PriceForecast/config_yongan.py

282 lines
11 KiB
Python
Raw Normal View History

2024-12-30 15:29:36 +08:00
import logging
import os
import logging.handlers
import datetime
from lib.tools import MySQLDB,SQLiteHandler
# eta 接口token
APPID = "XNLDvxZHHugj7wJ7"
SECRET = "iSeU4s6cKKBVbt94htVY1p0sqUMqb2xa"
# eta 接口url
sourcelisturl = 'http://10.189.2.78:8108/v1/edb/source/list'
classifylisturl = 'http://10.189.2.78:8108/v1/edb/classify/list?ClassifyType='
uniquecodedataurl = 'http://10.189.2.78:8108/v1/edb/data?UniqueCode=4991c37becba464609b409909fe4d992&StartDate=2024-02-01'
classifyidlisturl = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId='
edbcodedataurl = 'http://10.189.2.78:8108/v1/edb/data?EdbCode='
edbdatapushurl = 'http://10.189.2.78:8108/v1/edb/push'
edbdeleteurl = 'http://10.189.2.78:8108/v1/edb/business/edb/del'
edbbusinessurl = 'http://10.189.2.78:8108/v1/edb/business/data/del'
edbcodelist = ['CO1 Comdty', 'ovx index', 'C2404194834', 'C2404199738', 'dxy curncy', 'C2403128043', 'C2403150124',
'DOESCRUD Index', 'WTRBM1 EEGC Index', 'FVHCM1 INDEX', 'doedtprd index', 'CFFDQMMN INDEX',
'C2403083739', 'C2404167878', 'C2403250571', 'lmcads03 lme comdty', 'GC1 COMB Comdty',
'C2404171822','C2404167855',
# 'W000825','W000826','G.IPE', # 美国汽柴油
# 'S5131019','ID00135604','FSGAM1 Index','S5120408','ID00136724', # 新加坡汽柴油
]
# 临时写死用指定的列,与上面的edbcode对应后面更改
edbnamelist = [
'ds','y',
'Brent c1-c6','Brent c1-c3','Brent-WTI','美国商业原油库存',
'DFL','美国汽油裂解价差','ovx index','dxy curncy','lmcads03 lme comdty',
'C2403128043','C2403150124','FVHCM1 INDEX','doedtprd index','CFFDQMMN INDEX',
'C2403083739','C2404167878',
'GC1 COMB Comdty','C2404167855',
# 'A汽油价格','W000826','ICE柴油价格',
# '新加坡(含硫0.05%) 柴油现货价','柴油10ppm国际市场FOB中间价新加坡','Bloomberg Commodity Fair Value Singapore Mogas 92 Swap Month 1','97#汽油FOB新加坡现货价','无铅汽油97#国际市场FOB中间价新加坡'
]
edbcodenamedict = {'ovx index': '原油波动率',
'dxy curncy': '美元指数',
'C2403128043': 'Brent连1合约价格拟合残差/美元指数',
'C2403150124': 'Brent连1合约价格拟合残差/Brent 连2-连3',
'DOESCRUD Index': '美国商业原油库存',
'FVHCM1 INDEX': '美国取暖油裂解C1',
'doedtprd index': '美国成品油表需',
'CFFDQMMN INDEX': 'WTI管理资金净多持仓',
'C2403083739': 'WTI基金多空持仓比',
'C2404167878': 'WTI基金净持仓COT指标代码运算',
'lmcads03 lme comdty': 'LME铜价',
'GC1 COMB Comdty': '黄金连1合约',
'C2404167855': '金油比'}
# eta自有数据指标编码
modelsindex = {
'NHITS': 'SELF0000001',
'Informer':'SELF0000057',
'LSTM':'SELF0000058',
'iTransformer':'SELF0000059',
'TSMixer':'SELF0000060',
'TSMixerx':'SELF0000061',
'PatchTST':'SELF0000062',
'RNN':'SELF0000063',
'GRU':'SELF0000064',
'TCN':'SELF0000065',
'BiTCN':'SELF0000066',
'DilatedRNN':'SELF0000067',
'MLP':'SELF0000068',
'DLinear':'SELF0000069',
'NLinear':'SELF0000070',
'TFT':'SELF0000071',
'FEDformer':'SELF0000072',
'StemGNN':'SELF0000073',
'MLPMultivariate':'SELF0000074',
'TiDE':'SELF0000075',
'DeepNPTS':'SELF0000076'
}
# eta 上传预测结果的请求体,后面发起请求的时候更改 model datalist 数据
data = {
"IndexCode": "",
"IndexName": "价格预测模型",
"Unit": "",
"Frequency": "日度",
"SourceName": f"价格预测",
"Remark": 'ddd',
"DataList": [
{
"Date": "2024-05-02",
"Value": 333444
}
]
}
# eta 分类
# level3才可以获取到数据所以需要人工把能源化工下所有的level3级都找到
# url = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId=1214'
#ParentId ":1160, 能源化工
# ClassifyId ":1214,原油
#ParentId ":1214,",就是原油下所有的数据。
ClassifyId = 1214
################################################################################################################ 变量定义--雍安测试环境
login_pushreport_url = "http://192.168.100.115:9090/dom-api/api/server/login"
upload_url = "http://192.168.100.115:9090/dom-api/api/analysis/reportInfo/researchUploadReportSave"
upload_warning_url = "http://192.168.100.115:9090/dom-api/api/basicBuiness/crudeOilWarning/save"
query_data_list_item_nos_url = "http://192.168.100.115:9090/dom-api/api/warehouse/dwDataItem/queryDataListItemNos"
login_data = {
"data": {
"account": "api-dev",
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",
"tenantHashCode": "1eb24ab5a6af12e30daf78af276664f1",
"terminal": "API"
},
"funcModule": "API",
"funcOperation": "获取token"
}
upload_data = {
"funcModule":'研究报告信息',
"funcOperation":'上传原油价格预测报告',
