原油报告 使用12个数据预测未来2个数据。
This commit is contained in:
parent
8106ea1e69
commit
05bfeebcb0
@ -91,129 +91,18 @@ ClassifyId = 1214
|
||||
|
||||
|
||||
################################################################################################################ 变量定义--线上环境
|
||||
server_host = '10.200.32.39'
|
||||
login_pushreport_url = "http://10.200.32.39/jingbo-api/api/server/login"
|
||||
upload_url = "http://10.200.32.39/jingbo-api/api/analysis/reportInfo/researchUploadReportSave"
|
||||
upload_warning_url = "http://10.200.32.39/jingbo-api/api/basicBuiness/crudeOilWarning/save"
|
||||
query_data_list_item_nos_url = f"http://{server_host}/jingbo-api/api/warehouse/dwDataItem/queryDataListItemNos"
|
||||
# 上传数据项值
|
||||
push_data_value_list_url = f"http://{server_host}/jingbo-api/api/dw/dataValue/pushDataValueList"
|
||||
|
||||
login_data = {
|
||||
"data": {
|
||||
"account": "api_dev",
|
||||
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",
|
||||
"tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
|
||||
"terminal": "API"
|
||||
},
|
||||
"funcModule": "API",
|
||||
"funcOperation": "获取token"
|
||||
}
|
||||
|
||||
|
||||
|
||||
upload_data = {
|
||||
"funcModule":'研究报告信息',
|
||||
"funcOperation":'上传原油价格预测报告',
|
||||
"data":{
|
||||
"groupNo":'', # 用户组id
|
||||
"ownerAccount":'27663', #报告所属用户账号 27663 - 刘小朋
|
||||
"reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
||||
"fileName": '', #文件名称
|
||||
"fileBase64": '' ,#文件内容base64
|
||||
"categoryNo":'yyjgycbg', # 研究报告分类编码
|
||||
"smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
|
||||
"reportEmployeeCode":"E40482" ,# 报告人 E40482 - 管理员 0000027663 - 刘小朋
|
||||
"reportDeptCode" :"002000621000", # 报告部门 - 002000621000 SH期货研究部
|
||||
"productGroupCode":"RAW_MATERIAL" # 商品分类
|
||||
}
|
||||
}
|
||||
|
||||
warning_data = {
|
||||
"groupNo":'', # 用户组id
|
||||
"funcModule":'原油特征停更预警',
|
||||
"funcOperation":'原油特征停更预警',
|
||||
"data":{
|
||||
'WARNING_TYPE_NAME':'特征数据停更预警',
|
||||
'WARNING_CONTENT':'',
|
||||
'WARNING_DATE':''
|
||||
}
|
||||
}
|
||||
|
||||
query_data_list_item_nos_data = {
|
||||
"funcModule": "数据项",
|
||||
"funcOperation": "查询",
|
||||
"data": {
|
||||
"dateStart":"20200101",
|
||||
"dateEnd":"20241231",
|
||||
"dataItemNoList":["Brentzdj","Brentzgj"] # 数据项编码,代表 brent最低价和最高价
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
push_data_value_list_data = {
|
||||
"funcModule": "数据表信息列表",
|
||||
"funcOperation": "新增",
|
||||
"data": [
|
||||
{"dataItemNo": "91230600716676129",
|
||||
"dataDate": "20230113",
|
||||
"dataStatus": "add",
|
||||
"dataValue": 100.11
|
||||
},
|
||||
{"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY",
|
||||
"dataDate": "20230113",
|
||||
"dataStatus": "add",
|
||||
"dataValue": 100.55
|
||||
},
|
||||
{"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY",
|
||||
"dataDate": "20230113",
|
||||
"dataStatus": "add",
|
||||
"dataValue": 100.55
|
||||
}
|
||||
]
|
||||
}
|
||||
# 八大维度数据项编码
|
||||
bdwd_items = {
|
||||
'ciri': '原油大数据预测|FORECAST|PRICE|T',
|
||||
'benzhou': '原油大数据预测|FORECAST|PRICE|W',
|
||||
'cizhou': '原油大数据预测|FORECAST|PRICE|W_1',
|
||||
'gezhou': '原油大数据预测|FORECAST|PRICE|W_2',
|
||||
'ciyue': '原油大数据预测|FORECAST|PRICE|M_1',
|
||||
'cieryue': '原油大数据预测|FORECAST|PRICE|M_2',
|
||||
'cisanyue': '原油大数据预测|FORECAST|PRICE|M_3',
|
||||
'cisiyue': '原油大数据预测|FORECAST|PRICE|M_4',
|
||||
}
|
||||
|
||||
|
||||
# 生产环境数据库
|
||||
host = 'rm-2zehj3r1n60ttz9x5.mysql.rds.aliyuncs.com'
|
||||
port = 3306
|
||||
dbusername ='jingbo'
|
||||
password = 'shihua@123'
|
||||
dbname = 'jingbo'
|
||||
table_name = 'v_tbl_crude_oil_warning'
