from statsmodels.tools.eval_measures import mse, rmse from pandas import Series, DataFrame import cufflinks as cf from sklearn.metrics import r2_score from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import pickle import warnings from sklearn.model_selection import GridSearchCV from sklearn.metrics import mean_absolute_error from xgboost import plot_importance, plot_tree import xgboost as xgb import plotly.graph_objects as go import plotly.express as px from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator import statsmodels.api as sm import datetime from xgboost import XGBRegressor from sklearn.linear_model import Lasso import sklearn.datasets as datasets from sklearn import preprocessing from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot from plotly import __version__ import random import seaborn as sn import matplotlib.pyplot as plt import numpy as np import pandas as pd import requests import json import xlrd import xlwt from datetime import datetime import time # 变量定义 login_url = "http://10.200.32.39/jingbo-api/api/server/login" search_url = "http://10.200.32.39/jingbo-api/api/warehouse/dwDataItem/queryByItemNos" queryDataListItemNos_url = "http://10.200.32.39/jingbo-api//api/warehouse/dwDataItem/queryDataListItemNos" login_push_url = "http://10.200.32.39/jingbo-api/api/server/login" upload_url = "http://10.200.32.39/jingbo-api/api/dw/dataValue/pushDataValueList" login_data = { "data": { "account": "api_dev", "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", "tenantHashCode": "8a4577dbd919675758d57999a1e891fe", "terminal": "API" }, "funcModule": "API", "funcOperation": "获取token" } login_push_data = { "data": { "account": "api_dev", "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", "tenantHashCode": "8a4577dbd919675758d57999a1e891fe", "terminal": "API" }, "funcModule": "API", "funcOperation": "获取token" } read_file_path_name = "丙烯基础数据收集表.xls" one_cols = [] two_cols = [] # 导入机器学习算法模型 # 切割训练数据和样本数据 # 用于模型评分 le = preprocessing.LabelEncoder() # print(__version__) # requires version >= 1.9.0 cf.go_offline() random.seed(100) # 数据获取 def get_head_auth(): login_res = requests.post(url=login_url, json=login_data, timeout=(3, 5)) text = json.loads(login_res.text) if text["status"]: token = text["data"]["accessToken"] return token else: print("获取认证失败") return None def get_data_value(token, dataItemNoList): search_data = { "data": { "date": get_cur_time()[0], "dataItemNoList": dataItemNoList }, "funcModule": "数据项", "funcOperation": "查询" } headers = {"Authorization": token} search_res = requests.post( url=search_url, headers=headers, json=search_data, timeout=(3, 5)) search_value = json.loads(search_res.text)["data"] if search_value: return search_value else: print("今天没有新数据") return search_value # xls文件处理 def write_xls(data): # 创建一个Workbook对象 workbook = xlwt.Workbook() # 创建一个Sheet对象,可指定名称 sheet = workbook.load('Sheet1') # 写入数据行 for row_index, row_data in enumerate(data): for col_index, cell_data in enumerate(row_data): sheet.write(row_index, col_index, cell_data) # 保存Workbook到文件 workbook.save(get_cur_time()[0] + '.xls') def get_cur_time(): now = datetime.datetime.now() year = now.year month = now.month day = now.day if month < 10: month = "0" + str(month) if day < 10: day = "0" + str(day) cur_time = str(year) + str(month) + str(day) cur_time2 = str(year) + "-" + str(month) + "-" + str(day) # cur_time = '20231011' # cur_time2 = '2023-10-11' return cur_time, cur_time2 def get_head_push_auth(): login_res = requests.post( url=login_push_url, json=login_push_data, timeout=(3, 5)) text = json.loads(login_res.text) if text["status"]: token = text["data"]["accessToken"] return token else: print("获取认证失败") return None def upload_data_to_system(token_push): data = { "funcModule": "数据表信息列表", "funcOperation": "新增", "data": [ {"dataItemNo": "C01100007|Forecast_Price|ACN", "dataDate": get_cur_time()[0], "dataStatus": "add", # "dataValue": 7100 "dataValue": forecast_price() } ] } headers = {"Authorization": token_push} res = requests.post(url=upload_url, headers=headers, json=data, timeout=(3, 5)) print(res.text) # def upload_data_to_system(token): # data = { # "funcModule": "数据表信息列表", # "funcOperation": "新增", # "data": [ # {"dataItemNo": "C01100036|Forecast_ Price|ACN", # "dataDate": '20230706', # "dataStatus": "add", # "dataValue": 3780.0 # } # ] # } # headers = {"Authorization": token} # res = requests.post(url=upload_url, headers=headers, json=data, timeout=(3, 5)) # print(res.text) def forecast_price(): # df_test = pd.read_csv('定价模型数据收集0212.csv') df_test = pd.read_excel('丙烯基础数据收集表.xlsx') df_test.drop([0], inplace=True) df_test['Date'] = pd.to_datetime( df_test['Date'], format='%Y-%m-%d', infer_datetime_format=True) # 将缺失值补为前一个或者后一个数值 df_test_1 = df_test df_test_1 = df_test_1.fillna(df_test.ffill()) df_test_1 = df_test_1.fillna(df_test_1.bfill()) # 选择用于模型训练的列名称 col_for_training = df_test_1.columns import joblib Best_model_DalyLGPrice = joblib.load("日度价格预测_丙烯最佳模型.pkl") # 最新的一天为最后一行的数据 df_test_1_Day = df_test_1.tail(1) # 移除不需要的列 df_test_1_Day.index = df_test_1_Day["Date"] df_test_1_Day = df_test_1_Day.drop(["Date"], axis=1) df_test_1_Day = df_test_1_Day.drop('Price', axis=1) df_test_1_Day = df_test_1_Day.dropna() # 转换数据类型 df_test_1_Day = df_test_1_Day.astype(float) # df_test_1_Day # 预测今日价格,显示至小数点后两位 Ypredict_Today = Best_model_DalyLGPrice.predict(df_test_1_Day) df_test_1_Day['日度预测价格'] = Ypredict_Today print(df_test_1_Day['日度预测价格']) a = df_test_1_Day['日度预测价格'] a = a[0] a = float(a) a = round(a, 2) return a def optimize_Model(): from sklearn.model_selection import train_test_split from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.feature_selection import SelectFromModel from sklearn.metrics import mean_squared_error, r2_score import pandas as pd pd.set_option('display.max_rows', 40) pd.set_option('display.max_columns', 40) df_test = pd.read_excel('丙烯基础数据收集表.xlsx') df_test.drop([0], inplace=True) df_test['Date'] = pd.to_datetime( df_test['Date'], format='%Y-%m-%d', infer_datetime_format=True) # 查看每个特征缺失值数量 MisVal_Check = df_test.isnull().sum().sort_values(ascending=False) # 去掉缺失值百分比>0.4的特征,去掉这些特征后的新表格命名为df_test_1 df_MisVal_Check = pd.DataFrame(MisVal_Check,) df_MisVal_Check_1 = df_MisVal_Check.reset_index() df_MisVal_Check_1.columns = ['Variable_Name', 'Missing_Number'] df_MisVal_Check_1['Missing_Number'] = df_MisVal_Check_1['Missing_Number'] / \ len(df_test) df_test_1 = df_test.drop( df_MisVal_Check_1[df_MisVal_Check_1['Missing_Number'] > 0.4].Variable_Name, axis=1) # 将缺失值补为前一个或者后一个数值 df_test_1 = df_test df_test_1 = df_test_1.fillna(df_test.ffill()) df_test_1 = df_test_1.fillna(df_test_1.bfill()) df_test_1["Date"] = pd.to_datetime(df_test_1["Date"]) df_test_1.index = df_test_1["Date"] df_test_1 = df_test_1.drop(["Date"], axis=1) df_test_1 = df_test_1.astype('float') import