{ "cells": [ { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "import requests\n", "import json\n", "import xlrd\n", "import xlwt\n", "from datetime import datetime, timedelta \n", "import time\n", "import pandas as pd\n", "import numpy as np\n", "# 变量定义\n", "login_url = \"http://10.200.32.39/jingbo-api/api/server/login\"\n", "search_url = \"http://10.200.32.39/jingbo-api/api/warehouse/dwDataItem/queryByItemNos\"\n", "\n", "login_push_url = \"http://10.200.32.39/jingbo-api/api/server/login\"\n", "upload_url = \"http://10.200.32.39/jingbo-api/api/dw/dataValue/pushDataValueList\"\n", "\n", "login_data = {\n", " \"data\": {\n", " \"account\": \"api_dev\",\n", " \"password\": \"ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=\",\n", " \"tenantHashCode\": \"8a4577dbd919675758d57999a1e891fe\",\n", " \"terminal\": \"API\"\n", " },\n", " \"funcModule\": \"API\",\n", " \"funcOperation\": \"获取token\"\n", "}\n", "\n", "login_push_data = {\n", " \"data\": {\n", " \"account\": \"api_dev\",\n", " \"password\": \"ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=\",\n", " \"tenantHashCode\": \"8a4577dbd919675758d57999a1e891fe\",\n", " \"terminal\": \"API\"\n", " },\n", " \"funcModule\": \"API\",\n", " \"funcOperation\": \"获取token\"\n", "}\n", "\n", "read_file_path_name = \"定性模型数据项12-11.xls\"\n", "one_cols = []\n", "two_cols = []\n", "\n", "\n", "\n", "\n", "def start(date=''):\n", " workbook = xlrd.open_workbook(read_file_path_name)\n", "\n", "\n", "\n", " # 选择第一个表格\n", " sheet = workbook.sheet_by_index(0)\n", "\n", " # 获取行数和列数\n", " num_rows = sheet.nrows\n", "\n", "\n", "\n", " row_data = sheet.row_values(1)\n", " one_cols = row_data\n", "\n", "\n", " login_res = requests.post(url=login_url, json=login_data, timeout=(3, 5))\n", " text = json.loads(login_res.text)\n", " if text[\"status\"]:\n", " token = text[\"data\"][\"accessToken\"]\n", " else:\n", " print(\"获取认证失败\")\n", " token = None\n", "\n", " if date == '':\n", " now = datetime.now()\n", " else:\n", " now = date\n", " year = now.year\n", " month = now.month\n", " day = now.day\n", "\n", " if month < 10:\n", " month = \"0\" + str(month)\n", " if day < 10:\n", " day = \"0\" + str(day)\n", " cur_time = str(year) + str(month) + str(day)\n", " cur_time2 = str(year) + \"-\" + str(month) + \"-\" + str(day)\n", " search_data = {\n", " \"data\": {\n", " \"date\": cur_time,\n", " \"dataItemNoList\": one_cols[1:]\n", " },\n", " \"funcModule\": \"数据项\",\n", " \"funcOperation\": \"查询\"\n", " }\n", " headers = {\"Authorization\": token}\n", " search_res = requests.post(url=search_url, headers=headers, json=search_data, timeout=(3, 5))\n", " search_value = json.loads(search_res.text)[\"data\"]\n", "# datas = search_value\n", " if search_value:\n", " datas = search_value\n", " else :\n", " datas = None\n", " \n", "\n", " append_rows = [cur_time2]\n", " dataItemNo_dataValue = {}\n", "# for data_value in datas:\n", "# dataItemNo_dataValue[data_value[\"dataItemNo\"]] = data_value[\"dataValue\"]\n", " for data_value in datas:\n", " if \"dataValue\" not in data_value:\n", " print(data_value)\n", " dataItemNo_dataValue[data_value[\"dataItemNo\"]] = \"\"\n", " else:\n", " dataItemNo_dataValue[data_value[\"dataItemNo\"]] = data_value[\"dataValue\"]\n", " for value in one_cols[1:]:\n", " if