# 读取配置 from lib.dataread import * from lib.tools import SendMail,exception_logger from models.nerulforcastmodels import ex_Model,brent_export_pdf,tansuanli_export_pdf,pp_export_pdf,model_losss_yongan import glob import torch torch.set_float32_matmul_precision("high") def predict_main(): """ 主预测函数,用于从 ETA 获取数据、处理数据、训练模型并进行预测。 参数: signature (BinanceAPI): Binance API 实例。 etadata (EtaReader): ETA 数据读取器实例。 is_eta (bool): 是否从 ETA 获取数据。 data_set (str): 数据集名称。 dataset (str): 数据集路径。 add_kdj (bool): 是否添加 KDJ 指标。 is_timefurture (bool): 是否添加时间衍生特征。 end_time (str): 结束时间。 is_edbnamelist (bool): 是否使用 EDB 名称列表。 edbnamelist (list): EDB 名称列表。 y (str): 预测目标列名。 sqlitedb (SQLiteDB): SQLite 数据库实例。 is_corr (bool): 是否进行相关性分析。 horizon (int): 预测时域。 input_size (int): 输入数据大小。 train_steps (int): 训练步数。 val_check_steps (int): 验证检查步数。 early_stop_patience_steps (int): 早停耐心步数。 is_debug (bool): 是否调试模式。 dataset (str): 数据集名称。 is_train (bool): 是否训练模型。 is_fivemodels (bool): 是否使用五个模型。 val_size (float): 验证集大小。 test_size (float): 测试集大小。 settings (dict): 模型设置。 now (str): 当前时间。 etadata (EtaReader): ETA 数据读取器实例。 modelsindex (list): 模型索引列表。 data (str): 数据类型。 is_eta (bool): 是否从 ETA 获取数据。 返回: None """ # global end_time # signature = BinanceAPI(APPID, SECRET) # etadata = EtaReader(signature=signature, # classifylisturl=classifylisturl, # classifyidlisturl=classifyidlisturl, # edbcodedataurl=edbcodedataurl, # edbcodelist=edbcodelist, # edbdatapushurl=edbdatapushurl, # edbdeleteurl=edbdeleteurl, # edbbusinessurl=edbbusinessurl # ) # # 获取数据 # if is_eta: # logger.info('从eta获取数据...') # signature = BinanceAPI(APPID, SECRET) # etadata = EtaReader(signature=signature, # classifylisturl=classifylisturl, # classifyidlisturl=classifyidlisturl, # edbcodedataurl=edbcodedataurl, # edbcodelist=edbcodelist, # edbdatapushurl=edbdatapushurl, # edbdeleteurl=edbdeleteurl, # edbbusinessurl=edbbusinessurl, # ) # df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(data_set=data_set, dataset=dataset) # 原始数据,未处理 # if is_market: # logger.info('从市场信息平台获取数据...') # try: # df_zhibiaoshuju = get_market_data(end_time,df_zhibiaoshuju) # except : # logger.info('从市场信息平台获取数据失败') # # 保存到xlsx文件的sheet表 # with pd.ExcelWriter(os.path.join(dataset,data_set)) as file: # df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False) # df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False) # # 数据处理 # df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture, # end_time=end_time) # else: # # 读取数据 # logger.info('读取本地数据:' + os.path.join(dataset, data_set)) # df,df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj, # is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理 # # 更改预测列名称 # df.rename(columns={y: 'y'}, inplace=True) # if is_edbnamelist: # df = df[edbnamelist] # df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False) # # 保存最新日期的y值到数据库 # # 取第一行数据存储到数据库中 # first_row = df[['ds', 'y']].tail(1) # print(first_row['ds'].values[0]) # print(first_row['y'].values[0]) # # 判断y的类型是否为float # if not isinstance(first_row['y'].values[0], float): # logger.info(f'{end_time}预测目标数据为空,跳过') # return None # # 将最新真实值保存到数据库 # if not sqlitedb.check_table_exists('trueandpredict'): # first_row.to_sql('trueandpredict', sqlitedb.connection, index=False) # else: # for row in first_row.itertuples(index=False): # row_dict = row._asdict() # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S') # check_query = sqlitedb.select_data('trueandpredict', where_condition=f"ds = '{row.ds}'") # if len(check_query) > 0: # set_clause = ", ".join([f"{key} = '{value}'" for key, value in row_dict.items()]) # sqlitedb.update_data('trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'") # continue # sqlitedb.insert_data('trueandpredict', tuple(row_dict.values()), columns=row_dict.keys()) # # 更新accuracy表的y值 # if not sqlitedb.check_table_exists('accuracy'): # pass # else: # update_y = sqlitedb.select_data('accuracy',where_condition="y is null") # if len(update_y) > 0: # logger.info('更新accuracy表的y值') # # 找到update_y 中ds且df中的y的行 # update_y = update_y[update_y['ds']<=end_time] # logger.info(f'要更新y的信息:{update_y}') # try: # for row in update_y.itertuples(index=False): # row_dict = row._asdict() # yy = df[df['ds']==row_dict['ds']]['y'].values[0] # LOW = df[df['ds']==row_dict['ds']]['Brentzdj'].values[0] # HIGH = df[df['ds']==row_dict['ds']]['Brentzgj'].values[0] # sqlitedb.update_data('accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'") # except Exception as e: # logger.info(f'更新accuracy表的y值失败:{e}') # import datetime # # 判断当前日期是不是周一 # is_weekday = datetime.datetime.now().weekday() == 0 # if is_weekday: # logger.info('今天是周一,更新预测模型') # # 计算最近60天预测残差最低的模型名称 # model_results = sqlitedb.select_data('trueandpredict', order_by="ds DESC", limit="60") # # 删除空值率为40%以上的列 # if len(model_results) > 10: # model_results = model_results.dropna(thresh=len(model_results)*0.6,axis=1) # # 删除空行 # model_results = model_results.dropna() # modelnames = model_results.columns.to_list()[2:] # for col in model_results[modelnames].select_dtypes(include=['object']).columns: # model_results[col] = model_results[col].astype(np.float32) # # 计算每个预测值与真实值之间的偏差率 # for model in modelnames: # model_results[f'{model}_abs_error_rate'] = abs(model_results['y'] - model_results[model]) / model_results['y'] # # 获取每行对应的最小偏差率值 # min_abs_error_rate_values = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1) # # 获取每行对应的最小偏差率值对应的列名 # min_abs_error_rate_column_name = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1) # # 将列名索引转换为列名 # min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(lambda x: x.split('_')[0]) # # 取出现次数最多的模型名称 # most_common_model = min_abs_error_rate_column_name.value_counts().idxmax() # logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}") # # 保存结果到数据库 # if not sqlitedb.check_table_exists('most_model'): # sqlitedb.create_table('most_model', columns="ds datetime, most_common_model TEXT") # sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) # try: # if is_weekday: # # if True: # logger.info('今天是周一,发送特征预警') # # 上传预警信息到数据库 # warning_data_df = df_zhibiaoliebiao.copy() # warning_data_df = warning_data_df[warning_data_df['停更周期']> 3 ][['指标名称', '指标id', '频度','更新周期','指标来源','最后更新时间','停更周期']] # # 重命名列名 # warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY', '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'}) # from sqlalchemy import create_engine # import urllib # global password # if '@' in password: # password = urllib.parse.quote_plus(password) # engine = create_engine(f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}') # warning_data_df['WARNING_DATE'] = datetime.date.today().strftime("%Y-%m-%d %H:%M:%S") # warning_data_df['TENANT_CODE'] = 'T0004' # # 插入数据之前查询表数据然后新增id列 # existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine) # if not existing_data.empty: # max_id = existing_data['ID'].astype(int).max() # warning_data_df['ID'] = range(max_id + 1, max_id + 1 + len(warning_data_df)) # else: # warning_data_df['ID'] = range(1, 1 + len(warning_data_df)) # warning_data_df.to_sql(table_name, con=engine, if_exists='append', index=False) # if is_update_warning_data: # upload_warning_info(len(warning_data_df)) # except: # logger.info('上传预警信息到数据库失败') # if is_corr: # df = corr_feature(df=df) # df1 = df.copy() # 备份一下,后面特征筛选完之后加入ds y 列用 # logger.info(f"开始训练模型...") # row, col = df.shape # now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') # ex_Model(df, # horizon=horizon, # input_size=input_size, # train_steps=train_steps, # val_check_steps=val_check_steps, # early_stop_patience_steps=early_stop_patience_steps, # is_debug=is_debug, # dataset=dataset, # is_train=is_train, # is_fivemodels=is_fivemodels, # val_size=val_size, # test_size=test_size, # settings=settings, # now=now, # etadata=etadata, # modelsindex=modelsindex, # data=data, # is_eta=is_eta, # end_time=end_time, # ) # logger.info('模型训练完成') # logger.info('训练数据绘图ing') # model_results3 = model_losss_yongan(sqlitedb,end_time=end_time,table_name_prefix=table_name_prefix) # logger.info('训练数据绘图end') # 模型报告 logger.info('制作报告ing') title = f'{settings}--{end_time}-预测报告' # 报告标题 reportname = f'Brent原油大模型预测--{end_time}.pdf' # 报告文件名 reportname = reportname.replace(':', '-') # 替换冒号 brent_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time, reportname=reportname,sqlitedb=sqlitedb), logger.info('制作报告end') logger.info('模型训练完成') # # LSTM 单变量模型 # ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset) # # lstm 多变量模型 # ex_Lstm_M(df,n_days=input_size,out_days=horizon,is_debug=is_debug,datasetpath=dataset) # # GRU 模型 # # ex_GRU(df) # 发送邮件 # m = SendMail( # username=username, # passwd=passwd, # recv=recv, # title=title, # content=content, # file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime), # ssl=ssl, # ) # m.send_mail() if __name__ == '__main__': # global end_time # is_on = True # # 遍历2024-11-25 到 2024-12-3 之间的工作日日期 # for i_time in pd.date_range('2024-12-27', '2024-12-28', freq='B'): # end_time = i_time.strftime('%Y-%m-%d') # predict_main() predict_main()