PriceForecast/main_yuanyou_yuedu.py

460 lines
19 KiB
Python
Raw Normal View History

2025-02-13 13:23:28 +08:00
# 读取配置
2025-03-06 14:59:18 +08:00
from lib.dataread import *
from config_jingbo_yuedu import *
from lib.tools import SendMail, exception_logger
from models.nerulforcastmodels import ex_Model, model_losss, model_losss_juxiting, brent_export_pdf, tansuanli_export_pdf, pp_export_pdf, model_losss_juxiting
import datetime
2025-02-13 13:23:28 +08:00
import torch
torch.set_float32_matmul_precision("high")
2025-03-06 14:59:18 +08:00
global_config.update({
# 核心参数
'logger': logger,
'dataset': dataset,
'y': y,
'is_debug': is_debug,
'is_train': is_train,
'is_fivemodels': is_fivemodels,
'settings': settings,
# 模型参数
'data_set': data_set,
'input_size': input_size,
'horizon': horizon,
'train_steps': train_steps,
'val_check_steps': val_check_steps,
'val_size': val_size,
'test_size': test_size,
'modelsindex': modelsindex,
'rote': rote,
'bdwd_items': bdwd_items,
2025-03-06 14:59:18 +08:00
# 特征工程开关
'is_del_corr': is_del_corr,
'is_del_tow_month': is_del_tow_month,
'is_eta': is_eta,
'is_update_eta': is_update_eta,
2025-03-11 16:19:21 +08:00
'is_fivemodels': is_fivemodels,
'is_update_predict_value': is_update_predict_value,
2025-03-06 14:59:18 +08:00
'early_stop_patience_steps': early_stop_patience_steps,
# 时间参数
'start_year': start_year,
'end_time': end_time or datetime.datetime.now().strftime("%Y-%m-%d"),
'freq': freq, # 保持列表结构
# 接口配置
'login_pushreport_url': login_pushreport_url,
'login_data': login_data,
'upload_url': upload_url,
'upload_warning_url': upload_warning_url,
'warning_data': warning_data,
# 查询接口
'query_data_list_item_nos_url': query_data_list_item_nos_url,
'query_data_list_item_nos_data': query_data_list_item_nos_data,
# 上传数据项
'push_data_value_list_url': push_data_value_list_url,
'push_data_value_list_data': push_data_value_list_data,
2025-03-06 14:59:18 +08:00
# eta 配置
'APPID': APPID,
'SECRET': SECRET,
'etadata': data,
2025-03-11 16:19:21 +08:00
'edbcodelist': edbcodelist,
'ClassifyId': ClassifyId,
'edbcodedataurl': edbcodedataurl,
'classifyidlisturl': classifyidlisturl,
'edbdatapushurl': edbdatapushurl,
'edbdeleteurl': edbdeleteurl,
'edbbusinessurl': edbbusinessurl,
'ClassifyId': ClassifyId,
'classifylisturl': classifylisturl,
2025-03-06 14:59:18 +08:00
# 数据库配置
'sqlitedb': sqlitedb,
})
2025-02-13 13:23:28 +08:00
def push_market_value():
logger.info('发送预测结果到市场信息平台')
# 读取预测数据和模型评估数据
predict_file_path = os.path.join(config.dataset, 'predict.csv')
model_eval_file_path = os.path.join(config.dataset, 'model_evaluation.csv')
try:
predictdata_df = pd.read_csv(predict_file_path)
top_models_df = pd.read_csv(model_eval_file_path)
except FileNotFoundError as e:
logger.error(f"文件未找到: {e}")
return
predictdata = predictdata_df.copy()
# 取模型前十
top_models = top_models_df['模型(Model)'].head(10).tolist()
# 计算前十模型的均值
predictdata_df['top_models_mean'] = predictdata_df[top_models].mean(axis=1)
# 打印日期和前十模型均值
print(predictdata_df[['ds', 'top_models_mean']])
# 准备要推送的数据
ciyue_mean = predictdata_df['top_models_mean'].iloc[0]
cieryue_mean = predictdata_df['top_models_mean'].iloc[1]
cisanyue_mean = predictdata_df['top_models_mean'].iloc[2]
cisieryue_mean = predictdata_df['top_models_mean'].iloc[3]
predictdata = [
{
"dataItemNo": global_config['bdwd_items']['ciyue'],
"dataDate": global_config['end_time'],
"dataStatus": "add",
"dataValue": ciyue_mean
},
{
"dataItemNo": global_config['bdwd_items']['cieryue'],
"dataDate": global_config['end_time'],
"dataStatus": "add",
"dataValue": cieryue_mean
},
{
"dataItemNo": global_config['bdwd_items']['cisanyue'],
"dataDate": global_config['end_time'],
"dataStatus": "add",
"dataValue": cisanyue_mean
},
{
"dataItemNo": global_config['bdwd_items']['cisiyue'],