value in dataItemNo_dataValue:\n", " append_rows.append(dataItemNo_dataValue[value])\n", " else:\n", " append_rows.append(\"\")\n", "\n", " workbook = xlrd.open_workbook('定性模型数据项12-11.xls')\n", "\n", " # 获取所有sheet的个数\n", " sheet_count = len(workbook.sheet_names())\n", "\n", " # 获取所有sheet的名称\n", " sheet_names = workbook.sheet_names()\n", "\n", " new_workbook = xlwt.Workbook()\n", " for i in range(sheet_count):\n", " # 获取当前sheet\n", " sheet = workbook.sheet_by_index(i)\n", "\n", " # 获取sheet的行数和列数\n", " row_count = sheet.nrows\n", " col_count = sheet.ncols\n", " # 获取原有数据\n", " data = []\n", " for row in range(row_count):\n", " row_data = []\n", " for col in range(col_count):\n", " row_data.append(sheet.cell_value(row, col))\n", " data.append(row_data)\n", " # 创建xlwt的Workbook对象\n", " # 创建sheet\n", " new_sheet = new_workbook.add_sheet(sheet_names[i])\n", "\n", " # 将原有的数据写入新的sheet\n", " for row in range(row_count):\n", " for col in range(col_count):\n", " new_sheet.write(row, col, data[row][col])\n", "\n", " if i == 0:\n", " # 在新的sheet中添加数据\n", " for col in range(col_count):\n", " new_sheet.write(row_count, col, append_rows[col])\n", "\n", " # 保存新的xls文件\n", " new_workbook.save(\"定性模型数据项12-11.xls\")\n", "\n", " df = pd.read_excel('定性模型数据项12-11.xls')\n", " df=df.fillna(df.ffill())\n", " df1 = df[-2:].reset_index()\n", " if df1.loc[1,'70号沥青开工率'] > 0.3:\n", " a = (df1.loc[1,'70号沥青开工率']-0.2)*5/0.1\n", " else :\n", " a = 0\n", " b = df1.loc[1,'资金因素']\n", " if df1.loc[1,'昨日计划提货偏差']>0:\n", " c = df1.loc[1,'昨日计划提货偏差']*10/2000\n", " else :\n", " c = df1.loc[1,'昨日计划提货偏差']*10/3000\n", " d = df1.loc[1,'生产情况']\n", " if df1.loc[1,'基质沥青库存']/265007 >0.8:\n", " e = (df1.loc[1,'基质沥青库存'] - df1.loc[0,'基质沥青库存'])*10/-5000\n", " else : \n", " e = 0\n", " f = df1.loc[1,'下游客户价格预期']\n", " if abs(df1.loc[1,'即期成本'] - df1.loc[0,'即期成本'])>=100:\n", " g = (df1.loc[1,'即期成本'] - df1.loc[0,'即期成本'])*50/100\n", " else :\n", " g = 0\n", " h = df1.loc[1,'订单结构']\n", " x = round(0.08*a+0*b+0.15*c+0.08*d +0.03*e +0.08*f +0.4*g+0.18*h+df1.loc[0,'京博指导价'],2)\n", "\n", " login_res1 = requests.post(url=login_push_url, json=login_push_data, timeout=(3, 5))\n", " text1 = json.loads(login_res1.text)\n", " token_push = text1[\"data\"][\"accessToken\"]\n", "\n", "\n", " data1 = {\n", " \"funcModule\": \"数据表信息列表\",\n", " \"funcOperation\": \"新增\",\n", " \"data\": [\n", " {\"dataItemNo\": \"C01100036|Forecast_Price|DX|ACN\",\n", " \"dataDate\": cur_time,\n", " \"dataStatus\": \"add\",\n", " \"dataValue\": x\n", " }\n", "\n", " ]\n", " }\n", " headers1 = {\"Authorization\": token_push}\n", " # res = requests.post(url=upload_url, headers=headers1, json=data1, timeout=(3, 5))\n", " \n", " \n", " \n", "def start_1():\n", " workbook = xlrd.open_workbook(read_file_path_name)\n", "\n", "\n", "\n", " # 选择第一个表格\n", " sheet = workbook.sheet_by_index(0)\n", "\n", " # 获取行数和列数\n", " num_rows = sheet.nrows\n", "\n", "\n", "\n", " row_data = sheet.row_values(1)\n", " one_cols = row_data\n", "\n", "\n", " login_res = requests.post(url=login_url, json=login_data, timeout=(3, 5))\n", " text = json.loads(login_res.text)\n", " if text[\"status\"]:\n", " token = text[\"data\"][\"accessToken\"]\n", " else:\n", " print(\"获取认证失败\")\n", " token = None\n", "\n", "\n", " now = datetime.now() - timedelta(days=1) \n", " year = now.year\n", " month = now.month\n", " day = now.day\n", "\n", " if month < 10:\n", " month = \"0\" + str(month)\n", " if day < 10:\n", " day = \"0\" + str(day)\n", " cur_time = str(year) + str(month) + str(day)\n", " cur_time2 = str(year) + \"-\" + str(month) + \"-\" + str(day)\n", " search_data = {\n", " \"data\": {\n", " \"date\": cur_time,\n", " \"dataItemNoList\": one_cols[1:]\n", " },\n", " \"funcModule\": \"数据项\",\n", " \"funcOperation\": \"查询\"\n", " }\n", " headers = {\"Authorization\": token}\n", " search_res = requests.post(url=search_url, headers=headers, json=search_data, timeout=(3, 5))\n", " search_value = json.loads(search_res.text)[\"data\"]\n", "# datas = search_value\n", " if search_value:\n", " datas = search_value\n", " else :\n", " datas = None\n", " \n", " \n", "\n", " append_rows = [cur_time2]\n", " dataItemNo_dataValue = {}\n", "# for data_value in datas:\n", "# dataItemNo_dataValue[data_value[\"dataItemNo\"]] = data_value[\"dataValue\"]\n", " for data_value in datas:\n", " if \"dataValue\" not in data_value:\n", " print(data_value)\n", " dataItemNo_dataValue[data_value[\"dataItemNo\"]] = \"\"\n", " else:\n", " dataItemNo_dataValue[data_value[\"dataItemNo\"]] = data_value[\"dataValue\"]\n", " for value in one_cols[1:]:\n", " if value in dataItemNo_dataValue:\n", " append_rows.append(dataItemNo_dataValue[value])\n", " else:\n", " append_rows.append(\"\")\n", "\n", " workbook = xlrd.open_workbook('定性模型数据项12-11.xls')\n", "\n", " # 获取所有sheet的个数\n", " sheet_count = len(workbook.sheet_names())\n", "\n", " # 获取所有sheet的名称\n", " sheet_names = workbook.sheet_names()\n", "\n", " new_workbook = xlwt.Workbook()\n", " for i in range(sheet_count):\n", " # 获取当前sheet\n", " sheet = workbook.sheet_by_index(i)\n", "\n", " # 获取sheet的行数和列数\n", " row_count = sheet.nrows - 1\n", " col_count = sheet.ncols\n", " # 获取原有数据\n", " data = []\n", " for row in range(row_count):\n", " row_data = []\n", " for col in range(col_count):\n", " row_data.append(sheet.cell_value(row, col))\n", " data.append(row_data)\n", " # 创建xlwt的Workbook对象\n", " # 创建sheet\n", " new_sheet = new_workbook.add_sheet(sheet_names[i])\n", "\n", " # 将原有的数据写入新的sheet\n", " for row in range(row_count):\n", " for col in range(col_count):\n", " new_sheet.write(row, col, data[row][col])\n", "\n", " if i == 0:\n", " # 在新的sheet中添加数据\n", " for col in range(col_count):\n", " new_sheet.write(row_count, col, append_rows[col])\n", "\n", " # 保存新的xls文件\n", " new_workbook.save(\"定性模型数据项12-11.xls\")\n", "\n", "\n", "def start_2(date):\n", " workbook = xlrd.open_workbook(read_file_path_name)\n", "\n", "\n", "\n", " # 选择第一个表格\n", " sheet = workbook.sheet_by_index(0)\n", "\n", " # 获取行数和列数\n", " num_rows = sheet.nrows\n", "\n", "\n", "\n", " row_data = sheet.row_values(1)\n", " one_cols = row_data\n", "\n", "\n", " login_res = requests.post(url=login_url, json=login_data, timeout=(3, 5))\n", " text = json.loads(login_res.text)\n", " if text[\"status\"]:\n", " token = text[\"data\"][\"accessToken\"]\n", " else:\n", " print(\"获取认证失败\")\n", " token = None\n", "\n", "\n", " now = date\n", " year = now.year\n", " month = now.month\n", " day = now.day\n", "\n", " if month < 10:\n", " month = \"0\" + str(month)\n", " if day < 10:\n", " day = \"0\" + str(day)\n", " cur_time = str(year) + str(month) + str(day)\n", " cur_time2 = str(year) + \"-\" + str(month) + \"-\" + str(day)\n", " search_data = {\n", " \"data\": {\n", " \"date\": cur_time,\n", " \"dataItemNoList\": one_cols[1:]\n", " },\n", " \"funcModule\": \"数据项\",\n", " \"funcOperation\": \"查询\"\n", " }\n", " headers = {\"Authorization\": token}\n", " search_res = requests.post(url=search_url, headers=headers, json=search_data, timeout=(3, 5))\n", " search_value = json.loads(search_res.text)[\"data\"]\n", "# datas = search_value\n", " if search_value:\n", " datas = search_value\n", " else :\n", " datas = None\n", " \n", "\n", " append_rows = [cur_time2]\n", " dataItemNo_dataValue = {}\n", "# for data_value in datas:\n", "# dataItemNo_dataValue[data_value[\"dataItemNo\"]] = data_value[\"dataValue\"]\n", " for data_value in datas:\n", " if \"dataValue\" not in data_value:\n", " print(data_value)\n", " dataItemNo_dataValue[data_value[\"dataItemNo\"]] = \"\"\n", " else:\n", " dataItemNo_dataValue[data_value[\"dataItemNo\"]] = data_value[\"dataValue\"]\n", " for value in one_cols[1:]:\n", " if value in dataItemNo_dataValue:\n", " append_rows.append(dataItemNo_dataValue[value])\n", " else:\n", " append_rows.append(\"\")\n", "\n", " workbook = xlrd.open_workbook('定性模型数据项12-11.xls')\n", "\n", " # 获取所有sheet的个数\n", " sheet_count = len(workbook.sheet_names())\n", "\n", " # 获取所有sheet的名称\n", " sheet_names = workbook.sheet_names()\n", "\n", " new_workbook = xlwt.Workbook()\n", " for i in range(sheet_count):\n", " # 获取当前sheet\n", " sheet = workbook.sheet_by_index(i)\n", "\n", " # 获取sheet的行数和列数\n", " row_count = sheet.nrows\n", " col_count = sheet.ncols\n", " # 获取原有数据\n", " data = []\n", " for row in range(row_count):\n", " row_data = []\n", " for col in range(col_count):\n", " row_data.append(sheet.cell_value(row, col))\n", " data.append(row_data)\n", " # 创建xlwt的Workbook对象\n", " # 创建sheet\n", " new_sheet = new_workbook.add_sheet(sheet_names[i])\n", "\n", " # 将原有的数据写入新的sheet\n", " for row in range(row_count):\n", " for col in range(col_count):\n", " new_sheet.write(row, col, data[row][col])\n", "\n", " if i == 0:\n", " # 在新的sheet中添加数据\n", " for col in range(col_count):\n", " new_sheet.write(row_count, col, append_rows[col])\n", "\n", " # 保存新的xls文件\n", " new_workbook.save(\"定性模型数据项12-11.xls\")\n", " print('关闭文件')\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "if __name__ == \"__main__\":\n", " pass\n", " # 需要单独运行放开\n", " \n", " # start_1()\n", "\n", " # 每天定时12点运行\n", " # while True:\n", " # # 获取当前时间\n", " # current_time = time.strftime(\"%H:%M:%S\", time.localtime())\n", " # current_time_1 = time.strftime(\"%H:%M:%S\", time.localtime())\n", "\n", " # # 判断当前时间是否为执行任务的时间点\n", " # if current_time == \"12:00:00\":\n", " # print(\"执行定时任务\")\n", " # start()\n", "\n", " # # 休眠1秒钟,避免过多占用CPU资源\n", " # time.sleep(1)\n", " \n", " # elif current_time_1 == \"20:00:00\":\n", " # print(\"更新数据\")\n", " # start_1()\n", " # time.sleep(1)\n", "\n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "20230803\n", "20230804\n", "20230805\n", "20230806\n", "20230807\n", "20230808\n", "20230809\n", "20230810\n", "20230811\n", "20230812\n", "20230813\n", "20230814\n", "20230815\n", "20230816\n", "20230817\n", "20230818\n", "20230819\n", "20230820\n", "20230821\n", "20230822\n", "20230823\n", "20230824\n", "20230825\n", "20230826\n", "20230827\n", "20230828\n", "20230829\n", "20230830\n", "20230831\n", "20230901\n", "20230902\n", "20230903\n", "20230904\n", "20230905\n", "20230906\n", "20230907\n", "20230908\n", "20230909\n", "20230910\n", "20230911\n", "20230912\n", "20230913\n", "20230914\n", "20230915\n", "20230916\n", "20230917\n", "20230918\n", "20230919\n", "20230920\n", "20230921\n", "20230922\n", "20230923\n", "20230924\n", "20230925\n", "20230926\n", "20230927\n", "20230928\n", "20230929\n", "20230930\n", "20231001\n", "20231002\n", "20231003\n", "20231004\n", "20231005\n", "20231006\n", "20231007\n", "20231008\n", "20231009\n", "20231010\n", "20231011\n", "20231012\n", "20231013\n", "20231014\n", "20231015\n", "20231016\n", "20231017\n", "20231018\n", "20231019\n", "20231020\n", "20231021\n", "20231022\n", "20231023\n", "20231024\n", "20231025\n", "20231026\n", "20231027\n", "20231028\n", "20231029\n", "20231030\n", "20231031\n", "20231101\n", "20231102\n", "20231103\n", "20231104\n", "20231105\n", "20231106\n", "20231107\n", "20231108\n", "20231109\n", "20231110\n", "20231111\n", "20231112\n", "20231113\n", "20231114\n", "20231115\n", "20231116\n", "20231117\n", "20231118\n", "20231119\n", "20231120\n", "20231121\n", "20231122\n", "20231123\n", "20231124\n", "20231125\n", "20231126\n", "20231127\n", "20231128\n", "20231129\n", "20231130\n", "20231201\n", "20231202\n", "20231203\n", "20231204\n", "20231205\n", "20231206\n", "20231207\n", "20231208\n", "20231209\n", "20231210\n", "20231211\n", "20231212\n", "20231213\n", "{'dataDate': '20231213', 'dataItemNo': 'SDHYDDJG'}\n", "{'dataDate': '20231213', 'dataItemNo': 'SDHYSCQK'}\n", "{'dataDate': '20231213', 'dataItemNo': 'SDHYZJYS'}\n", "20231214\n", "20231215\n", "20231216\n", "20231217\n", "20231218\n", "20231219\n", "20231220\n", "{'dataDate': '20231220', 'dataItemNo': 'SDHYDDJG'}\n", "{'dataDate': '20231220', 'dataItemNo': 'SDHYSCQK'}\n", "{'dataDate': '20231220', 'dataItemNo': 'SDHYZJYS'}\n", "20231221\n", "20231222\n", "20231223\n", "20231224\n", "20231225\n", "20231226\n", "20231227\n", "{'dataDate': '20231227', 'dataItemNo': 'SDHYDDJG'}\n", "{'dataDate': '20231227', 'dataItemNo': 'SDHYSCQK'}\n", "{'dataDate': '20231227', 'dataItemNo': 'SDHYZJYS'}\n", "20231228\n", "20231229\n", "20231230\n", "20231231\n", "20240101\n", "20240102\n", "20240103\n", "{'dataDate': '20240103', 'dataItemNo': 'SDHYDDJG'}\n", "{'dataDate': '20240103', 'dataItemNo': 'SDHYSCQK'}\n", "{'dataDate': '20240103', 'dataItemNo': 'SDHYZJYS'}\n", "20240104\n", "20240105\n", "20240106\n", "20240107\n", "20240108\n", "20240109\n", "20240110\n", "{'dataDate': '20240110', 'dataItemNo': 'SDHYDDJG'}\n", "20240111\n", "20240112\n", "20240113\n", "20240114\n", "20240115\n", "20240116\n", "20240117\n", "{'dataDate': '20240117', 'dataItemNo': 'SDHYDDJG'}\n", "{'dataDate': '20240117', 'dataItemNo': 'SDHYSCQK'}\n", "20240118\n", "20240119\n", "20240120\n", "20240121\n", "20240122\n", "20240123\n", "20240124\n", "{'dataDate': '20240124', 'dataItemNo': 'SDHYDDJG'}\n", "{'dataDate': '20240124', 'dataItemNo': 'SDHYSCQK'}\n", "20240125\n", "20240126\n", "20240127\n", "20240128\n", "20240129\n", "20240130\n", "20240131\n", "{'dataDate': '20240131', 