"data":{
"ownerAccount":'rui.liu', #报告所属用户账号
"reportType":'OIL_PRICE_FORECAST', # 报告类型固定为OIL_PRICE_FORECAST
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
"fileBase64": '' ,#文件内容base64
"categoryNo":'yyjgycbg', # 研究报告分类编码
"smartBusinessClassCode":'1', #分析报告分类编码
"reportEmployeeCode":"U270018", # 报告人
"reportDeptCode" :"D270001" ,# 报告部门
"productGroupCode":"RAW_MATERIAL" # 商品分类
}
}
warning_data = {
"funcModule":'原油特征停更预警',
"funcOperation":'原油特征停更预警',
"data":{
'WARNING_TYPE_NAME':'特征数据停更预警',
'WARNING_CONTENT':'',
'WARNING_DATE':''
}
}
query_data_list_item_nos_data = {
"funcModule": "数据项",
"funcOperation": "查询",
"data": {
"dateStart":"20200101",
"dateEnd":"20241231",
"dataItemNoList":["Brentzdj","Brentzgj"] # 数据项编码,代表 brent最低价和最高价
}
}
# 北京环境数据库
host = '192.168.101.27'
port = 3306
dbusername ='root'
password = '123456'
dbname = 'jingbo_test'
table_name = 'v_tbl_crude_oil_warning'
# 表名前缀
table_name_prefix = 'yongan_'
2024-12-30 15:29:36 +08:00
### 开关
is_train = False # 是否训练
is_debug = False # 是否调试
is_eta = False # 是否使用eta接口
is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
is_timefurture = True # 是否使用时间特征
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
is_edbcode = False # 特征使用edbcoding列表中的
is_edbnamelist = False # 自定义特征对应上面的edbnamelist
is_update_eta = False # 预测结果上传到eta
is_update_report = True # 是否上传报告
is_update_warning_data = False # 是否上传预警数据
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 0 为不删除0.6 表示删除相关性小于0.6的特征
is_del_tow_month = True # 是否删除两个月不更新的特征
# 连接到数据库
db_mysql = MySQLDB(host=host, user=dbusername, password=password, database=dbname)
db_mysql.connect()
print("数据库连接成功",host,dbname,dbusername)
# 数据截取日期
start_year = 2020 # 数据开始年份
end_time = '' # 数据截取日期
freq = 'B' # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日
delweekenday = True if freq == 'B' else False # 是否删除周末数据
is_corr = False # 特征是否参与滞后领先提升相关系数
add_kdj = False # 是否添加kdj指标
if add_kdj and is_edbnamelist:
edbnamelist = edbnamelist+['K','D','J']
### 模型参数
y = 'Brent连1合约价格' # 原油指标数据的目标变量 Brent连1合约价格 Brent活跃合约
horizon =5 # 预测的步长
input_size = 40 # 输入序列长度
train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数
val_check_steps = 30 # 评估频率
early_stop_patience_steps = 5 # 早停的耐心步数
# --- 交叉验证用的参数
test_size = 100 # 测试集大小定义100后面使用的时候重新赋值
val_size = test_size # 验证集大小,同测试集大小
### 特征筛选用到的参数
k = 100 # 特征筛选数量如果是0或者值比特征数量大代表全部特征
corr_threshold = 0.6 # 相关性大于0.6的特征
rote = 0.06 # 绘图上下界阈值
### 计算准确率
weight_dict = [0.4,0.15,0.1,0.1,0.25] # 权重
### 文件
data_set = '原油指标数据.xlsx' # 数据集文件
2024-12-30 15:31:22 +08:00
dataset = 'yongandataset' # 数据集文件夹
2024-12-30 15:29:36 +08:00
# 数据库名称
db_name = os.path.join(dataset,'jbsh_yuanyou.db')
sqlitedb = SQLiteHandler(db_name)
sqlitedb.connect()
settings = f'{input_size}-{horizon}-{train_steps}--{k}-{data_set}-{y}'
# 获取日期时间
# now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') # 获取当前日期时间
now = datetime.datetime.now().strftime('%Y-%m-%d') # 获取当前日期时间
reportname = f'Brent原油大模型预测--{now}.pdf' # 报告文件名
reportname = reportname.replace(':', '-') # 替换冒号
if end_time == '':
end_time = now
### 邮件配置
username='1321340118@qq.com'
passwd='wgczgyhtyyyyjghi'
# recv=['liurui_test@163.com','52585119@qq.com']
# recv=['liurui_test@163.com','jin.wang@chambroad.com']
recv=['liurui_test@163.com']
title='reportname'
content='brent价格预测报告请看附件'
file=os.path.join(dataset,'reportname')
# file=os.path.join(dataset,'14-7-50--100-原油指标数据.xlsx-Brent连1合约价格--20240731175936-预测报告.pdf')
ssl=True
### 日志配置
# 创建日志目录(如果不存在)
log_dir = 'logs'
if not os.path.exists(log_dir):
os.makedirs(log_dir)
# 配置日志记录器
logger = logging.getLogger('my_logger')
logger.setLevel(logging.INFO)
# 配置文件处理器,将日志记录到文件
file_handler = logging.handlers.RotatingFileHandler(os.path.join(log_dir, 'pricepredict.log'), maxBytes=1024 * 1024, backupCount=5)
file_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
# 配置控制台处理器,将日志打印到控制台
console_handler = logging.StreamHandler()
console_handler.setFormatter(logging.Formatter('%(message)s'))
# 将处理器添加到日志记录器
logger.addHandler(file_handler)
logger.addHandler(console_handler)
# logger.info('当前配置:'+settings)