"dataDate": global_config['end_time'],
"dataStatus": "add",
"dataValue": cisieryue_mean
}
]
print(predictdata)
# 推送数据到市场信息平台
try:
push_market_data(predictdata)
except Exception as e:
logger.error(f"推送数据失败: {e}")
2025-02-13 13:23:28 +08:00
def predict_main():
"""
主预测函数用于从 ETA 获取数据处理数据训练模型并进行预测
参数:
signature (BinanceAPI): Binance API 实例
etadata (EtaReader): ETA 数据读取器实例
is_eta (bool): 是否从 ETA 获取数据
data_set (str): 数据集名称
dataset (str): 数据集路径
add_kdj (bool): 是否添加 KDJ 指标
is_timefurture (bool): 是否添加时间衍生特征
end_time (str): 结束时间
is_edbnamelist (bool): 是否使用 EDB 名称列表
edbnamelist (list): EDB 名称列表
y (str): 预测目标列名
sqlitedb (SQLiteDB): SQLite 数据库实例
is_corr (bool): 是否进行相关性分析
horizon (int): 预测时域
input_size (int): 输入数据大小
train_steps (int): 训练步数
val_check_steps (int): 验证检查步数
early_stop_patience_steps (int): 早停耐心步数
is_debug (bool): 是否调试模式
dataset (str): 数据集名称
is_train (bool): 是否训练模型
is_fivemodels (bool): 是否使用五个模型
val_size (float): 验证集大小
test_size (float): 测试集大小
settings (dict): 模型设置
now (str): 当前时间
etadata (EtaReader): ETA 数据读取器实例
modelsindex (list): 模型索引列表
data (str): 数据类型
is_eta (bool): 是否从 ETA 获取数据
返回:
None
"""
2025-03-07 13:28:10 +08:00
end_time = global_config['end_time']
2025-02-13 13:23:28 +08:00
# 获取数据
if is_eta:
logger.info('从eta获取数据...')
signature = BinanceAPI(APPID, SECRET)
etadata = EtaReader(signature=signature,
classifylisturl=global_config['classifylisturl'],
classifyidlisturl=global_config['classifyidlisturl'],
edbcodedataurl=global_config['edbcodedataurl'],
edbcodelist=global_config['edbcodelist'],
edbdatapushurl=global_config['edbdatapushurl'],
edbdeleteurl=global_config['edbdeleteurl'],
edbbusinessurl=global_config['edbbusinessurl'],
classifyId=global_config['ClassifyId'],
2025-02-13 13:23:28 +08:00
)
2025-03-06 14:59:18 +08:00
df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(
data_set=data_set, dataset=dataset) # 原始数据,未处理
2025-02-13 13:23:28 +08:00
if is_market:
logger.info('从市场信息平台获取数据...')
try:
# 如果是测试环境最高价最低价取excel文档
if server_host == '192.168.100.53':
logger.info('从excel文档获取最高价最低价')
df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
else:
logger.info('从市场信息平台获取数据')
2025-03-06 14:59:18 +08:00
df_zhibiaoshuju = get_market_data(
end_time, df_zhibiaoshuju)
except:
2025-02-13 13:23:28 +08:00
logger.info('最高最低价拼接失败')
2025-03-06 14:59:18 +08:00
2025-02-13 13:23:28 +08:00
# 保存到xlsx文件的sheet表
2025-03-06 14:59:18 +08:00
with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
2025-02-13 13:23:28 +08:00
df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
2025-03-06 14:59:18 +08:00
2025-02-13 13:23:28 +08:00
# 数据处理
df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
2025-03-06 14:59:18 +08:00
end_time=end_time)
2025-02-13 13:23:28 +08:00
else:
# 读取数据
logger.info('读取本地数据:' + os.path.join(dataset, data_set))
2025-03-06 14:59:18 +08:00
df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
2025-02-13 13:23:28 +08:00
# 更改预测列名称
df.rename(columns={y: 'y'}, inplace=True)
if is_edbnamelist:
df = df[edbnamelist]
df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False)
# 保存最新日期的y值到数据库
# 取第一行数据存储到数据库中
first_row = df[['ds', 'y']].tail(1)
# 判断y的类型是否为float
if not isinstance(first_row['y'].values[0], float):
logger.info(f'{end_time}预测目标数据为空,跳过')
return None
# 将最新真实值保存到数据库
if not sqlitedb.check_table_exists('trueandpredict'):
first_row.to_sql('trueandpredict', sqlitedb.connection, index=False)
else:
for row in first_row.itertuples(index=False):
row_dict = row._asdict()
2025-03-06 14:59:18 +08:00
config.logger.info(f'要保存的真实值:{row_dict}')
# 判断ds是否为字符串类型,如果不是则转换为字符串类型
if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)):
row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
elif not isinstance(row_dict['ds'], str):
try:
row_dict['ds'] = pd.to_datetime(
row_dict['ds']).strftime('%Y-%m-%d')