'dataItemNo': 'SDHYDDJG'}\n", "{'dataDate': '20240131', 'dataItemNo': 'SDHYSCQK'}\n", "20240201\n", "20240202\n", "20240203\n", "20240204\n", "20240205\n", "20240206\n", "20240207\n", "{'dataDate': '20240207', 'dataItemNo': 'SDHYDDJG'}\n", "{'dataDate': '20240207', 'dataItemNo': 'SDHYSCQK'}\n", "20240208\n", "20240209\n", "20240210\n", "20240211\n", "20240212\n", "20240213\n", "20240214\n", "{'dataDate': '20240214', 'dataItemNo': 'SDHYDDJG'}\n", "{'dataDate': '20240214', 'dataItemNo': 'SDHYSCQK'}\n", "20240215\n", "20240216\n", "20240217\n", "20240218\n", "20240219\n", "20240220\n", "20240221\n", "20240222\n", "20240223\n", "20240224\n", "20240225\n", "20240226\n", "20240227\n", "20240228\n", "20240229\n", "20240301\n", "20240302\n", "20240303\n", "20240304\n", "20240305\n", "20240306\n", "{'dataDate': '20240306', 'dataItemNo': 'SDHYDDJG'}\n", "{'dataDate': '20240306', 'dataItemNo': 'SDHYSCQK'}\n", "20240307\n", "20240308\n", "20240309\n", "20240310\n", "20240311\n", "20240312\n", "20240313\n", "{'dataDate': '20240313', 'dataItemNo': 'SDHYDDJG'}\n", "{'dataDate': '20240313', 'dataItemNo': 'SDHYSCQK'}\n", "20240314\n", "20240315\n", "20240316\n", "20240317\n", "20240318\n", "20240319\n", "20240320\n", "{'dataDate': '20240320', 'dataItemNo': 'SDHYDDJG'}\n", "{'dataDate': '20240320', 'dataItemNo': 'SDHYSCQK'}\n", "20240321\n", "20240322\n", "20240323\n", "20240324\n", "20240325\n", "20240326\n", "20240327\n", "{'dataDate': '20240327', 'dataItemNo': 'SDHYDDJG'}\n", "{'dataDate': '20240327', 'dataItemNo': 'SDHYSCQK'}\n", "20240328\n", "20240329\n", "20240330\n", "20240331\n", "20240401\n", "20240402\n", "20240403\n", "{'dataDate': '20240403', 'dataItemNo': 'SDHYDDJG'}\n", "{'dataDate': '20240403', 'dataItemNo': 'SDHYSCQK'}\n", "20240404\n", "20240405\n", "20240406\n", "20240407\n", "20240408\n", "20240409\n", "20240410\n", "{'dataDate': '20240410', 'dataItemNo': 'SDHYDDJG'}\n", "{'dataDate': '20240410', 'dataItemNo': 'SDHYSCQK'}\n", "20240411\n", "20240412\n", "20240413\n", "20240414\n", "20240415\n", "20240416\n", "20240417\n", "{'dataDate': '20240417', 'dataItemNo': 'SDHYDDJG'}\n", "{'dataDate': '20240417', 'dataItemNo': 'SDHYSCQK'}\n", "20240418\n", "20240419\n", "20240420\n", "20240421\n", "20240422\n", "20240423\n", "20240424\n", "{'dataDate': '20240424', 'dataItemNo': 'SDHYDDJG'}\n", "{'dataDate': '20240424', 'dataItemNo': 'SDHYSCQK'}\n", "20240425\n", "20240426\n", "20240427\n", "20240428\n", "20240429\n", "20240430\n", "20240501\n", "{'dataDate': '20240501', 'dataItemNo': 'SDHYDDJG'}\n", "{'dataDate': '20240501', 'dataItemNo': 'SDHYSCQK'}\n", "20240502\n", "20240503\n", "20240504\n", "20240505\n", "20240506\n", "20240507\n", "20240508\n", "20240509\n", "20240510\n", "20240511\n", "20240512\n", "20240513\n", "20240514\n", "20240515\n", "20240516\n", "20240517\n", "20240518\n", "20240519\n", "20240520\n", "20240521\n", "20240522\n", "20240523\n", "20240524\n", "20240525\n", "20240526\n", "20240527\n", "20240528\n", "20240529\n", "20240530\n", "20240531\n", "20240601\n", "20240602\n", "20240603\n", "20240604\n", "20240605\n", "{'dataDate': '20240605', 'dataItemNo': 'SDHYDDJG'}\n", "{'dataDate': '20240605', 'dataItemNo': 