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# # 变量定义--测试环境
|
||||
# server_host = '192.168.100.53:8080' # 内网
|
||||
# # server_host = '183.242.74.28' # 外网
|
||||
|
||||
# login_pushreport_url = f"http://{server_host}/jingbo-dev/api/server/login"
|
||||
# upload_url = f"http://{server_host}/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
|
||||
# upload_warning_url = f"http://{server_host}/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
|
||||
# query_data_list_item_nos_url = f"http://{server_host}/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos"
|
||||
# server_host = '10.200.32.39'
|
||||
# login_pushreport_url = "http://10.200.32.39/jingbo-api/api/server/login"
|
||||
# upload_url = "http://10.200.32.39/jingbo-api/api/analysis/reportInfo/researchUploadReportSave"
|
||||
# upload_warning_url = "http://10.200.32.39/jingbo-api/api/basicBuiness/crudeOilWarning/save"
|
||||
# query_data_list_item_nos_url = f"http://{server_host}/jingbo-api/api/warehouse/dwDataItem/queryDataListItemNos"
|
||||
# # 上传数据项值
|
||||
# push_data_value_list_url = f"http://{server_host}/jingbo-dev/api/dw/dataValue/pushDataValueList"
|
||||
# push_data_value_list_url = f"http://{server_host}/jingbo-api/api/dw/dataValue/pushDataValueList"
|
||||
|
||||
# login_data = {
|
||||
# "data": {
|
||||
# "account": "api_test",
|
||||
# # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
|
||||
# "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
|
||||
# "account": "api_dev",
|
||||
# "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",
|
||||
# "tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
|
||||
# "terminal": "API"
|
||||
# },
|
||||
@ -221,43 +110,48 @@ table_name = 'v_tbl_crude_oil_warning'
|
||||
# "funcOperation": "获取token"
|
||||
# }
|
||||
|
||||
|
||||
|
||||
# upload_data = {
|
||||
# "funcModule": '研究报告信息',
|
||||
# "funcOperation": '上传原油价格预测报告',
|
||||
# "data": {
|
||||
# "ownerAccount": 'arui', # 报告所属用户账号
|
||||
# "reportType": 'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
||||
# "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', # 文件名称
|
||||
# "fileBase64": '', # 文件内容base64
|
||||
# "categoryNo": 'yyjgycbg', # 研究报告分类编码
|
||||
# "smartBusinessClassCode": 'YCJGYCBG', # 分析报告分类编码
|
||||
# "reportEmployeeCode": "E40116", # 报告人
|
||||
# "reportDeptCode": "D0044", # 报告部门
|
||||
# "productGroupCode": "RAW_MATERIAL" # 商品分类
|
||||
# }
|
||||
# "funcModule":'研究报告信息',
|
||||
# "funcOperation":'上传原油价格预测报告',
|
||||
# "data":{
|
||||
# "groupNo":'', # 用户组id
|
||||
# "ownerAccount":'27663', #报告所属用户账号 27663 - 刘小朋
|
||||
# "reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
||||
# "fileName": '', #文件名称
|
||||
# "fileBase64": '' ,#文件内容base64
|
||||
# "categoryNo":'yyjgycbg', # 研究报告分类编码
|
||||
# "smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
|
||||
# "reportEmployeeCode":"E40482" ,# 报告人 E40482 - 管理员 0000027663 - 刘小朋
|
||||
# "reportDeptCode" :"002000621000", # 报告部门 - 002000621000 SH期货研究部
|
||||
# "productGroupCode":"RAW_MATERIAL" # 商品分类
|
||||
# }
|
||||
# }
|
||||
|
||||
|
||||
# warning_data = {
|
||||
# "funcModule": '原油特征停更预警',
|
||||
# "funcOperation": '原油特征停更预警',
|
||||
# "data": {
|
||||
# 'WARNING_TYPE_NAME': '特征数据停更预警',
|
||||
# 'WARNING_CONTENT': '',
|
||||
# 'WARNING_DATE': ''
|
||||
# }
|
||||
# "groupNo":'', # 用户组id
|
||||
# "funcModule":'原油特征停更预警',
|
||||
# "funcOperation":'原油特征停更预警',
|
||||
# "data":{
|
||||
# 'WARNING_TYPE_NAME':'特征数据停更预警',
|
||||
# 'WARNING_CONTENT':'',
|
||||
# 'WARNING_DATE':''
|
||||
# }
|
||||
# }
|
||||
|
||||
# query_data_list_item_nos_data = {
|
