原油报告 使用12个数据预测未来2个数据。

This commit is contained in:
workpc 2025-04-10 17:34:39 +08:00
parent 8106ea1e69
commit 05bfeebcb0
3 changed files with 379 additions and 379 deletions

View File

@ -91,129 +91,18 @@ ClassifyId = 1214
################################################################################################################ 变量定义--线上环境
server_host = '10.200.32.39'
login_pushreport_url = "http://10.200.32.39/jingbo-api/api/server/login"
upload_url = "http://10.200.32.39/jingbo-api/api/analysis/reportInfo/researchUploadReportSave"
upload_warning_url = "http://10.200.32.39/jingbo-api/api/basicBuiness/crudeOilWarning/save"
query_data_list_item_nos_url = f"http://{server_host}/jingbo-api/api/warehouse/dwDataItem/queryDataListItemNos"
# 上传数据项值
push_data_value_list_url = f"http://{server_host}/jingbo-api/api/dw/dataValue/pushDataValueList"
login_data = {
"data": {
"account": "api_dev",
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",
"tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
"terminal": "API"
},
"funcModule": "API",
"funcOperation": "获取token"
}
upload_data = {
"funcModule":'研究报告信息',
"funcOperation":'上传原油价格预测报告',
"data":{
"groupNo":'', # 用户组id
"ownerAccount":'27663', #报告所属用户账号 27663 - 刘小朋
"reportType":'OIL_PRICE_FORECAST', # 报告类型固定为OIL_PRICE_FORECAST
"fileName": '', #文件名称
"fileBase64": '' ,#文件内容base64
"categoryNo":'yyjgycbg', # 研究报告分类编码
"smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
"reportEmployeeCode":"E40482" ,# 报告人 E40482 - 管理员 0000027663 - 刘小朋
"reportDeptCode" :"002000621000", # 报告部门 - 002000621000 SH期货研究部
"productGroupCode":"RAW_MATERIAL" # 商品分类
}
}
warning_data = {
"groupNo":'', # 用户组id
"funcModule":'原油特征停更预警',
"funcOperation":'原油特征停更预警',
"data":{
'WARNING_TYPE_NAME':'特征数据停更预警',
'WARNING_CONTENT':'',
'WARNING_DATE':''
}
}
query_data_list_item_nos_data = {
"funcModule": "数据项",
"funcOperation": "查询",
"data": {
"dateStart":"20200101",
"dateEnd":"20241231",
"dataItemNoList":["Brentzdj","Brentzgj"] # 数据项编码,代表 brent最低价和最高价
}
}
push_data_value_list_data = {
"funcModule": "数据表信息列表",
"funcOperation": "新增",
"data": [
{"dataItemNo": "91230600716676129",
"dataDate": "20230113",
"dataStatus": "add",
"dataValue": 100.11
},
{"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY",
"dataDate": "20230113",
"dataStatus": "add",
"dataValue": 100.55
},
{"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY",
"dataDate": "20230113",
"dataStatus": "add",
"dataValue": 100.55
}
]
}
# 八大维度数据项编码
bdwd_items = {
'ciri': '原油大数据预测|FORECAST|PRICE|T',
'benzhou': '原油大数据预测|FORECAST|PRICE|W',
'cizhou': '原油大数据预测|FORECAST|PRICE|W_1',
'gezhou': '原油大数据预测|FORECAST|PRICE|W_2',
'ciyue': '原油大数据预测|FORECAST|PRICE|M_1',
'cieryue': '原油大数据预测|FORECAST|PRICE|M_2',
'cisanyue': '原油大数据预测|FORECAST|PRICE|M_3',
'cisiyue': '原油大数据预测|FORECAST|PRICE|M_4',
}
# 生产环境数据库
host = 'rm-2zehj3r1n60ttz9x5.mysql.rds.aliyuncs.com'
port = 3306
dbusername ='jingbo'
password = 'shihua@123'
dbname = 'jingbo'
table_name = 'v_tbl_crude_oil_warning'
# # 变量定义--测试环境
# server_host = '192.168.100.53:8080' # 内网
# # server_host = '183.242.74.28' # 外网
# login_pushreport_url = f"http://{server_host}/jingbo-dev/api/server/login"
# upload_url = f"http://{server_host}/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
# upload_warning_url = f"http://{server_host}/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
# query_data_list_item_nos_url = f"http://{server_host}/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos"
# server_host = '10.200.32.39'
# login_pushreport_url = "http://10.200.32.39/jingbo-api/api/server/login"
# upload_url = "http://10.200.32.39/jingbo-api/api/analysis/reportInfo/researchUploadReportSave"
# upload_warning_url = "http://10.200.32.39/jingbo-api/api/basicBuiness/crudeOilWarning/save"
# query_data_list_item_nos_url = f"http://{server_host}/jingbo-api/api/warehouse/dwDataItem/queryDataListItemNos"
# # 上传数据项值
# push_data_value_list_url = f"http://{server_host}/jingbo-dev/api/dw/dataValue/pushDataValueList"
# push_data_value_list_url = f"http://{server_host}/jingbo-api/api/dw/dataValue/pushDataValueList"
# login_data = {
# "data": {
# "account": "api_test",
# # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
# "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
# "account": "api_dev",
# "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",
# "tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
# "terminal": "API"
# },
@ -221,43 +110,48 @@ table_name = 'v_tbl_crude_oil_warning'
# "funcOperation": "获取token"
# }
# upload_data = {
# "funcModule": '研究报告信息',
# "funcOperation": '上传原油价格预测报告',
# "data": {
# "ownerAccount": 'arui', # 报告所属用户账号
# "reportType": 'OIL_PRICE_FORECAST', # 报告类型固定为OIL_PRICE_FORECAST
# "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', # 文件名称
# "fileBase64": '', # 文件内容base64
# "categoryNo": 'yyjgycbg', # 研究报告分类编码
# "smartBusinessClassCode": 'YCJGYCBG', # 分析报告分类编码
# "reportEmployeeCode": "E40116", # 报告人
# "reportDeptCode": "D0044", # 报告部门
# "productGroupCode": "RAW_MATERIAL" # 商品分类
# }
# "funcModule":'研究报告信息',
# "funcOperation":'上传原油价格预测报告',
# "data":{
# "groupNo":'', # 用户组id
# "ownerAccount":'27663', #报告所属用户账号 27663 - 刘小朋
# "reportType":'OIL_PRICE_FORECAST', # 报告类型固定为OIL_PRICE_FORECAST
# "fileName": '', #文件名称
# "fileBase64": '' ,#文件内容base64
# "categoryNo":'yyjgycbg', # 研究报告分类编码
# "smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
# "reportEmployeeCode":"E40482" ,# 报告人 E40482 - 管理员 0000027663 - 刘小朋
# "reportDeptCode" :"002000621000", # 报告部门 - 002000621000 SH期货研究部
# "productGroupCode":"RAW_MATERIAL" # 商品分类
# }
# }
# warning_data = {
# "funcModule": '原油特征停更预警',
# "funcOperation": '原油特征停更预警',
# "data": {
# 'WARNING_TYPE_NAME': '特征数据停更预警',
# 'WARNING_CONTENT': '',
# 'WARNING_DATE': ''
# }
# "groupNo":'', # 用户组id
# "funcModule":'原油特征停更预警',
# "funcOperation":'原油特征停更预警',
# "data":{
# 'WARNING_TYPE_NAME':'特征数据停更预警',
# 'WARNING_CONTENT':'',
# 'WARNING_DATE':''
# }
# }
# query_data_list_item_nos_data = {
# "funcModule": "数据项",
# "funcOperation": "查询",
# "funcModule": "数据项",
# "funcOperation": "查询",
# "data": {
# "dateStart": "20200101",
# "dateEnd": "20241231",
# "dataItemNoList": ["Brentzdj", "Brentzgj"] # 数据项编码,代表 brent最低价和最高价
# "dateStart":"20200101",
# "dateEnd":"20241231",
# "dataItemNoList":["Brentzdj","Brentzgj"] # 数据项编码,代表 brent最低价和最高价
# }
# }
# push_data_value_list_data = {
# "funcModule": "数据表信息列表",
# "funcOperation": "新增",
@ -281,26 +175,132 @@ table_name = 'v_tbl_crude_oil_warning'
# }
# # 八大维度数据项编码
# bdwd_items = {
# 'ciri': 'yyycbdwdcr',
# 'benzhou': 'yyycbdwdbz',
# 'cizhou': 'yyycbdwdcz',
# 'gezhou': 'yyycbdwdgz',
# 'ciyue': 'yyycbdwdcy',
# 'cieryue': 'yyycbdwdcey',
# 'cisanyue': 'yyycbdwdcsy',
# 'cisiyue': 'yyycbdwdcsiy',
# 'ciri': '原油大数据预测|FORECAST|PRICE|T',
# 'benzhou': '原油大数据预测|FORECAST|PRICE|W',
# 'cizhou': '原油大数据预测|FORECAST|PRICE|W_1',
# 'gezhou': '原油大数据预测|FORECAST|PRICE|W_2',
# 'ciyue': '原油大数据预测|FORECAST|PRICE|M_1',
# 'cieryue': '原油大数据预测|FORECAST|PRICE|M_2',
# 'cisanyue': '原油大数据预测|FORECAST|PRICE|M_3',
# 'cisiyue': '原油大数据预测|FORECAST|PRICE|M_4',
# }
# # 北京环境数据库
# host = '192.168.101.27'
# # 生产环境数据库
# host = 'rm-2zehj3r1n60ttz9x5.mysql.rds.aliyuncs.com'
# port = 3306
# dbusername = 'root'
# password = '123456'
# dbname = 'jingbo_test'
# dbusername ='jingbo'
# password = 'shihua@123'
# dbname = 'jingbo'
# table_name = 'v_tbl_crude_oil_warning'
# # 变量定义--测试环境
server_host = '192.168.100.53:8080' # 内网
