# 读取配置 from config_jingbo import * # from config_tansuanli import * from lib.tools import * from lib.dataread import * from models.nerulforcastmodels import ex_Model,model_losss,brent_export_pdf,tansuanli_export_pdf from models.lstmmodels import ex_Lstm_M,ex_Lstm from models.grumodels import ex_GRU import glob import torch torch.set_float32_matmul_precision("high") if __name__ == '__main__': signature = BinanceAPI(APPID, SECRET) etadata = EtaReader(signature=signature, classifylisturl = classifylisturl, classifyidlisturl=classifyidlisturl, edbcodedataurl=edbcodedataurl, edbcodelist=edbcodelist, edbdatapushurl = edbdatapushurl, edbdeleteurl = edbdeleteurl, edbbusinessurl = edbbusinessurl ) models = [ 'NHITS', 'Informer', 'LSTM', 'iTransformer', 'TSMixer', 'TSMixerx', 'PatchTST', 'RNN', 'GRU', 'TCN', 'BiTCN', 'DilatedRNN', 'MLP', 'DLinear', 'NLinear', 'TFT', 'FEDformer', 'StemGNN', 'MLPMultivariate', 'TiDE', 'DeepNPT'] # eta自由数据指标编码 modelsindex = { 'NHITS': 'SELF0000001', 'Informer':'SELF0000057', 'LSTM':'SELF0000058', 'iTransformer':'SELF0000059', 'TSMixer':'SELF0000060', 'TSMixerx':'SELF0000061', 'PatchTST':'SELF0000062', 'RNN':'SELF0000063', 'GRU':'SELF0000064', 'TCN':'SELF0000065', 'BiTCN':'SELF0000066', 'DilatedRNN':'SELF0000067', 'MLP':'SELF0000068', 'DLinear':'SELF0000069', 'NLinear':'SELF0000070', 'TFT':'SELF0000071', 'FEDformer':'SELF0000072', 'StemGNN':'SELF0000073', 'MLPMultivariate':'SELF0000074', 'TiDE':'SELF0000075', 'DeepNPT':'SELF0000076' } # df_predict = pd.read_csv('dataset/predict.csv',encoding='gbk') # # df_predict.rename(columns={'ds':'Date'},inplace=True) # for m in modelsindex.keys(): # list = [] # for date,value in zip(df_predict['ds'],df_predict[m]): # list.append({'Date':date,'Value':value}) # data['DataList'] = list # data['IndexCode'] = modelsindex[m] # data['IndexName'] = f'价格预测{m}模型' # data['Remark'] = m # # print(data['DataList']) # etadata.push_data(data) # 删除指标 # IndexCodeList = ['SELF0000055'] # for i in range(1,57): # if i < 10 : i = f'0{i}' # IndexCodeList.append(f'SELF00000{i}') # print(IndexCodeList) # etadata.del_zhibiao(IndexCodeList) # 删除特定日期的值 indexcodelist = modelsindex.values() for indexcode in indexcodelist: data = { "IndexCode": indexcode, #指标编码 "StartDate": "2020-04-20", #指标需要删除的开始日期(>=),如果开始日期和结束日期相等,那么就是删除该日期 "EndDate": "2024-05-28" #指标需要删除的结束日期(<=),如果开始日期和结束日期相等,那么就是删除该日期 } # etadata.del_business(data)