", "\n", "logger.info('制作报告end')\n", "logger.info('模型训练完成')" ] }, { "cell_type": "code", "execution_count": null, "id": "d4129e71-ee2c-4af1-81ed-fadf14efa206", "metadata": {}, "outputs": [], "source": [ "# 发送邮件\n", "m = SendMail(\n", " username=username,\n", " passwd=passwd,\n", " recv=recv,\n", " title=title,\n", " content=content,\n", " file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),\n", " ssl=ssl,\n", ")\n", "# m.send_mail() \n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.7" } }, "nbformat": 4, "nbformat_minor": 5 }