# server_host = '183.242.74.28' # 外网
login_pushreport_url = f"http://{server_host}/jingbo-dev/api/server/login"
upload_url = f"http://{server_host}/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
upload_warning_url = f"http://{server_host}/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
query_data_list_item_nos_url = f"http://{server_host}/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos"
# 上传数据项值
push_data_value_list_url = f"http://{server_host}/jingbo-dev/api/dw/dataValue/pushDataValueList"
login_data = {
"data": {
"account": "api_test",
# "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
"tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
"terminal": "API"
},
"funcModule": "API",
"funcOperation": "获取token"
}
upload_data = {
"funcModule": '研究报告信息',
"funcOperation": '上传原油价格预测报告',
"data": {
"ownerAccount": 'arui', # 报告所属用户账号
"reportType": 'OIL_PRICE_FORECAST', # 报告类型固定为OIL_PRICE_FORECAST
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', # 文件名称
"fileBase64": '', # 文件内容base64
"categoryNo": 'yyjgycbg', # 研究报告分类编码
"smartBusinessClassCode": 'YCJGYCBG', # 分析报告分类编码
"reportEmployeeCode": "E40116", # 报告人
"reportDeptCode": "D0044", # 报告部门
"productGroupCode": "RAW_MATERIAL" # 商品分类
}
}
warning_data = {
"funcModule": '原油特征停更预警',
"funcOperation": '原油特征停更预警',
"data": {
'WARNING_TYPE_NAME': '特征数据停更预警',
'WARNING_CONTENT': '',
'WARNING_DATE': ''
}
}
query_data_list_item_nos_data = {
"funcModule": "数据项",
"funcOperation": "查询",
"data": {
"dateStart": "20200101",
"dateEnd": "20241231",
"dataItemNoList": ["Brentzdj", "Brentzgj"] # 数据项编码,代表 brent最低价和最高价
}
}
push_data_value_list_data = {
"funcModule": "数据表信息列表",
"funcOperation": "新增",
"data": [
{"dataItemNo": "91230600716676129",
"dataDate": "20230113",
"dataStatus": "add",
"dataValue": 100.11
},
{"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY",
"dataDate": "20230113",
"dataStatus": "add",
"dataValue": 100.55
},
{"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY",
"dataDate": "20230113",
"dataStatus": "add",
"dataValue": 100.55
}
]
}
# 八大维度数据项编码
bdwd_items = {
'ciri': 'yyycbdwdcr',
'benzhou': 'yyycbdwdbz',
'cizhou': 'yyycbdwdcz',
'gezhou': 'yyycbdwdgz',
'ciyue': 'yyycbdwdcy',
'cieryue': 'yyycbdwdcey',
'cisanyue': 'yyycbdwdcsy',
'cisiyue': 'yyycbdwdcsiy',
}
# 北京环境数据库
host = '192.168.101.27'
port = 3306
dbusername = 'root'
password = '123456'
dbname = 'jingbo_test'
table_name = 'v_tbl_crude_oil_warning'
# 开关
is_train = True # 是否训练
is_debug = False # 是否调试

View File

@ -176,234 +176,234 @@ def predict_main():
返回:
None
"""
end_time = global_config['end_time']
# end_time = global_config['end_time']
signature = BinanceAPI(APPID, SECRET)
etadata = EtaReader(signature=signature,
classifylisturl=global_config['classifylisturl'],
classifyidlisturl=global_config['classifyidlisturl'],
edbcodedataurl=global_config['edbcodedataurl'],
edbcodelist=global_config['edbcodelist'],
edbdatapushurl=global_config['edbdatapushurl'],
edbdeleteurl=global_config['edbdeleteurl'],
edbbusinessurl=global_config['edbbusinessurl'],
classifyId=global_config['ClassifyId'],
)
# 获取数据
if is_eta:
logger.info('从eta获取数据...')
