144 lines
6.1 KiB
Plaintext
144 lines
6.1 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 43,
|
||
|
"id": "9daadf20-caa6-4b25-901c-6cc3ef563f58",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"(135, 32)\n",
|
||
|
"(20, 4)\n",
|
||
|
"(135, 35)\n",
|
||
|
" ds NHITS Informer LSTM iTransformer TSMixer \\\n",
|
||
|
"0 2024-05-21 83.607803 85.574699 82.902397 86.689003 83.845596 \n",
|
||
|
"1 2024-05-22 83.306198 84.577400 82.204903 86.366203 83.341599 \n",
|
||
|
"2 2024-05-23 82.561203 83.894600 81.447899 85.681198 82.593300 \n",
|
||
|
"3 2024-05-24 82.007896 81.672203 81.100899 84.773598 82.038101 \n",
|
||
|
"4 2024-05-27 82.463600 81.498398 81.599297 85.471298 82.187202 \n",
|
||
|
"\n",
|
||
|
" TSMixerx PatchTST RNN GRU ... quantile_90 \\\n",
|
||
|
"0 85.564499 83.900002 60.229801 82.869698 ... 0.0149 \n",
|
||
|
"1 85.500900 82.637299 60.229698 82.206802 ... 0.0149 \n",
|
||
|
"2 85.219299 82.346603 60.229698 81.471298 ... 0.0149 \n",
|
||
|
"3 83.707901 81.840401 60.229599 81.120201 ... 0.0149 \n",
|
||
|
"4 83.175301 82.142998 60.229698 81.602699 ... 0.0145 \n",
|
||
|
"\n",
|
||
|
" quantile_10_price quantile_90_price min_within_quantile \\\n",
|
||
|
"0 81.993181 84.114909 82.757301 \n",
|
||
|
"1 80.966342 83.120312 82.173500 \n",
|
||
|
"2 80.432497 82.572265 81.447899 \n",
|
||
|
"3 80.907020 83.059412 81.100899 \n",
|
||
|
"4 81.935165 84.081757 82.010399 \n",
|
||
|
"\n",
|
||
|
" max_within_quantile min_model max_model 序号 lowprice highprice \n",
|
||
|
"0 83.954498 MLPMultivariate DLinear NaN NaN NaN \n",
|
||
|
"1 83.068497 MLPMultivariate NLinear NaN NaN NaN \n",
|
||
|
"2 82.452904 LSTM TiDE NaN NaN NaN \n",
|
||
|
"3 82.933502 LSTM DeepNPTS NaN NaN NaN \n",
|
||
|
"4 83.266098 DLinear TFT NaN NaN NaN \n",
|
||
|
"\n",
|
||
|
"[5 rows x 35 columns]\n",
|
||
|
" ds NHITS Informer LSTM iTransformer TSMixer \\\n",
|
||
|
"130 2024-12-03 72.612854 73.548740 73.456590 73.261700 72.531740 \n",
|
||
|
"131 2024-12-04 73.003940 73.408714 73.738144 73.359000 72.759056 \n",
|
||
|
"132 2024-12-05 72.435104 73.837450 73.900570 73.456290 72.775955 \n",
|
||
|
"133 2024-12-06 71.915250 73.683400 73.801330 73.549644 72.517870 \n",
|
||
|
"134 2024-12-09 72.446610 73.003040 74.081820 73.970030 72.687225 \n",
|
||
|
"\n",
|
||
|
" TSMixerx PatchTST RNN GRU ... quantile_90 \\\n",
|
||
|
"130 72.424950 73.314370 62.063490 73.14000 ... NaN \n",
|
||
|
"131 71.986694 74.242960 63.026990 73.08031 ... NaN \n",
|
||
|
"132 72.056160 73.494240 62.319950 73.15901 ... NaN \n",
|
||
|
"133 71.949066 73.083786 62.659557 73.37916 ... NaN \n",
|
||
|
"134 71.930230 72.724205 63.025295 73.40915 ... NaN \n",
|
||
|
"\n",
|
||
|
" quantile_10_price quantile_90_price min_within_quantile \\\n",
|
||
|
"130 NaN NaN 72.386850 \n",
|
||
|
"131 NaN NaN 72.940490 \n",
|
||
|
"132 NaN NaN 73.387985 \n",
|
||
|
"133 NaN NaN 73.056526 \n",
|
||
|
"134 NaN NaN 73.581210 \n",
|
||
|
"\n",
|
||
|
" max_within_quantile min_model max_model 序号 lowprice highprice \n",
|
||
|
"130 73.48625 TCN FEDformer 4.0 71.68 73.93 \n",
|
||
|
"131 73.58921 TCN FEDformer 3.0 72.25 74.28 \n",
|
||
|
"132 73.36786 TCN FEDformer 2.0 71.80 72.92 \n",
|
||
|
"133 73.30574 TCN FEDformer 1.0 70.85 72.19 \n",
|
||
|
"134 73.06101 TCN FEDformer NaN NaN NaN \n",
|
||
|
"\n",
|
||
|
"[5 rows x 35 columns]\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"import sqlite3\n",
|
||
|
"import os\n",
|
||
|
"import pandas as pd\n",
|
||
|
"\n",
|
||
|
"# 预测价格数据\n",
|
||
|
"dbfilename = os.path.join(r'D:\\code\\PriceForecast\\yuanyoudataset','jbsh_yuanyou.db')\n",
|
||
|
"conn = sqlite3.connect(dbfilename)\n",
|
||
|
"query = 'SELECT * FROM testandpredict_groupby'\n",
|
||
|
"df1 = pd.read_sql_query(query, conn)\n",
|
||
|
"df1['ds'] = pd.to_datetime(df1['ds'])\n",
|
||
|
"conn.close()\n",
|
||
|
"print(df1.shape)\n",
|
||
|
"# 最高最低价\n",
|
||
|
"xlsfilename = os.path.join(r'D:\\code\\PriceForecast\\yuanyoudataset','数据项下载.xls')\n",
|
||
|
"df2 = pd.read_excel(xlsfilename)[5:]\n",
|
||
|
"df2 = df2.rename(columns = {'数据项名称':'ds','布伦特最低价':'lowprice','布伦特最高价':'highprice'})\n",
|
||
|
"df2['ds'] = pd.to_datetime(df2['ds'])\n",
|
||
|
"\n",
|
||
|
"print(df2.shape)\n",
|
||
|
"df = pd.merge(df1,df2,on='ds',how='outer')\n",
|
||
|
"\n",
|
||
|
"df = df.reindex()\n",
|
||
|
"\n",
|
||
|
"print(df.shape)\n",
|
||
|
"\n",
|
||
|
"df.to_csv(os.path.join(r'D:\\code\\PriceForecast\\yuanyoudataset','123.csv'))\n",
|
||
|
"# df = df[['ds','min_within_quantile','max_within_quantile']]\n",
|
||
|
"\n",
|
||
|
"\n",
|
||
|
"\n",
|
||
|
"# 打印数据框的前几行\n",
|
||
|
"print(df.head())\n",
|
||
|
"print(df.tail())\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "e51c3fd0-6bff-45de-b8b6-971e7986c7a7",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.11.7"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 5
|
||
|
}
|