||||
# "funcModule": "数据项",
|
||||
# "funcOperation": "查询",
|
||||
# "funcModule": "数据项",
|
||||
# "funcOperation": "查询",
|
||||
# "data": {
|
||||
# "dateStart": "20200101",
|
||||
# "dateEnd": "20241231",
|
||||
# "dataItemNoList": ["Brentzdj", "Brentzgj"] # 数据项编码,代表 brent最低价和最高价
|
||||
# "dateStart":"20200101",
|
||||
# "dateEnd":"20241231",
|
||||
# "dataItemNoList":["Brentzdj","Brentzgj"] # 数据项编码,代表 brent最低价和最高价
|
||||
# }
|
||||
# }
|
||||
|
||||
|
||||
|
||||
# push_data_value_list_data = {
|
||||
# "funcModule": "数据表信息列表",
|
||||
# "funcOperation": "新增",
|
||||
@ -281,26 +175,132 @@ table_name = 'v_tbl_crude_oil_warning'
|
||||
# }
|
||||
# # 八大维度数据项编码
|
||||
# bdwd_items = {
|
||||
# 'ciri': 'yyycbdwdcr',
|
||||
# 'benzhou': 'yyycbdwdbz',
|
||||
# 'cizhou': 'yyycbdwdcz',
|
||||
# 'gezhou': 'yyycbdwdgz',
|
||||
# 'ciyue': 'yyycbdwdcy',
|
||||
# 'cieryue': 'yyycbdwdcey',
|
||||
# 'cisanyue': 'yyycbdwdcsy',
|
||||
# 'cisiyue': 'yyycbdwdcsiy',
|
||||
# 'ciri': '原油大数据预测|FORECAST|PRICE|T',
|
||||
# 'benzhou': '原油大数据预测|FORECAST|PRICE|W',
|
||||
# 'cizhou': '原油大数据预测|FORECAST|PRICE|W_1',
|
||||
# 'gezhou': '原油大数据预测|FORECAST|PRICE|W_2',
|
||||
# 'ciyue': '原油大数据预测|FORECAST|PRICE|M_1',
|
||||
# 'cieryue': '原油大数据预测|FORECAST|PRICE|M_2',
|
||||
# 'cisanyue': '原油大数据预测|FORECAST|PRICE|M_3',
|
||||
# 'cisiyue': '原油大数据预测|FORECAST|PRICE|M_4',
|
||||
# }
|
||||
|
||||
|
||||
# # 北京环境数据库
|
||||
# host = '192.168.101.27'
|
||||
# # 生产环境数据库
|
||||
# host = 'rm-2zehj3r1n60ttz9x5.mysql.rds.aliyuncs.com'
|
||||
# port = 3306
|
||||
# dbusername = 'root'
|
||||
# password = '123456'
|
||||
# dbname = 'jingbo_test'
|
||||
# dbusername ='jingbo'
|
||||
# password = 'shihua@123'
|
||||
# dbname = 'jingbo'
|
||||
# table_name = 'v_tbl_crude_oil_warning'
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# # 变量定义--测试环境
|
||||
server_host = '192.168.100.53:8080' # 内网
|
||||
# server_host = '183.242.74.28' # 外网
|
||||
|
||||
login_pushreport_url = f"http://{server_host}/jingbo-dev/api/server/login"
|
||||
upload_url = f"http://{server_host}/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
|
||||
upload_warning_url = f"http://{server_host}/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
|
||||
query_data_list_item_nos_url = f"http://{server_host}/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos"
|
||||
# 上传数据项值
|
||||
push_data_value_list_url = f"http://{server_host}/jingbo-dev/api/dw/dataValue/pushDataValueList"
|
||||
|
||||
login_data = {
|
||||
"data": {
|
||||
"account": "api_test",
|
||||
# "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
|
||||
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
|
||||
"tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
|
||||
"terminal": "API"
|
||||
},
|
||||
"funcModule": "API",
|
||||
"funcOperation": "获取token"
|
||||
}
|
||||
|
||||
upload_data = {
|
||||
"funcModule": '研究报告信息',
|
||||
"funcOperation": '上传原油价格预测报告',
|
||||
"data": {
|
||||
"ownerAccount": 'arui', # 报告所属用户账号
|
||||
"reportType": 'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
||||
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', # 文件名称
|
||||
"fileBase64": '', # 文件内容base64
|
||||
"categoryNo": 'yyjgycbg', # 研究报告分类编码
|
||||
"smartBusinessClassCode": 'YCJGYCBG', # 分析报告分类编码
|
||||
"reportEmployeeCode": "E40116", # 报告人
|
||||
"reportDeptCode": "D0044", # 报告部门
|
||||
"productGroupCode": "RAW_MATERIAL" # 商品分类
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
warning_data = {
|
||||
"funcModule": '原油特征停更预警',
|
||||
"funcOperation": '原油特征停更预警',
|
||||
"data": {
|
||||
'WARNING_TYPE_NAME': '特征数据停更预警',