'SDHYSCQK'}\n", "20240606\n", "20240607\n", "20240608\n", "20240609\n", "20240610\n", "20240611\n", "20240612\n", "20240613\n", "20240614\n", "20240615\n", "20240616\n", "20240617\n", "20240618\n", "20240619\n", "20240620\n", "20240621\n", "20240622\n", "20240623\n", "20240624\n", "20240625\n", "20240626\n", "20240627\n", "20240628\n", "20240629\n", "20240630\n", "20240701\n", "20240702\n", "20240703\n", "20240704\n", "20240705\n", "20240706\n", "20240707\n", "20240708\n", "20240709\n", "20240710\n", "20240711\n", "20240712\n", "20240713\n", "20240714\n", "20240715\n", "20240716\n", "20240717\n", "20240718\n", "20240719\n", "20240720\n", "20240721\n", "20240722\n", "20240723\n", "20240724\n", "20240725\n", "20240726\n", "20240727\n", "20240728\n", "20240729\n", "20240730\n", "20240731\n", "20240801\n", "20240802\n", "20240803\n", "20240804\n", "20240805\n", "20240806\n", "20240807\n", "20240808\n", "20240809\n", "20240810\n", "20240811\n", "20240812\n", "20240813\n", "20240814\n", "20240815\n", "20240816\n", "20240817\n", "20240818\n", "20240819\n", "20240820\n", "20240821\n", "20240822\n", "20240823\n", "20240824\n", "20240825\n", "20240826\n", "20240827\n", "20240828\n", "20240829\n", "20240830\n", "20240831\n", "20240901\n", "20240902\n", "20240903\n", "20240904\n", "20240905\n", "20240906\n", "20240907\n", "20240908\n", "20240909\n", "20240910\n", "20240911\n", "20240912\n", "20240913\n", "20240914\n", "20240915\n", "20240916\n", "20240917\n", "20240918\n", "20240919\n", "20240920\n", "20240921\n", "20240922\n", "20240923\n", "20240924\n", "20240925\n", "20240926\n", "20240927\n", "20240928\n", "20240929\n", "20240930\n", "20241001\n", "20241002\n", "20241003\n", "20241004\n", "20241005\n", "20241006\n", "20241007\n", "20241008\n", "20241009\n", "20241010\n", "20241011\n", "20241012\n", "20241013\n", "20241014\n", "20241015\n", "20241016\n", "20241017\n", "20241018\n", "20241019\n", "20241020\n", "20241021\n", "20241022\n", "20241023\n", "20241024\n", "20241025\n", "20241026\n", "20241027\n", "20241028\n", "20241029\n", "20241030\n", "20241031\n", "20241101\n", "20241102\n", "20241103\n", "20241104\n", "20241105\n", "20241106\n", "20241107\n", "20241108\n", "20241109\n", "20241110\n", "20241111\n", "20241112\n", "20241113\n", "20241114\n", "20241115\n", "20241116\n", "20241117\n", "20241118\n", "20241119\n", "20241120\n", "20241121\n", "20241122\n", "20241123\n", "20241124\n", "20241125\n", "20241126\n", "20241127\n", "20241128\n", "20241129\n", "20241130\n", "20241201\n", "20241202\n", "20241203\n", "20241204\n", "20241205\n", "20241206\n", "20241207\n", "20241208\n", "20241209\n", "20241210\n", "20241211\n", "20241212\n", "20241213\n", "20241214\n", "20241215\n", "20241216\n", "20241217\n", "20241218\n", "20241219\n", "20241220\n", "20241221\n", "20241222\n", "20241223\n", "20241224\n", "20241225\n", "20241226\n", "20241227\n", "20241228\n", "20241229\n", "20241230\n", "20241231\n", "20250101\n" ] } ], "source": [ "from datetime import datetime, timedelta\n", "\n", "start_date = datetime(2023, 8, 3)\n", "end_date = datetime(2025, 1, 2)\n", "\n", "while start_date < end_date:\n", " print(start_date.strftime('%Y%m%d'))\n", " start(start_date)\n", " # start_1(start_date)\n", " start_date += timedelta(days=1)\n", " \n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.7" } }, "nbformat": 4, "nbformat_minor": 4 }