except:
logger.warning(f"无法解析的时间格式: {row_dict['ds']}")
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
check_query = sqlitedb.select_data(
'trueandpredict', where_condition=f"ds = '{row.ds}'")
2025-02-13 13:23:28 +08:00
if len(check_query) > 0:
2025-03-06 14:59:18 +08:00
set_clause = ", ".join(
[f"{key} = '{value}'" for key, value in row_dict.items()])
sqlitedb.update_data(
'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
2025-02-13 13:23:28 +08:00
continue
2025-03-06 14:59:18 +08:00
sqlitedb.insert_data('trueandpredict', tuple(
row_dict.values()), columns=row_dict.keys())
2025-02-13 13:23:28 +08:00
# 更新accuracy表的y值
if not sqlitedb.check_table_exists('accuracy'):
pass
else:
2025-03-06 14:59:18 +08:00
update_y = sqlitedb.select_data(
'accuracy', where_condition="y is null")
2025-02-13 13:23:28 +08:00
if len(update_y) > 0:
logger.info('更新accuracy表的y值')
# 找到update_y 中ds且df中的y的行
2025-03-06 14:59:18 +08:00
update_y = update_y[update_y['ds'] <= end_time]
2025-02-13 13:23:28 +08:00
logger.info(f'要更新y的信息{update_y}')
# try:
for row in update_y.itertuples(index=False):
try:
2025-03-06 14:59:18 +08:00
row_dict = row._asdict()
yy = df[df['ds'] == row_dict['ds']]['y'].values[0]
LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0]
HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0]
sqlitedb.update_data(
'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
2025-02-13 13:23:28 +08:00
except:
logger.info(f'更新accuracy表的y值失败{row_dict}')
# except Exception as e:
# logger.info(f'更新accuracy表的y值失败{e}')
# 判断当前日期是不是周一
is_weekday = datetime.datetime.now().weekday() == 0
if is_weekday:
logger.info('今天是周一,更新预测模型')
# 计算最近60天预测残差最低的模型名称
2025-03-06 14:59:18 +08:00
model_results = sqlitedb.select_data(
'trueandpredict', order_by="ds DESC", limit="60")
2025-02-13 13:23:28 +08:00
# 删除空值率为90%以上的列
if len(model_results) > 10:
2025-03-06 14:59:18 +08:00
model_results = model_results.dropna(
thresh=len(model_results)*0.1, axis=1)
2025-02-13 13:23:28 +08:00
# 删除空行
model_results = model_results.dropna()
modelnames = model_results.columns.to_list()[2:-1]
for col in model_results[modelnames].select_dtypes(include=['object']).columns:
model_results[col] = model_results[col].astype(np.float32)
# 计算每个预测值与真实值之间的偏差率
for model in modelnames:
2025-03-06 14:59:18 +08:00
model_results[f'{model}_abs_error_rate'] = abs(
model_results['y'] - model_results[model]) / model_results['y']
2025-02-13 13:23:28 +08:00
# 获取每行对应的最小偏差率值
2025-03-06 14:59:18 +08:00
min_abs_error_rate_values = model_results.apply(
lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
2025-02-13 13:23:28 +08:00
# 获取每行对应的最小偏差率值对应的列名
2025-03-06 14:59:18 +08:00
min_abs_error_rate_column_name = model_results.apply(
lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
2025-02-13 13:23:28 +08:00
# 将列名索引转换为列名
2025-03-06 14:59:18 +08:00
min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(
lambda x: x.split('_')[0])
2025-02-13 13:23:28 +08:00
# 取出现次数最多的模型名称
most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
logger.info(f"最近60天预测残差最低的模型名称{most_common_model}")
# 保存结果到数据库
if not sqlitedb.check_table_exists('most_model'):
2025-03-06 14:59:18 +08:00
sqlitedb.create_table(
'most_model', columns="ds datetime, most_common_model TEXT")
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime(
'%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
2025-02-13 13:23:28 +08:00
try:
if is_weekday:
2025-03-06 14:59:18 +08:00
# if True:
2025-02-13 13:23:28 +08:00
logger.info('今天是周一,发送特征预警')
# 上传预警信息到数据库
warning_data_df = df_zhibiaoliebiao.copy()
2025-03-06 14:59:18 +08:00
warning_data_df = warning_data_df[warning_data_df['停更周期'] > 3][[
'指标名称', '指标id', '频度', '更新周期', '指标来源', '最后更新时间', '停更周期']]
2025-02-13 13:23:28 +08:00
# 重命名列名
2025-03-06 14:59:18 +08:00
warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY',
'更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
2025-02-13 13:23:28 +08:00
from sqlalchemy import create_engine
import urllib
global password
if '@' in password:
password = urllib.parse.quote_plus(password)
2025-03-06 14:59:18 +08:00
engine = create_engine(
f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
warning_data_df['WARNING_DATE'] = datetime.date.today().strftime(
"%Y-%m-%d %H:%M:%S")
warning_data_df['TENANT_CODE'] = 'T0004'
2025-02-13 13:23:28 +08:00
# 插入数据之前查询表数据然后新增id列
existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
if not existing_data.empty:
max_id = existing_data['ID'].astype(int).max()
2025-03-06 14:59:18 +08:00
warning_data_df['ID'] = range(
max_id + 1, max_id + 1 + len(warning_data_df))
2025-02-13 13:23:28 +08:00
else:
warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
2025-03-06 14:59:18 +08:00
warning_data_df.to_sql(
table_name, con=engine, if_exists='append', index=False)
2025-02-13 13:23:28 +08:00
if is_update_warning_data:
upload_warning_info(len(warning_data_df))
except:
logger.info('上传预警信息到数据库失败')
if is_corr:
df = corr_feature(df=df)
df1 = df.copy() # 备份一下后面特征筛选完之后加入ds y 列用
logger.info(f"开始训练模型...")
row, col = df.shape
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
ex_Model(df,
2025-03-06 14:59:18 +08:00
horizon=global_config['horizon'],
input_size=global_config['input_size'],
train_steps=global_config['train_steps'],
val_check_steps=global_config['val_check_steps'],
early_stop_patience_steps=global_config['early_stop_patience_steps'],
is_debug=global_config['is_debug'],
dataset=global_config['dataset'],
is_train=global_config['is_train'],
is_fivemodels=global_config['is_fivemodels'],
val_size=global_config['val_size'],
test_size=global_config['test_size'],
settings=global_config['settings'],
2025-02-13 13:23:28 +08:00
now=now,
2025-03-06 14:59:18 +08:00
etadata=global_config['etadata'],
modelsindex=global_config['modelsindex'],
2025-02-13 13:23:28 +08:00
data=data,
2025-03-06 14:59:18 +08:00
is_eta=global_config['is_eta'],
end_time=global_config['end_time'],
2025-02-13 13:23:28 +08:00
)
2025-03-07 13:28:10 +08:00
logger.info('模型训练完成')
2025-02-13 13:23:28 +08:00
logger.info('训练数据绘图ing')
2025-03-06 14:59:18 +08:00
model_results3 = model_losss(sqlitedb, end_time=end_time)
2025-02-13 13:23:28 +08:00
logger.info('训练数据绘图end')
2025-03-06 14:59:18 +08:00
# 模型报告
logger.info('制作报告ing')
title = f'{settings}--{end_time}-预测报告' # 报告标题
reportname = f'Brent原油大模型月度预测--{end_time}.pdf' # 报告文件名
reportname = reportname.replace(':', '-') # 替换冒号
brent_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time,
reportname=reportname, sqlitedb=sqlitedb),
logger.info('制作报告end')
logger.info('模型训练完成')
2025-03-07 13:28:10 +08:00
push_market_value()
2025-02-13 13:23:28 +08:00
# # LSTM 单变量模型
# ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset)
2025-03-06 14:59:18 +08:00
2025-02-13 13:23:28 +08:00
# # lstm 多变量模型
# ex_Lstm_M(df,n_days=input_size,out_days=horizon,is_debug=is_debug,datasetpath=dataset)
2025-03-06 14:59:18 +08:00
2025-02-13 13:23:28 +08:00
# # GRU 模型
# # ex_GRU(df)
# 发送邮件
2025-03-06 14:59:18 +08:00
# m = SendMail(
# username=username,
# passwd=passwd,
# recv=recv,
# title=title,
# content=content,
# file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
# ssl=ssl,
# )
# m.send_mail()
2025-02-13 13:23:28 +08:00
if __name__ == '__main__':
2025-03-06 14:59:18 +08:00
# global end_time
2025-03-07 13:28:10 +08:00
# 遍历2024-11-25 到 2024-12-3 之间的工作日日期
# for i_time in pd.date_range('2022-1-1', '2025-3-26', freq='M'):
# try:
# global_config['end_time'] = i_time.strftime('%Y-%m-%d')
# predict_main()
# except Exception as e:
# logger.info(f'预测失败:{e}')
# continue
predict_main()