# signature = BinanceAPI(APPID, SECRET)
# etadata = EtaReader(signature=signature,
# classifylisturl=global_config['classifylisturl'],
# classifyidlisturl=global_config['classifyidlisturl'],
# edbcodedataurl=global_config['edbcodedataurl'],
# edbcodelist=global_config['edbcodelist'],
# edbdatapushurl=global_config['edbdatapushurl'],
# edbdeleteurl=global_config['edbdeleteurl'],
# edbbusinessurl=global_config['edbbusinessurl'],
# classifyId=global_config['ClassifyId'],
# )
# # 获取数据
# if is_eta:
# logger.info('从eta获取数据...')
df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(
data_set=data_set, dataset=dataset) # 原始数据,未处理
# df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(
# data_set=data_set, dataset=dataset) # 原始数据,未处理
if is_market:
logger.info('从市场信息平台获取数据...')
try:
# 如果是测试环境最高价最低价取excel文档
if server_host == '192.168.100.53':
logger.info('从excel文档获取最高价最低价')
df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
else:
logger.info('从市场信息平台获取数据')
df_zhibiaoshuju = get_market_data(
end_time, df_zhibiaoshuju)
# if is_market:
# logger.info('从市场信息平台获取数据...')
# try:
# # 如果是测试环境最高价最低价取excel文档
# if server_host == '192.168.100.53':
# logger.info('从excel文档获取最高价最低价')
# df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
# else:
# logger.info('从市场信息平台获取数据')
# df_zhibiaoshuju = get_market_data(
# end_time, df_zhibiaoshuju)
except:
logger.info('最高最低价拼接失败')
# except:
# logger.info('最高最低价拼接失败')
# 保存到xlsx文件的sheet表
with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
# # 保存到xlsx文件的sheet表
# with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
# df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
# df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
# 数据处理
df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
end_time=end_time)
# # 数据处理
# df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
# end_time=end_time)
else:
# 读取数据
logger.info('读取本地数据:' + os.path.join(dataset, data_set))
df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
# else:
# # 读取数据
# logger.info('读取本地数据:' + os.path.join(dataset, data_set))
# df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
# is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
# 更改预测列名称
df.rename(columns={y: 'y'}, inplace=True)
# # 更改预测列名称
# df.rename(columns={y: 'y'}, inplace=True)
if is_edbnamelist:
df = df[edbnamelist]
df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False)
# 保存最新日期的y值到数据库
# 取第一行数据存储到数据库中
first_row = df[['ds', 'y']].tail(1)
# 判断y的类型是否为float
if not isinstance(first_row['y'].values[0], float):
logger.info(f'{end_time}预测目标数据为空,跳过')
return None
# if is_edbnamelist:
# df = df[edbnamelist]
# df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False)
# # 保存最新日期的y值到数据库
# # 取第一行数据存储到数据库中
# first_row = df[['ds', 'y']].tail(1)
# # 判断y的类型是否为float
# if not isinstance(first_row['y'].values[0], float):
# logger.info(f'{end_time}预测目标数据为空,跳过')
# return None
# 将最新真实值保存到数据库
if not sqlitedb.check_table_exists('trueandpredict'):
first_row.to_sql('trueandpredict', sqlitedb.connection, index=False)
else:
for row in first_row.itertuples(index=False):
row_dict = row._asdict()
config.logger.info(f'要保存的真实值:{row_dict}')
# 判断ds是否为字符串类型,如果不是则转换为字符串类型
if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)):
row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
elif not isinstance(row_dict['ds'], str):
try:
row_dict['ds'] = pd.to_datetime(
row_dict['ds']).strftime('%Y-%m-%d')
except:
logger.warning(f"无法解析的时间格式: {row_dict['ds']}")
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
check_query = sqlitedb.select_data(
'trueandpredict', where_condition=f"ds = '{row.ds}'")
if len(check_query) > 0:
set_clause = ", ".join(
[f"{key} = '{value}'" for key, value in row_dict.items()])
sqlitedb.update_data(
'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
continue
sqlitedb.insert_data('trueandpredict', tuple(
row_dict.values()), columns=row_dict.keys())