|
||||
'WARNING_CONTENT': '',
|
||||
'WARNING_DATE': ''
|
||||
}
|
||||
}
|
||||
|
||||
query_data_list_item_nos_data = {
|
||||
"funcModule": "数据项",
|
||||
"funcOperation": "查询",
|
||||
"data": {
|
||||
"dateStart": "20200101",
|
||||
"dateEnd": "20241231",
|
||||
"dataItemNoList": ["Brentzdj", "Brentzgj"] # 数据项编码,代表 brent最低价和最高价
|
||||
}
|
||||
}
|
||||
|
||||
push_data_value_list_data = {
|
||||
"funcModule": "数据表信息列表",
|
||||
"funcOperation": "新增",
|
||||
"data": [
|
||||
{"dataItemNo": "91230600716676129",
|
||||
"dataDate": "20230113",
|
||||
"dataStatus": "add",
|
||||
"dataValue": 100.11
|
||||
},
|
||||
{"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY",
|
||||
"dataDate": "20230113",
|
||||
"dataStatus": "add",
|
||||
"dataValue": 100.55
|
||||
},
|
||||
{"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY",
|
||||
"dataDate": "20230113",
|
||||
"dataStatus": "add",
|
||||
"dataValue": 100.55
|
||||
}
|
||||
]
|
||||
}
|
||||
# 八大维度数据项编码
|
||||
bdwd_items = {
|
||||
'ciri': 'yyycbdwdcr',
|
||||
'benzhou': 'yyycbdwdbz',
|
||||
'cizhou': 'yyycbdwdcz',
|
||||
'gezhou': 'yyycbdwdgz',
|
||||
'ciyue': 'yyycbdwdcy',
|
||||
'cieryue': 'yyycbdwdcey',
|
||||
'cisanyue': 'yyycbdwdcsy',
|
||||
'cisiyue': 'yyycbdwdcsiy',
|
||||
}
|
||||
|
||||
|
||||
# 北京环境数据库
|
||||
host = '192.168.101.27'
|
||||
port = 3306
|
||||
dbusername = 'root'
|
||||
password = '123456'
|
||||
dbname = 'jingbo_test'
|
||||
table_name = 'v_tbl_crude_oil_warning'
|
||||
|
||||
|
||||
# 开关
|
||||
is_train = True # 是否训练
|
||||
is_debug = False # 是否调试
|
||||
|
@ -176,234 +176,234 @@ def predict_main():
|
||||
返回:
|
||||
None
|
||||
"""
|
||||
end_time = global_config['end_time']
|
||||
# end_time = global_config['end_time']
|
||||
|
||||
signature = BinanceAPI(APPID, SECRET)
|
||||
etadata = EtaReader(signature=signature,
|
||||
classifylisturl=global_config['classifylisturl'],
|
||||
classifyidlisturl=global_config['classifyidlisturl'],
|
||||
edbcodedataurl=global_config['edbcodedataurl'],
|
||||
edbcodelist=global_config['edbcodelist'],
|
||||
edbdatapushurl=global_config['edbdatapushurl'],
|
||||
edbdeleteurl=global_config['edbdeleteurl'],
|
||||
edbbusinessurl=global_config['edbbusinessurl'],
|
||||
classifyId=global_config['ClassifyId'],
|
||||
)
|
||||
# 获取数据
|
||||
if is_eta:
|
||||
logger.info('从eta获取数据...')
|
||||
# signature = BinanceAPI(APPID, SECRET)
|
||||
# etadata = EtaReader(signature=signature,
|
||||
# classifylisturl=global_config['classifylisturl'],
|
||||
# classifyidlisturl=global_config['classifyidlisturl'],
|
||||
# edbcodedataurl=global_config['edbcodedataurl'],
|
||||
# edbcodelist=global_config['edbcodelist'],
|
||||
# edbdatapushurl=global_config['edbdatapushurl'],
|
||||
# edbdeleteurl=global_config['edbdeleteurl'],
|
||||
# edbbusinessurl=global_config['edbbusinessurl'],
|
||||
# classifyId=global_config['ClassifyId'],
|
||||
# )
|
||||
# # 获取数据
|
||||
# if is_eta:
|
||||
# logger.info('从eta获取数据...')
|
||||
|
||||
df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(
|
||||
data_set=data_set, dataset=dataset) # 原始数据,未处理
|
||||
# df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(
|
||||
# data_set=data_set, dataset=dataset) # 原始数据,未处理
|
||||
|
||||
if is_market:
|
||||
logger.info('从市场信息平台获取数据...')
|
||||
try:
|
||||
# 如果是测试环境,最高价最低价取excel文档
|
||||
if server_host == '192.168.100.53':
|
||||
logger.info('从excel文档获取最高价最低价')
|
||||
df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
|
||||
else:
|
||||
logger.info('从市场信息平台获取数据')
|
||||
df_zhibiaoshuju = get_market_data(
|
||||
end_time, df_zhibiaoshuju)
