PriceForecast/main_yongan.py

291 lines
13 KiB
Python
Raw Normal View History

2024-12-30 14:00:16 +08:00
# 读取配置
2024-12-30 15:29:36 +08:00
from lib.dataread_yongan import *
2024-12-30 14:00:16 +08:00
from lib.tools import SendMail,exception_logger
from models.nerulforcastmodels import ex_Model,model_losss,model_losss_juxiting,brent_export_pdf,tansuanli_export_pdf,pp_export_pdf,model_losss_juxiting
import glob
import torch
torch.set_float32_matmul_precision("high")
def predict_main():
"""
主预测函数用于从 ETA 获取数据处理数据训练模型并进行预测
参数:
signature (BinanceAPI): Binance API 实例
etadata (EtaReader): ETA 数据读取器实例
is_eta (bool): 是否从 ETA 获取数据
data_set (str): 数据集名称
dataset (str): 数据集路径
add_kdj (bool): 是否添加 KDJ 指标
is_timefurture (bool): 是否添加时间衍生特征
end_time (str): 结束时间
is_edbnamelist (bool): 是否使用 EDB 名称列表
edbnamelist (list): EDB 名称列表
y (str): 预测目标列名
sqlitedb (SQLiteDB): SQLite 数据库实例
is_corr (bool): 是否进行相关性分析
horizon (int): 预测时域
input_size (int): 输入数据大小
train_steps (int): 训练步数
val_check_steps (int): 验证检查步数
early_stop_patience_steps (int): 早停耐心步数
is_debug (bool): 是否调试模式
dataset (str): 数据集名称
is_train (bool): 是否训练模型
is_fivemodels (bool): 是否使用五个模型
val_size (float): 验证集大小
test_size (float): 测试集大小
settings (dict): 模型设置
now (str): 当前时间
etadata (EtaReader): ETA 数据读取器实例
modelsindex (list): 模型索引列表
data (str): 数据类型
is_eta (bool): 是否从 ETA 获取数据
返回:
None
"""
# global end_time
# signature = BinanceAPI(APPID, SECRET)
# etadata = EtaReader(signature=signature,
# classifylisturl=classifylisturl,
# classifyidlisturl=classifyidlisturl,
# edbcodedataurl=edbcodedataurl,
# edbcodelist=edbcodelist,
# edbdatapushurl=edbdatapushurl,
# edbdeleteurl=edbdeleteurl,
# edbbusinessurl=edbbusinessurl
# )
# # 获取数据
# if is_eta:
# logger.info('从eta获取数据...')
# signature = BinanceAPI(APPID, SECRET)
# etadata = EtaReader(signature=signature,
# classifylisturl=classifylisturl,
# classifyidlisturl=classifyidlisturl,
# edbcodedataurl=edbcodedataurl,
# edbcodelist=edbcodelist,
# edbdatapushurl=edbdatapushurl,
# edbdeleteurl=edbdeleteurl,
# edbbusinessurl=edbbusinessurl,
# )
# df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(data_set=data_set, dataset=dataset) # 原始数据,未处理
# if is_market:
# logger.info('从市场信息平台获取数据...')
# try:
# df_zhibiaoshuju = get_market_data(end_time,df_zhibiaoshuju)
# except :
# logger.info('从市场信息平台获取数据失败')
# # 保存到xlsx文件的sheet表
# with pd.ExcelWriter(os.path.join(dataset,data_set)) as file:
# df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
# df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
# # 数据处理
# df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
# end_time=end_time)
# else:
# # 读取数据
# logger.info('读取本地数据:' + os.path.join(dataset, data_set))
# df,df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
# is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
# # 更改预测列名称
# df.rename(columns={y: 'y'}, inplace=True)
# if is_edbnamelist:
# df = df[edbnamelist]
# df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False)
# # 保存最新日期的y值到数据库
# # 取第一行数据存储到数据库中
# first_row = df[['ds', 'y']].tail(1)
# print(first_row['ds'].values[0])
# print(first_row['y'].values[0])
# # 判断y的类型是否为float
# if not isinstance(first_row['y'].values[0], float):
# logger.info(f'{end_time}预测目标数据为空,跳过')
# return None
# # 将最新真实值保存到数据库
# if not sqlitedb.check_table_exists('trueandpredict'):
# first_row.to_sql('trueandpredict', sqlitedb.connection, index=False)
# else:
# for row in first_row.itertuples(index=False):
# row_dict = row._asdict()
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
# check_query = sqlitedb.select_data('trueandpredict', where_condition=f"ds = '{row.ds}'")
# if len(check_query) > 0:
# set_clause = ", ".join([f"{key} = '{value}'" for key, value in row_dict.items()])
# sqlitedb.update_data('trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
# continue
# sqlitedb.insert_data('trueandpredict', tuple(row_dict.values()), columns=row_dict.keys())
# # 更新accuracy表的y值
# if not sqlitedb.check_table_exists('accuracy'):
# pass
# else:
# update_y = sqlitedb.select_data('accuracy',where_condition="y is null")
# if len(update_y) > 0:
# logger.info('更新accuracy表的y值')
# # 找到update_y 中ds且df中的y的行
# update_y = update_y[update_y['ds']<=end_time]
# logger.info(f'要更新y的信息{update_y}')
# try:
# for row in update_y.itertuples(index=False):
# row_dict = row._asdict()
# yy = df[df['ds']==row_dict['ds']]['y'].values[0]
# LOW = df[df['ds']==row_dict['ds']]['Brentzdj'].values[0]
# HIGH = df[df['ds']==row_dict['ds']]['Brentzgj'].values[0]
# sqlitedb.update_data('accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