# # 将最新真实值保存到数据库
# if not sqlitedb.check_table_exists('trueandpredict'):
# first_row.to_sql('trueandpredict', sqlitedb.connection, index=False)
# else:
# for row in first_row.itertuples(index=False):
# row_dict = row._asdict()
# config.logger.info(f'要保存的真实值:{row_dict}')
# # 判断ds是否为字符串类型,如果不是则转换为字符串类型
# if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)):
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
# elif not isinstance(row_dict['ds'], str):
# try:
# row_dict['ds'] = pd.to_datetime(
# row_dict['ds']).strftime('%Y-%m-%d')
# except:
# logger.warning(f"无法解析的时间格式: {row_dict['ds']}")
# # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
# # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
# check_query = sqlitedb.select_data(
# 'trueandpredict', where_condition=f"ds = '{row.ds}'")
# if len(check_query) > 0:
# set_clause = ", ".join(
# [f"{key} = '{value}'" for key, value in row_dict.items()])
# sqlitedb.update_data(
# 'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
# continue
# sqlitedb.insert_data('trueandpredict', tuple(
# row_dict.values()), columns=row_dict.keys())
# 更新accuracy表的y值
if not sqlitedb.check_table_exists('accuracy'):
pass
else:
update_y = sqlitedb.select_data(
'accuracy', where_condition="y is null")
if len(update_y) > 0:
logger.info('更新accuracy表的y值')
# 找到update_y 中ds且df中的y的行
update_y = update_y[update_y['ds'] <= end_time]
logger.info(f'要更新y的信息{update_y}')
# try:
for row in update_y.itertuples(index=False):
try:
row_dict = row._asdict()
yy = df[df['ds'] == row_dict['ds']]['y'].values[0]
LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0]
HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0]
sqlitedb.update_data(
'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
except:
logger.info(f'更新accuracy表的y值失败{row_dict}')
# except Exception as e:
# logger.info(f'更新accuracy表的y值失败{e}')
# # 更新accuracy表的y值
# if not sqlitedb.check_table_exists('accuracy'):
# pass
# else:
# update_y = sqlitedb.select_data(
# 'accuracy', where_condition="y is null")
# if len(update_y) > 0:
# logger.info('更新accuracy表的y值')
# # 找到update_y 中ds且df中的y的行
# update_y = update_y[update_y['ds'] <= end_time]
# logger.info(f'要更新y的信息{update_y}')
# # try:
# for row in update_y.itertuples(index=False):
# try:
# row_dict = row._asdict()
# yy = df[df['ds'] == row_dict['ds']]['y'].values[0]
# LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0]
# HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0]
# sqlitedb.update_data(
# 'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
# except:
# logger.info(f'更新accuracy表的y值失败{row_dict}')
# # except Exception as e:
# # logger.info(f'更新accuracy表的y值失败{e}')
# 判断当前日期是不是周一
is_weekday = datetime.datetime.now().weekday() == 0
if is_weekday:
logger.info('今天是周一,更新预测模型')
# 计算最近60天预测残差最低的模型名称
model_results = sqlitedb.select_data(
'trueandpredict', order_by="ds DESC", limit="60")
# 删除空值率为90%以上的列
if len(model_results) > 10:
model_results = model_results.dropna(
thresh=len(model_results)*0.1, axis=1)
# 删除空行
model_results = model_results.dropna()
modelnames = model_results.columns.to_list()[2:-2]
for col in model_results[modelnames].select_dtypes(include=['object']).columns:
model_results[col] = model_results[col].astype(np.float32)
# 计算每个预测值与真实值之间的偏差率
for model in modelnames:
model_results[f'{model}_abs_error_rate'] = abs(
model_results['y'] - model_results[model]) / model_results['y']
# 获取每行对应的最小偏差率值
min_abs_error_rate_values = model_results.apply(
lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
# 获取每行对应的最小偏差率值对应的列名
min_abs_error_rate_column_name = model_results.apply(
lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
# 将列名索引转换为列名
min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(
lambda x: x.split('_')[0])
# 取出现次数最多的模型名称
most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
logger.info(f"最近60天预测残差最低的模型名称{most_common_model}")
# 保存结果到数据库
if not sqlitedb.check_table_exists('most_model'):
sqlitedb.create_table(
'most_model', columns="ds datetime, most_common_model TEXT")
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime(
'%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