|
||||
# if is_market:
|
||||
# logger.info('从市场信息平台获取数据...')
|
||||
# try:
|
||||
# # 如果是测试环境,最高价最低价取excel文档
|
||||
# if server_host == '192.168.100.53':
|
||||
# logger.info('从excel文档获取最高价最低价')
|
||||
# df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
|
||||
# else:
|
||||
# logger.info('从市场信息平台获取数据')
|
||||
# df_zhibiaoshuju = get_market_data(
|
||||
# end_time, df_zhibiaoshuju)
|
||||
|
||||
except:
|
||||
logger.info('最高最低价拼接失败')
|
||||
# except:
|
||||
# logger.info('最高最低价拼接失败')
|
||||
|
||||
# 保存到xlsx文件的sheet表
|
||||
with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
|
||||
df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
|
||||
df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
|
||||
# # 保存到xlsx文件的sheet表
|
||||
# with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
|
||||
# df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
|
||||
# df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
|
||||
|
||||
# 数据处理
|
||||
df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
|
||||
end_time=end_time)
|
||||
# # 数据处理
|
||||
# df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
|
||||
# end_time=end_time)
|
||||
|
||||
else:
|
||||
# 读取数据
|
||||
logger.info('读取本地数据:' + os.path.join(dataset, data_set))
|
||||
df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
|
||||
is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
|
||||
# else:
|
||||
# # 读取数据
|
||||
# logger.info('读取本地数据:' + os.path.join(dataset, data_set))
|
||||
# df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
|
||||
# is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
|
||||
|
||||
# 更改预测列名称
|
||||
df.rename(columns={y: 'y'}, inplace=True)
|
||||
# # 更改预测列名称
|
||||
# df.rename(columns={y: 'y'}, inplace=True)
|
||||
|
||||
if is_edbnamelist:
|
||||
df = df[edbnamelist]
|
||||
df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False)
|
||||
# 保存最新日期的y值到数据库
|
||||
# 取第一行数据存储到数据库中
|
||||
first_row = df[['ds', 'y']].tail(1)
|
||||
# 判断y的类型是否为float
|
||||
if not isinstance(first_row['y'].values[0], float):
|
||||
logger.info(f'{end_time}预测目标数据为空,跳过')
|
||||
return None
|
||||
# if is_edbnamelist:
|
||||
# df = df[edbnamelist]
|
||||
# df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False)
|
||||
# # 保存最新日期的y值到数据库
|
||||
# # 取第一行数据存储到数据库中
|
||||
# first_row = df[['ds', 'y']].tail(1)
|
||||
# # 判断y的类型是否为float
|
||||
# if not isinstance(first_row['y'].values[0], float):
|
||||
# logger.info(f'{end_time}预测目标数据为空,跳过')
|
||||
# return None
|
||||
|
||||
# 将最新真实值保存到数据库
|
||||
if not sqlitedb.check_table_exists('trueandpredict'):
|
||||
first_row.to_sql('trueandpredict', sqlitedb.connection, index=False)
|
||||
else:
|
||||
for row in first_row.itertuples(index=False):
|
||||
row_dict = row._asdict()
|
||||
config.logger.info(f'要保存的真实值:{row_dict}')
|
||||
# 判断ds是否为字符串类型,如果不是则转换为字符串类型
|
||||
if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)):
|
||||
row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
|
||||
elif not isinstance(row_dict['ds'], str):
|
||||
try:
|
||||
row_dict['ds'] = pd.to_datetime(
|
||||
row_dict['ds']).strftime('%Y-%m-%d')
|
||||
except:
|
||||
logger.warning(f"无法解析的时间格式: {row_dict['ds']}")
|
||||
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
|
||||
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
|
||||
check_query = sqlitedb.select_data(
|
||||
'trueandpredict', where_condition=f"ds = '{row.ds}'")
|
||||
if len(check_query) > 0:
|
||||
set_clause = ", ".join(
|
||||
[f"{key} = '{value}'" for key, value in row_dict.items()])
|
||||
sqlitedb.update_data(
|
||||
'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
|
||||
continue
|
||||
sqlitedb.insert_data('trueandpredict', tuple(
|
||||
row_dict.values()), columns=row_dict.keys())
|
||||
# # 将最新真实值保存到数据库
|
||||
# if not sqlitedb.check_table_exists('trueandpredict'):
|
||||
# first_row.to_sql('trueandpredict', sqlitedb.connection, index=False)
|
||||
# else:
|
||||
# for row in first_row.itertuples(index=False):
|
||||
# row_dict = row._asdict()
|
||||
# config.logger.info(f'要保存的真实值:{row_dict}')
|
||||
# # 判断ds是否为字符串类型,如果不是则转换为字符串类型
|
||||
# if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)):
|
||||
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
|
||||
# elif not isinstance(row_dict['ds'], str):
|
||||
# try:
|
||||
# row_dict['ds'] = pd.to_datetime(
|
||||
# row_dict['ds']).strftime('%Y-%m-%d')
|
||||
# except:
|
||||
# logger.warning(f"无法解析的时间格式: {row_dict['ds']}")
|
||||
# # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
|
||||
# # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
|
||||
# check_query = sqlitedb.select_data(
|
||||
# 'trueandpredict', where_condition=f"ds = '{row.ds}'")
|
||||
# if len(check_query) > 0:
|
||||
# set_clause = ", ".join(
|
||||
# [f"{key} = '{value}'" for key, value in row_dict.items()])
|
||||
# sqlitedb.update_data(
|
||||
# 'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
|
||||
# continue
|
||||
# sqlitedb.insert_data('trueandpredict', tuple(
|
||||
# row_dict.values()), columns=row_dict.keys())
|
||||
|
||||
# 更新accuracy表的y值
|
||||
if not sqlitedb.check_table_exists('accuracy'):
|
||||
pass
|
||||
else:
|
||||
update_y = sqlitedb.select_data(
|
||||
'accuracy', where_condition="y is null")
|
||||
if len(update_y) > 0:
|
||||
logger.info('更新accuracy表的y值')
|
||||
# 找到update_y 中ds且df中的y的行
|
||||
update_y = update_y[update_y['ds'] <= end_time]
|
||||
logger.info(f'要更新y的信息:{update_y}')
|
||||
# try:
|
||||
for row in update_y.itertuples(index=False):
|
||||
try:
|
||||
row_dict = row._asdict()
|
||||
yy = df[df['ds'] == row_dict['ds']]['y'].values[0]
|
||||
LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0]
|
||||
HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0]
|
||||
sqlitedb.update_data(
|
||||
'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
|
||||
except:
|
||||
logger.info(f'更新accuracy表的y值失败:{row_dict}')
|
||||
# except Exception as e:
|
||||
# logger.info(f'更新accuracy表的y值失败:{e}')
|
||||
# # 更新accuracy表的y值
|
||||
# if not sqlitedb.check_table_exists('accuracy'):
|
||||
# pass
|
||||
# else:
|
||||
# update_y = sqlitedb.select_data(
|
||||
# 'accuracy', where_condition="y is null")
|
||||
# if len(update_y) > 0:
|
||||
# logger.info('更新accuracy表的y值')
|
||||
# # 找到update_y 中ds且df中的y的行
|
||||
# update_y = update_y[update_y['ds'] <= end_time]
|
||||
# logger.info(f'要更新y的信息:{update_y}')
|
||||
# # try:
|
||||
# for row in update_y.itertuples(index=False):
|
||||
# try:
|
||||
# row_dict = row._asdict()
|
||||
# yy = df[df['ds'] == row_dict['ds']]['y'].values[0]
|
||||
# LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0]
|
||||
# HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0]
|
||||
# sqlitedb.update_data(
|
||||
# 'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
|
||||
# except:
|
||||
# logger.info(f'更新accuracy表的y值失败:{row_dict}')
|
||||
# # except Exception as e:
|
||||
# # logger.info(f'更新accuracy表的y值失败:{e}')
|
||||
|
||||
# 判断当前日期是不是周一
|
||||
is_weekday = datetime.datetime.now().weekday() == 0
|
||||
if is_weekday:
|
||||
logger.info('今天是周一,更新预测模型')
|
||||
# 计算最近60天预测残差最低的模型名称
|
||||
model_results = sqlitedb.select_data(
|
||||
'trueandpredict', order_by="ds DESC", limit="60")
|
||||
# 删除空值率为90%以上的列
|
||||
if len(model_results) > 10:
|
||||
model_results = model_results.dropna(
|
||||
thresh=len(model_results)*0.1, axis=1)
|
||||
# 删除空行
|
||||
model_results = model_results.dropna()
|
||||
modelnames = model_results.columns.to_list()[2:-2]
|
||||
for col in model_results[modelnames].select_dtypes(include=['object']).columns:
|
||||
model_results[col] = model_results[col].astype(np.float32)
|
||||
# 计算每个预测值与真实值之间的偏差率
|
||||
for model in modelnames:
|
||||
model_results[f'{model}_abs_error_rate'] = abs(
|
||||
model_results['y'] - model_results[model]) / model_results['y']
|
||||
# 获取每行对应的最小偏差率值
|
||||
min_abs_error_rate_values = model_results.apply(
|
||||
lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
|
||||
# 获取每行对应的最小偏差率值对应的列名
|
||||
min_abs_error_rate_column_name = model_results.apply(
|
||||
lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
|
||||
# 将列名索引转换为列名
|
||||
min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(
|
||||
lambda x: x.split('_')[0])
|
||||
# 取出现次数最多的模型名称
|
||||
most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
|
||||
logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}")
|
||||
# 保存结果到数据库
|
||||
if not sqlitedb.check_table_exists('most_model'):
|
||||
sqlitedb.create_table(
|
||||
'most_model', columns="ds datetime, most_common_model TEXT")
|
||||
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime(
|
||||
'%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
|
||||
# # 判断当前日期是不是周一
|
||||
# is_weekday = datetime.datetime.now().weekday() == 0
|
||||
# if is_weekday:
|
||||
# logger.info('今天是周一,更新预测模型')
|
||||
# # 计算最近60天预测残差最低的模型名称
|
||||
# model_results = sqlitedb.select_data(
|
||||
# 'trueandpredict', order_by="ds DESC", limit="60")
|
||||
# # 删除空值率为90%以上的列
|
||||
# if len(model_results) > 10:
|
||||
# model_results = model_results.dropna(
|
||||
