上传eta数据接口日志更新,聚烯烃只上传第五天的数据
This commit is contained in:
parent
1ca61af0a8
commit
0893fbde4d
@ -225,7 +225,7 @@ print("数据库连接成功",host,dbname,dbusername)
|
||||
|
||||
# 数据截取日期
|
||||
start_year = 2020 # 数据开始年份
|
||||
end_time = '' # 数据截取日期
|
||||
end_time = '2025-01-27' # 数据截取日期
|
||||
freq = 'B' # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日
|
||||
delweekenday = True if freq == 'B' else False # 是否删除周末数据
|
||||
is_corr = False # 特征是否参与滞后领先提升相关系数
|
||||
|
@ -1667,14 +1667,14 @@ class EtaReader():
|
||||
}
|
||||
|
||||
# 发送post请求 上传数据
|
||||
logger.info('请求参数:',data)
|
||||
logger.info(f'请求参数:{data}')
|
||||
response = requests.post(self.edbdatapushurl, headers=self.headers,data=json.dumps(data))
|
||||
|
||||
# 检查响应状态码
|
||||
if response.status_code == 200:
|
||||
data = response.json() # 假设接口返回的是JSON数据
|
||||
|
||||
logger.info('上传成功,响应为:', data)
|
||||
logger.info(f'上传成功,响应为:{data}')
|
||||
|
||||
else:
|
||||
# 请求失败,打印错误信息
|
||||
|
@ -379,17 +379,20 @@ def ex_Model_Juxiting(df,horizon,input_size,train_steps,val_check_steps,early_st
|
||||
logger.info('读取模型:'+ filename)
|
||||
nf = load(filename)
|
||||
# 测试集预测
|
||||
nf_test_preds = nf.cross_validation(df=df_test, val_size=val_size, test_size=test_size, n_windows=None)
|
||||
# 测试集预测结果保存
|
||||
nf_test_preds.to_csv(os.path.join(dataset,"cross_validation.csv"),index=False)
|
||||
# nf_test_preds = nf.cross_validation(df=df_test, val_size=val_size, test_size=test_size, n_windows=None)
|
||||
# # 测试集预测结果保存
|
||||
# nf_test_preds.to_csv(os.path.join(dataset,"cross_validation.csv"),index=False)
|
||||
|
||||
df_test['ds'] = pd.to_datetime(df_test['ds'], errors='coerce')
|
||||
# df_test['ds'] = pd.to_datetime(df_test['ds'], errors='coerce')
|
||||
|
||||
#进行未来时间预测
|
||||
df_predict=nf.predict(df_test).reset_index()
|
||||
# 去掉index列
|
||||
df_predict.drop(columns=['index'], inplace=True)
|
||||
df_predict.astype({col: 'float32' for col in df_predict.columns if col not in ['ds'] })
|
||||
# 处理非有限值(NA 或 inf),将其替换为 0
|
||||
df_predict = df_predict.fillna(0)
|
||||
df_predict = df_predict.replace([np.inf, -np.inf], 0)
|
||||
df_predict.astype({col: 'int' for col in df_predict.columns if col not in ['ds'] })
|
||||
|
||||
# 添加预测时间
|
||||
df_predict['created_dt'] = end_time
|
||||
@ -407,13 +410,13 @@ def ex_Model_Juxiting(df,horizon,input_size,train_steps,val_check_steps,early_st
|
||||
|
||||
for m in modelsindex.keys():
|
||||
list = []
|
||||
for date,value in zip(dates,df_predict[m].round(2)):
|
||||
for date,value in zip(dates,df_predict[m]):
|
||||
list.append({'Date':date,'Value':value})
|
||||
data['DataList'] = list
|
||||
data['DataList'] = [list[-1]]
|
||||
data['IndexCode'] = modelsindex[m]
|
||||
data['IndexName'] = f'价格预测{m}模型'
|
||||
data['IndexName'] = f'聚烯烃价格预测{m}模型'
|
||||
data['Remark'] = m
|
||||
etadata.push_data(data)
|
||||
etadata.push_data(data=data)
|
||||
|
||||
|
||||
# return nf_test_preds
|
||||
|
Loading…
Reference in New Issue
Block a user