numpy as np import pandas as pd from pandas import Series, DataFrame import matplotlib.pyplot as plt import sklearn.datasets as datasets # 导入机器学习算法模型 from sklearn.linear_model import Lasso from xgboost import XGBRegressor from datetime import datetime import statsmodels.api as sm from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator import plotly.express as px import plotly.graph_objects as go import xgboost as xgb from xgboost import plot_importance, plot_tree from sklearn.metrics import mean_absolute_error from statsmodels.tools.eval_measures import mse, rmse from sklearn.model_selection import GridSearchCV from xgboost import XGBRegressor import warnings import pickle from sklearn.metrics import mean_squared_error # 切割训练数据和样本数据 from sklearn.model_selection import train_test_split # 用于模型评分 from sklearn.metrics import r2_score dataset1 = df_test_1.drop('Price', axis=1) # .astype(float) y = df_test_1['Price'] x = dataset1 train = x target = y # 切割数据样本集合测试集 X_train, x_test, y_train, y_true = train_test_split( train, target, test_size=0.2, random_state=0) # 模型缩写 Lasso = Lasso(random_state=0) XGBR = XGBRegressor(random_state=0) # 训练模型 Lasso.fit(X_train, y_train) XGBR.fit(X_train, y_train) # 模型拟合 y_pre_Lasso = Lasso.predict(x_test) y_pre_XGBR = XGBR.predict(x_test) # 计算Lasso、XGBR、RandomForestR、AdaBoostR、GradientBoostingR、BaggingRegressor各模型的R² Lasso_score = r2_score(y_true, y_pre_Lasso) XGBR_score = r2_score(y_true, y_pre_XGBR) # 计算Lasso、XGBR的MSE和RMSE Lasso_MSE = mean_squared_error(y_true, y_pre_Lasso) XGBR_MSE = mean_squared_error(y_true, y_pre_XGBR) Lasso_RMSE = np.sqrt(Lasso_MSE) XGBR_RMSE = np.sqrt(XGBR_MSE) # 将不同模型的不同误差值整合成一个表格 model_results = pd.DataFrame([['Lasso', Lasso_RMSE, Lasso_score], ['XgBoost', XGBR_RMSE, XGBR_score]], columns=['模型(Model)', '均方根误差(RMSE)', 'R^2 score']) # 将模型名称(Model)列设置为索引 model_results1 = model_results.set_index('模型(Model)') model_results1 # 定义plot_feature_importance函数,该函数用于计算特征重要性。此部分代码无需调整 def plot_feature_importance(importance, names, model_type): feature_importance = np.array(importance) feature_names = np.array(names) data = {'feature_names': feature_names, 'feature_importance': feature_importance} fi_df = pd.DataFrame(data) fi_df.sort_values(by=['feature_importance'], ascending=False, inplace=True) plt.figure(figsize=(10, 8)) sn.barplot(x=fi_df['feature_importance'], y=fi_df['feature_names']) plt.title(model_type + " "+'FEATURE IMPORTANCE') plt.xlabel('FEATURE IMPORTANCE') plt.ylabel('FEATURE NAMES') from pylab import mpl mpl.rcParams['font.sans-serif'] = ['SimHei'] # Xgboost 模型参数优化-初步 # 参考: https://juejin.im/post/6844903661013827598 # 每次调参时,备选参数数值以同数量级的1、3、10设置即可(比如设置1、3、10,或0.1、0.3、1.0,或0.01,0.03,0.10即可) from xgboost import XGBRegressor from sklearn.model_selection import GridSearchCV estimator = XGBRegressor(random_state=0, nthread=4, seed=0 ) parameters = { 'max_depth': range(2, 11, 2), # 树的最大深度 'n_estimators': range(50, 101, 10), # 迭代次数 'learning_rate': [0.01, 0.03, 0.1, 0.3, 0.5, 1] } grid_search_XGB = GridSearchCV( estimator=estimator, param_grid=parameters, # n_jobs = 10, cv=3, verbose=True ) grid_search_XGB.fit(X_train, y_train) # 如果电脑在此步骤报错,可能是因为计算量太大,超过硬件可支持程度,可注释掉“n_jobs=10”一行 best_parameters = grid_search_XGB.best_estimator_.get_params() y_pred = grid_search_XGB.predict(x_test) op_XGBR_score = r2_score(y_true, y_pred) op_XGBR_MSE = mean_squared_error(y_true, y_pred) op_XGBR_RMSE = np.sqrt(op_XGBR_MSE) model_results2 = pd.DataFrame([['Optimized_Xgboost', op_XGBR_RMSE, op_XGBR_score]], columns=['模型(Model)', '均方根误差(RMSE)', 'R^2 score']) model_results2 = model_results2.set_index('模型(Model)') results = pd.concat([model_results1, model_results2], ignore_index=False) import pickle Pkl_Filename = "日度价格预测_丙烯最佳模型.pkl" with open(Pkl_Filename, 'wb') as file: pickle.dump(grid_search_XGB, file) def queryDataListItemNos(token=None): df = pd.read_excel('丙烯基础数据收集表.xlsx') dataItemNoList = df.iloc[0].tolist()[1:] if token is None: token = get_head_auth() if not token: print('token获取失败') return # 获取当前日期 from datetime import datetime, timedelta current_date = datetime.now() # 获取当月1日 first_day_of_month = current_date.replace(day=1) # 格式化为 YYYYMMDD 格式 dateEnd = current_date.strftime('%Y%m%d') dateStart = first_day_of_month.strftime('%Y%m%d') # dateStart = '20241026' search_value = get_queryDataListItemNos_value( token, queryDataListItemNos_url, dataItemNoList, dateStart, dateEnd) data_df = pd.DataFrame(search_value) data_df["dataDate"] = pd.to_datetime(data_df["dataDate"]) data_df["dataDate"] = data_df["dataDate"].dt.strftime('%Y-%m-%d') save_queryDataListItemNos_xls(data_df, dataItemNoList) print('当月数据更新完成') def save_queryDataListItemNos_xls(data_df, dataItemNoList): from datetime import datetime, timedelta current_year_month = datetime.now().strftime('%Y-%m') grouped = data_df.groupby("dataDate") # 使用openpyxl打开xlsx文件 from openpyxl import load_workbook workbook = load_workbook('丙烯基础数据收集表.xlsx') # 创建新工作簿 new_workbook = load_workbook('丙烯基础数据收集表.xlsx') for sheetname in workbook.sheetnames: sheet = workbook[sheetname] new_sheet = new_workbook[sheetname] current_year_month_row = 0 # 查找当前月份数据起始行 for row_idx, row in enumerate(sheet.iter_rows(values_only=True), 1): if str(row[0]).startswith(current_year_month): current_year_month_row += 1 # 追加新数据 if sheetname == workbook.sheetnames[0]: start_row = sheet.max_row - current_year_month_row + 1 for row_idx, (date, group) in enumerate(grouped, start=start_row): new_sheet.cell(row=row_idx, column=1, value=date) for j, dataItemNo in enumerate(dataItemNoList, start=2): if group[group["dataItemNo"] == dataItemNo]["dataValue"].values: new_sheet.cell(row=row_idx, column=j, value=group[group["dataItemNo"] == dataItemNo]["dataValue"].values[0]) # 保存修改后的xlsx文件 new_workbook.save("丙烯基础数据收集表.xlsx") def get_queryDataListItemNos_value(token, url, dataItemNoList, dateStart, dateEnd): search_data = { "funcModule": "数据项", "funcOperation": "查询", "data": { "dateStart": dateStart, "dateEnd": dateEnd, "dataItemNoList": dataItemNoList # 数据项编码,代表 brent最低价和最高价 } } headers = {"Authorization": token} search_res = requests.post( url=url, headers=headers, json=search_data, timeout=(3, 5)) search_value = json.loads(search_res.text)["data"] if search_value: return search_value else: return None def read_xls_data(): global one_cols, two_cols # 打开 XLS 文件 workbook = xlrd.open_workbook(read_file_path_name) # 获取所有表格名称 # sheet_names = workbook.sheet_names() # 选择第一个表格 sheet = workbook.sheet_by_index(0) # 获取行数和列数 num_rows = sheet.nrows # num_cols = sheet.ncols # 遍历每一行,获取单元格数据 # for i in range(num_rows): # row_data = sheet.row_values(i) # one_cols.append(row_data) # two_cols.append(row_data[1]) row_data = sheet.row_values(1) one_cols = row_data # 关闭 XLS 文件 # workbook.close() def start(): read_xls_data() token = get_head_auth() if not token: return token_push = get_head_push_auth() if not token_push: return datas = get_data_value(token, one_cols[1:]) # if not datas: # return # data_list = [two_cols, one_cols] append_rows = [get_cur_time()[1]] dataItemNo_dataValue = {} for data_value in datas: if "dataValue" not in data_value: print(data_value) dataItemNo_dataValue[data_value["dataItemNo"]] = "" else: dataItemNo_dataValue[data_value["dataItemNo"] ] = data_value["dataValue"] for value in one_cols[1:]: if value in dataItemNo_dataValue: append_rows.append(dataItemNo_dataValue[value]) else: append_rows.append("") save_xls(append_rows) optimize_Model() upload_data_to_system(token_push) # data_list.append(three_cols) # write_xls(data_list) def start_1(): read_xls_data() token = get_head_auth() if not token: return datas = get_data_value(token, one_cols[1:]) # if not datas: # return # data_list = [two_cols, one_cols] append_rows = [get_cur_time()[1]] dataItemNo_dataValue = {} for data_value in datas: if "dataValue" not in data_value: print(data_value) dataItemNo_dataValue[data_value["dataItemNo"]] = "" else: dataItemNo_dataValue[data_value["dataItemNo"] ] = data_value["dataValue"] for value in one_cols[1:]: if value in dataItemNo_dataValue: append_rows.append(dataItemNo_dataValue[value]) else: append_rows.append("") save_xls_1(append_rows) # data_list.append(three_cols) # write_xls(data_list) def save_xls_1(append_rows): # 打开xls文件 workbook = xlrd.open_workbook('丙烯基础数据收集表.xls') # 获取所有sheet的个数 sheet_count = len(workbook.sheet_names()) # 获取所有sheet的名称 sheet_names = workbook.sheet_names() new_workbook = xlwt.Workbook() for i in range(sheet_count): # 获取当前sheet sheet = workbook.sheet_by_index(i) # 获取sheet的行数和列数 row_count = sheet.nrows - 1 col_count = sheet.ncols # 获取原有数据 data = [] for row in range(row_count): row_data = [] for col in range(col_count): row_data.append(sheet.cell_value(row, col)) data.append(row_data) # 创建xlwt的Workbook对象 # 创建sheet new_sheet = new_workbook.add_sheet(sheet_names[i]) # 将原有的数据写入新的sheet for row in range(row_count): for col in range(col_count): new_sheet.write(row, col, data[row][col]) if i == 0: # 在新的sheet中添加数据 for col in range(col_count): new_sheet.write(row_count, col, append_rows[col]) # 保存新的xls文件 new_workbook.save("丙烯基础数据收集表.xls") def check_data(dataItemNo): token = get_head_auth() if not token: return datas = get_data_value(token, dataItemNo) if not datas: return def save_xls(append_rows): # 打开xls文件 workbook = xlrd.open_workbook('丙烯基础数据收集表.xls') # 获取所有sheet的个数 sheet_count = len(workbook.sheet_names()) # 获取所有sheet的名称 sheet_names = workbook.sheet_names() new_workbook = xlwt.Workbook() for i in range(sheet_count): # 获取当前sheet sheet = workbook.sheet_by_index(i) # 获取sheet的行数和列数 row_count = sheet.nrows col_count = sheet.ncols # 获取原有数据 data = [] for row in range(row_count): row_data = [] for col in range(col_count): row_data.append(sheet.cell_value(row, col)) data.append(row_data) # 创建xlwt的Workbook对象 # 创建sheet new_sheet = new_workbook.add_sheet(sheet_names[i]) # 将原有的数据写入新的sheet for row in range(row_count): for col in range(col_count): new_sheet.write(row, col, data[row][col]) if i == 0: # 在新的sheet中添加数据 for col in range(col_count): new_sheet.write(row_count, col, append_rows[col]) # 保存新的xls文件 new_workbook.save("丙烯基础数据收集表.xls") if __name__ == "__main__": # start() queryDataListItemNos() optimize_Model() forecast_price() upload_data_to_system(token_push=get_head_push_auth())