# thresh=len(model_results)*0.1, axis=1)
|
||||
# # 删除空行
|
||||
# model_results = model_results.dropna()
|
||||
# modelnames = model_results.columns.to_list()[2:-2]
|
||||
# for col in model_results[modelnames].select_dtypes(include=['object']).columns:
|
||||
# model_results[col] = model_results[col].astype(np.float32)
|
||||
# # 计算每个预测值与真实值之间的偏差率
|
||||
# for model in modelnames:
|
||||
# model_results[f'{model}_abs_error_rate'] = abs(
|
||||
# model_results['y'] - model_results[model]) / model_results['y']
|
||||
# # 获取每行对应的最小偏差率值
|
||||
# min_abs_error_rate_values = model_results.apply(
|
||||
# lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
|
||||
# # 获取每行对应的最小偏差率值对应的列名
|
||||
# min_abs_error_rate_column_name = model_results.apply(
|
||||
# lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
|
||||
# # 将列名索引转换为列名
|
||||
# min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(
|
||||
# lambda x: x.split('_')[0])
|
||||
# # 取出现次数最多的模型名称
|
||||
# most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
|
||||
# logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}")
|
||||
# # 保存结果到数据库
|
||||
# if not sqlitedb.check_table_exists('most_model'):
|
||||
# sqlitedb.create_table(
|
||||
# 'most_model', columns="ds datetime, most_common_model TEXT")
|
||||
# sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime(
|
||||
# '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
|
||||
|
||||
try:
|
||||
if is_weekday:
|
||||
# if True:
|
||||
logger.info('今天是周一,发送特征预警')
|
||||
# 上传预警信息到数据库
|
||||
warning_data_df = df_zhibiaoliebiao.copy()
|
||||
warning_data_df = warning_data_df[warning_data_df['停更周期'] > 3][[
|
||||
'指标名称', '指标id', '频度', '更新周期', '指标来源', '最后更新时间', '停更周期']]
|
||||
# 重命名列名
|
||||
warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY',
|
||||
'更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
|
||||
from sqlalchemy import create_engine
|
||||
import urllib
|
||||
global password
|
||||
if '@' in password:
|
||||
password = urllib.parse.quote_plus(password)
|
||||
# try:
|
||||
# if is_weekday:
|
||||
# # if True:
|
||||
# logger.info('今天是周一,发送特征预警')
|
||||
# # 上传预警信息到数据库
|
||||
# warning_data_df = df_zhibiaoliebiao.copy()
|
||||
# warning_data_df = warning_data_df[warning_data_df['停更周期'] > 3][[
|
||||
# '指标名称', '指标id', '频度', '更新周期', '指标来源', '最后更新时间', '停更周期']]
|
||||
# # 重命名列名
|
||||
# warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY',
|
||||
# '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
|
||||
# from sqlalchemy import create_engine
|
||||
# import urllib
|
||||
# global password
|
||||
# if '@' in password:
|
||||
# password = urllib.parse.quote_plus(password)
|
||||
|
||||
engine = create_engine(
|
||||
f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
|
||||
warning_data_df['WARNING_DATE'] = datetime.date.today().strftime(
|
||||
"%Y-%m-%d %H:%M:%S")
|
||||
warning_data_df['TENANT_CODE'] = 'T0004'
|
||||
# 插入数据之前查询表数据然后新增id列
|
||||
existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
|
||||
if not existing_data.empty:
|
||||
max_id = existing_data['ID'].astype(int).max()
|
||||
warning_data_df['ID'] = range(
|
||||
max_id + 1, max_id + 1 + len(warning_data_df))
|
||||
else:
|
||||
warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
|
||||
warning_data_df.to_sql(
|
||||
table_name, con=engine, if_exists='append', index=False)
|
||||
if is_update_warning_data:
|
||||
upload_warning_info(len(warning_data_df))
|
||||
except:
|
||||
logger.info('上传预警信息到数据库失败')
|
||||
# engine = create_engine(
|
||||
# f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
|
||||
# warning_data_df['WARNING_DATE'] = datetime.date.today().strftime(
|
||||
# "%Y-%m-%d %H:%M:%S")
|
||||
# warning_data_df['TENANT_CODE'] = 'T0004'
|
||||
# # 插入数据之前查询表数据然后新增id列
|
||||
# existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
|
||||
# if not existing_data.empty:
|
||||
# max_id = existing_data['ID'].astype(int).max()
|
||||
# warning_data_df['ID'] = range(
|
||||
# max_id + 1, max_id + 1 + len(warning_data_df))
|
||||
# else:
|
||||
# warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
|
||||
# warning_data_df.to_sql(
|
||||
# table_name, con=engine, if_exists='append', index=False)
|
||||
# if is_update_warning_data:
|
||||
# upload_warning_info(len(warning_data_df))
|
||||
# except:
|
||||
# logger.info('上传预警信息到数据库失败')
|
||||
|
||||
if is_corr:
|
||||
df = corr_feature(df=df)
|
||||
# if is_corr:
|
||||
# df = corr_feature(df=df)
|
||||
|
||||
df1 = df.copy() # 备份一下,后面特征筛选完之后加入ds y 列用
|
||||
logger.info(f"开始训练模型...")