# # 判断当前日期是不是周一
# is_weekday = datetime.datetime.now().weekday() == 0
# if is_weekday:
# logger.info('今天是周一,更新预测模型')
# # 计算最近60天预测残差最低的模型名称
# model_results = sqlitedb.select_data(
# 'trueandpredict', order_by="ds DESC", limit="60")
# # 删除空值率为90%以上的列
# if len(model_results) > 10:
# model_results = model_results.dropna(
# thresh=len(model_results)*0.1, axis=1)
# # 删除空行
# model_results = model_results.dropna()
# modelnames = model_results.columns.to_list()[2:-2]
# for col in model_results[modelnames].select_dtypes(include=['object']).columns:
# model_results[col] = model_results[col].astype(np.float32)
# # 计算每个预测值与真实值之间的偏差率
# for model in modelnames:
# model_results[f'{model}_abs_error_rate'] = abs(
# model_results['y'] - model_results[model]) / model_results['y']
# # 获取每行对应的最小偏差率值
# min_abs_error_rate_values = model_results.apply(
# lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
# # 获取每行对应的最小偏差率值对应的列名
# min_abs_error_rate_column_name = model_results.apply(
# lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
# # 将列名索引转换为列名
# min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(
# lambda x: x.split('_')[0])
# # 取出现次数最多的模型名称
# most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
# logger.info(f"最近60天预测残差最低的模型名称{most_common_model}")
# # 保存结果到数据库
# if not sqlitedb.check_table_exists('most_model'):
# sqlitedb.create_table(
# 'most_model', columns="ds datetime, most_common_model TEXT")
# sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime(
# '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
try:
if is_weekday:
# if True:
logger.info('今天是周一,发送特征预警')
# 上传预警信息到数据库
warning_data_df = df_zhibiaoliebiao.copy()
warning_data_df = warning_data_df[warning_data_df['停更周期'] > 3][[
'指标名称', '指标id', '频度', '更新周期', '指标来源', '最后更新时间', '停更周期']]
# 重命名列名
warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY',
'更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
from sqlalchemy import create_engine
import urllib
global password
if '@' in password:
password = urllib.parse.quote_plus(password)
# try:
# if is_weekday:
# # if True:
# logger.info('今天是周一,发送特征预警')
# # 上传预警信息到数据库
# warning_data_df = df_zhibiaoliebiao.copy()
# warning_data_df = warning_data_df[warning_data_df['停更周期'] > 3][[
# '指标名称', '指标id', '频度', '更新周期', '指标来源', '最后更新时间', '停更周期']]
# # 重命名列名
# warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY',
# '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
# from sqlalchemy import create_engine
# import urllib
# global password
# if '@' in password:
# password = urllib.parse.quote_plus(password)
engine = create_engine(
f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
warning_data_df['WARNING_DATE'] = datetime.date.today().strftime(
"%Y-%m-%d %H:%M:%S")
warning_data_df['TENANT_CODE'] = 'T0004'
# 插入数据之前查询表数据然后新增id列
existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
if not existing_data.empty:
max_id = existing_data['ID'].astype(int).max()
warning_data_df['ID'] = range(
max_id + 1, max_id + 1 + len(warning_data_df))
else:
warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
warning_data_df.to_sql(
table_name, con=engine, if_exists='append', index=False)
if is_update_warning_data:
upload_warning_info(len(warning_data_df))
except:
logger.info('上传预警信息到数据库失败')
# engine = create_engine(
# f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
# warning_data_df['WARNING_DATE'] = datetime.date.today().strftime(
# "%Y-%m-%d %H:%M:%S")
# warning_data_df['TENANT_CODE'] = 'T0004'
# # 插入数据之前查询表数据然后新增id列
# existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
# if not existing_data.empty:
# max_id = existing_data['ID'].astype(int).max()
# warning_data_df['ID'] = range(
# max_id + 1, max_id + 1 + len(warning_data_df))
# else:
# warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
# warning_data_df.to_sql(
# table_name, con=engine, if_exists='append', index=False)
# if is_update_warning_data:
# upload_warning_info(len(warning_data_df))
# except:
# logger.info('上传预警信息到数据库失败')
if is_corr:
df = corr_feature(df=df)
# if is_corr:
# df = corr_feature(df=df)
df1 = df.copy() # 备份一下后面特征筛选完之后加入ds y 列用
logger.info(f"开始训练模型...")