# except Exception as e:
# logger.info(f'更新accuracy表的y值失败{e}')
# import datetime
# # 判断当前日期是不是周一
# is_weekday = datetime.datetime.now().weekday() == 0
# if is_weekday:
# logger.info('今天是周一,更新预测模型')
# # 计算最近60天预测残差最低的模型名称
# model_results = sqlitedb.select_data('trueandpredict', order_by="ds DESC", limit="60")
# # 删除空值率为40%以上的列
# if len(model_results) > 10:
# model_results = model_results.dropna(thresh=len(model_results)*0.6,axis=1)
# # 删除空行
# model_results = model_results.dropna()
# modelnames = model_results.columns.to_list()[2:]
# for col in model_results[modelnames].select_dtypes(include=['object']).columns:
# model_results[col] = model_results[col].astype(np.float32)
# # 计算每个预测值与真实值之间的偏差率
# for model in modelnames:
# model_results[f'{model}_abs_error_rate'] = abs(model_results['y'] - model_results[model]) / model_results['y']
# # 获取每行对应的最小偏差率值
# min_abs_error_rate_values = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
# # 获取每行对应的最小偏差率值对应的列名
# min_abs_error_rate_column_name = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
# # 将列名索引转换为列名
# min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(lambda x: x.split('_')[0])
# # 取出现次数最多的模型名称
# most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
# logger.info(f"最近60天预测残差最低的模型名称{most_common_model}")
# # 保存结果到数据库
# if not sqlitedb.check_table_exists('most_model'):
# sqlitedb.create_table('most_model', columns="ds datetime, most_common_model TEXT")
# sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
# try:
# if is_weekday:
# # if True:
# logger.info('今天是周一,发送特征预警')
# # 上传预警信息到数据库
# warning_data_df = df_zhibiaoliebiao.copy()
# warning_data_df = warning_data_df[warning_data_df['停更周期']> 3 ][['指标名称', '指标id', '频度','更新周期','指标来源','最后更新时间','停更周期']]
# # 重命名列名
# warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY', '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
# from sqlalchemy import create_engine
# import urllib
# global password
# if '@' in password:
# password = urllib.parse.quote_plus(password)
# engine = create_engine(f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
# warning_data_df['WARNING_DATE'] = datetime.date.today().strftime("%Y-%m-%d %H:%M:%S")
# warning_data_df['TENANT_CODE'] = 'T0004'
# # 插入数据之前查询表数据然后新增id列
# existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
# if not existing_data.empty:
# max_id = existing_data['ID'].astype(int).max()
# warning_data_df['ID'] = range(max_id + 1, max_id + 1 + len(warning_data_df))
# else:
# warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
# warning_data_df.to_sql(table_name, con=engine, if_exists='append', index=False)
# if is_update_warning_data:
# upload_warning_info(len(warning_data_df))
# except:
# logger.info('上传预警信息到数据库失败')
# if is_corr:
# df = corr_feature(df=df)
# df1 = df.copy() # 备份一下后面特征筛选完之后加入ds y 列用
# logger.info(f"开始训练模型...")
# row, col = df.shape
# now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
# ex_Model(df,
# horizon=horizon,
# input_size=input_size,
# train_steps=train_steps,
# val_check_steps=val_check_steps,
# early_stop_patience_steps=early_stop_patience_steps,
# is_debug=is_debug,
# dataset=dataset,
# is_train=is_train,
# is_fivemodels=is_fivemodels,
# val_size=val_size,
# test_size=test_size,
# settings=settings,
# now=now,
# etadata=etadata,
# modelsindex=modelsindex,
# data=data,
# is_eta=is_eta,
# end_time=end_time,
# )
# logger.info('模型训练完成')
# logger.info('训练数据绘图ing')
# model_results3 = model_losss(sqlitedb,end_time=end_time)
# logger.info('训练数据绘图end')
# 模型报告
logger.info('制作报告ing')
title = f'{settings}--{end_time}-预测报告' # 报告标题
reportname = f'Brent原油大模型预测--{end_time}.pdf' # 报告文件名
reportname = reportname.replace(':', '-') # 替换冒号
brent_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
reportname=reportname,sqlitedb=sqlitedb),
logger.info('制作报告end')
logger.info('模型训练完成')
# # LSTM 单变量模型
# ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset)
# # lstm 多变量模型
# ex_Lstm_M(df,n_days=input_size,out_days=horizon,is_debug=is_debug,datasetpath=dataset)
# # GRU 模型
# # ex_GRU(df)
# 发送邮件
# m = SendMail(
# username=username,
# passwd=passwd,
# recv=recv,
# title=title,
# content=content,
# file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
# ssl=ssl,
# )
# m.send_mail()
if __name__ == '__main__':
2024-12-30 15:29:36 +08:00
# global end_time
# is_on = True
# # 遍历2024-11-25 到 2024-12-3 之间的工作日日期
# for i_time in pd.date_range('2024-12-27', '2024-12-28', freq='B'):
# end_time = i_time.strftime('%Y-%m-%d')
# predict_main()
predict_main()