|
||||
row, col = df.shape
|
||||
# df1 = df.copy() # 备份一下,后面特征筛选完之后加入ds y 列用
|
||||
# logger.info(f"开始训练模型...")
|
||||
# row, col = df.shape
|
||||
|
||||
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
||||
ex_Model(df,
|
||||
horizon=global_config['horizon'],
|
||||
input_size=global_config['input_size'],
|
||||
train_steps=global_config['train_steps'],
|
||||
val_check_steps=global_config['val_check_steps'],
|
||||
early_stop_patience_steps=global_config['early_stop_patience_steps'],
|
||||
is_debug=global_config['is_debug'],
|
||||
dataset=global_config['dataset'],
|
||||
is_train=global_config['is_train'],
|
||||
is_fivemodels=global_config['is_fivemodels'],
|
||||
val_size=global_config['val_size'],
|
||||
test_size=global_config['test_size'],
|
||||
settings=global_config['settings'],
|
||||
now=now,
|
||||
etadata=etadata,
|
||||
modelsindex=global_config['modelsindex'],
|
||||
data=data,
|
||||
is_eta=global_config['is_eta'],
|
||||
end_time=global_config['end_time'],
|
||||
)
|
||||
# now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
||||
# ex_Model(df,
|
||||
# horizon=global_config['horizon'],
|
||||
# input_size=global_config['input_size'],
|
||||
# train_steps=global_config['train_steps'],
|
||||
# val_check_steps=global_config['val_check_steps'],
|
||||
# early_stop_patience_steps=global_config['early_stop_patience_steps'],
|
||||
# is_debug=global_config['is_debug'],
|
||||
# dataset=global_config['dataset'],
|
||||
# is_train=global_config['is_train'],
|
||||
# is_fivemodels=global_config['is_fivemodels'],
|
||||
# val_size=global_config['val_size'],
|
||||
# test_size=global_config['test_size'],
|
||||
# settings=global_config['settings'],
|
||||
# now=now,
|
||||
# etadata=etadata,
|
||||
# modelsindex=global_config['modelsindex'],
|
||||
# data=data,
|
||||
# is_eta=global_config['is_eta'],
|
||||
# end_time=global_config['end_time'],
|
||||
# )
|
||||
|
||||
logger.info('模型训练完成')
|
||||
# logger.info('模型训练完成')
|
||||
|
||||
logger.info('训练数据绘图ing')
|
||||
model_results3 = model_losss(sqlitedb, end_time=end_time)
|
||||
logger.info('训练数据绘图end')
|
||||
# logger.info('训练数据绘图ing')
|
||||
# model_results3 = model_losss(sqlitedb, end_time=end_time)
|
||||
# logger.info('训练数据绘图end')
|
||||
|
||||
# # 模型报告
|
||||
logger.info('制作报告ing')
|
||||
@ -421,7 +421,7 @@ def predict_main():
|
||||
logger.info('制作报告end')
|
||||
logger.info('模型训练完成')
|
||||
|
||||
push_market_value()
|
||||
# push_market_value()
|
||||
|
||||
# 发送邮件
|
||||
# m = SendMail(
|
||||
|
@ -2352,7 +2352,7 @@ def brent_export_pdf(num_indicators=475, num_models=21, num_dayindicator=202, in
|
||||
content.append(Graphs.draw_little_title('模型选择:'))
|
||||
content.append(Graphs.draw_text(
|
||||
f'本次预测使用了一个专门收集时间序列的NeuralForecast库中的{num_models}个模型:'))
|
||||
content.append(Graphs.draw_text(f'使用40天的数据预测未来{inputsize}天的数据。'))
|
||||
content.append(Graphs.draw_text(f'使用{config.input_size}个数据预测未来{inputsize}个数据。'))
|
||||
content.append(Graphs.draw_little_title('指标情况:'))
|
||||
with open(os.path.join(config.dataset, '特征频度统计.txt'), encoding='utf-8') as f:
|
||||
for line in f.readlines():
|
||||
@ -2502,16 +2502,16 @@ def brent_export_pdf(num_indicators=475, num_models=21, num_dayindicator=202, in
|
||||
config.dataset, reportname), pagesize=letter)
|
||||
doc.build(content)
|
||||
# pdf 上传到数字化信息平台
|
||||
try:
|
||||
if config.is_update_report:
|
||||
with open(os.path.join(config.dataset, reportname), 'rb') as f:
|
||||
base64_data = base64.b64encode(f.read()).decode('utf-8')
|
||||
config.upload_data["data"]["fileBase64"] = base64_data
|
||||
config.upload_data["data"]["fileName"] = reportname
|
||||
token = get_head_auth_report()
|
||||
upload_report_data(token, config.upload_data)
|
||||
except TimeoutError as e:
|
||||
print(f"请求超时: {e}")
|
||||
# try:
|
||||
# if config.is_update_report:
|
||||
# with open(os.path.join(config.dataset, reportname), 'rb') as f:
|
||||
# base64_data = base64.b64encode(f.read()).decode('utf-8')
|
||||
# config.upload_data["data"]["fileBase64"] = base64_data
|
||||
# config.upload_data["data"]["fileName"] = reportname
|
||||
# token = get_head_auth_report()
|
||||
# upload_report_data(token, config.upload_data)
|
||||
# except TimeoutError as e:
|
||||
# print(f"请求超时: {e}")
|
||||
|
||||
|
||||
@exception_logger
|
||||
|
Loading…
Reference in New Issue
Block a user