row, col = df.shape
# df1 = df.copy() # 备份一下后面特征筛选完之后加入ds y 列用
# logger.info(f"开始训练模型...")
# row, col = df.shape
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
ex_Model(df,
horizon=global_config['horizon'],
input_size=global_config['input_size'],
train_steps=global_config['train_steps'],
val_check_steps=global_config['val_check_steps'],
early_stop_patience_steps=global_config['early_stop_patience_steps'],
is_debug=global_config['is_debug'],
dataset=global_config['dataset'],
is_train=global_config['is_train'],
is_fivemodels=global_config['is_fivemodels'],
val_size=global_config['val_size'],
test_size=global_config['test_size'],
settings=global_config['settings'],
now=now,
etadata=etadata,
modelsindex=global_config['modelsindex'],
data=data,
is_eta=global_config['is_eta'],
end_time=global_config['end_time'],
)
# now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
# ex_Model(df,
# horizon=global_config['horizon'],
# input_size=global_config['input_size'],
# train_steps=global_config['train_steps'],
# val_check_steps=global_config['val_check_steps'],
# early_stop_patience_steps=global_config['early_stop_patience_steps'],
# is_debug=global_config['is_debug'],
# dataset=global_config['dataset'],
# is_train=global_config['is_train'],
# is_fivemodels=global_config['is_fivemodels'],
# val_size=global_config['val_size'],
# test_size=global_config['test_size'],
# settings=global_config['settings'],
# now=now,
# etadata=etadata,
# modelsindex=global_config['modelsindex'],
# data=data,
# is_eta=global_config['is_eta'],
# end_time=global_config['end_time'],
# )
logger.info('模型训练完成')
# logger.info('模型训练完成')
logger.info('训练数据绘图ing')
model_results3 = model_losss(sqlitedb, end_time=end_time)
logger.info('训练数据绘图end')
# logger.info('训练数据绘图ing')
# model_results3 = model_losss(sqlitedb, end_time=end_time)
# logger.info('训练数据绘图end')
# # 模型报告
logger.info('制作报告ing')
@ -421,7 +421,7 @@ def predict_main():
logger.info('制作报告end')
logger.info('模型训练完成')
push_market_value()
# push_market_value()
# 发送邮件
# m = SendMail(

View File

@ -2352,7 +2352,7 @@ def brent_export_pdf(num_indicators=475, num_models=21, num_dayindicator=202, in
content.append(Graphs.draw_little_title('模型选择:'))
content.append(Graphs.draw_text(
f'本次预测使用了一个专门收集时间序列的NeuralForecast库中的{num_models}个模型:'))
content.append(Graphs.draw_text(f'使用40天的数据预测未来{inputsize}天的数据。'))
content.append(Graphs.draw_text(f'使用{config.input_size}个数据预测未来{inputsize}数据。'))
content.append(Graphs.draw_little_title('指标情况:'))
with open(os.path.join(config.dataset, '特征频度统计.txt'), encoding='utf-8') as f:
for line in f.readlines():
@ -2502,16 +2502,16 @@ def brent_export_pdf(num_indicators=475, num_models=21, num_dayindicator=202, in
config.dataset, reportname), pagesize=letter)
doc.build(content)
# pdf 上传到数字化信息平台
try:
if config.is_update_report:
with open(os.path.join(config.dataset, reportname), 'rb') as f:
base64_data = base64.b64encode(f.read()).decode('utf-8')
config.upload_data["data"]["fileBase64"] = base64_data
config.upload_data["data"]["fileName"] = reportname
token = get_head_auth_report()
upload_report_data(token, config.upload_data)
except TimeoutError as e:
print(f"请求超时: {e}")
# try:
# if config.is_update_report:
# with open(os.path.join(config.dataset, reportname), 'rb') as f:
# base64_data = base64.b64encode(f.read()).decode('utf-8')
# config.upload_data["data"]["fileBase64"] = base64_data
# config.upload_data["data"]["fileName"] = reportname
# token = get_head_auth_report()
# upload_report_data(token, config.upload_data)
# except TimeoutError as e:
# print(f"请求超时: {e}")
@exception_logger