添加雍安环境配置
This commit is contained in:
parent
0e92708c36
commit
09e43f8ac1
@ -223,9 +223,9 @@ table_name = 'v_tbl_crude_oil_warning'
|
||||
|
||||
|
||||
### 开关
|
||||
is_train = True # 是否训练
|
||||
is_train = False # 是否训练
|
||||
is_debug = False # 是否调试
|
||||
is_eta = True # 是否使用eta接口
|
||||
is_eta = False # 是否使用eta接口
|
||||
is_timefurture = True # 是否使用时间特征
|
||||
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
||||
is_edbcode = False # 特征使用edbcoding列表中的
|
||||
@ -246,7 +246,7 @@ print("数据库连接成功",host,dbname,dbusername)
|
||||
|
||||
# 数据截取日期
|
||||
start_year = 2020 # 数据开始年份
|
||||
end_time = '2024-12-04' # 数据截取日期
|
||||
end_time = '' # 数据截取日期
|
||||
freq = 'B' # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日
|
||||
delweekenday = True if freq == 'B' else False # 是否删除周末数据
|
||||
is_corr = False # 特征是否参与滞后领先提升相关系数
|
||||
|
@ -48,6 +48,7 @@ def predict_main():
|
||||
返回:
|
||||
None
|
||||
"""
|
||||
global end_time
|
||||
signature = BinanceAPI(APPID, SECRET)
|
||||
etadata = EtaReader(signature=signature,
|
||||
classifylisturl=classifylisturl,
|
||||
@ -196,6 +197,7 @@ def predict_main():
|
||||
modelsindex=modelsindex,
|
||||
data=data,
|
||||
is_eta=is_eta,
|
||||
end_time=end_time,
|
||||
)
|
||||
|
||||
|
||||
@ -225,19 +227,20 @@ def predict_main():
|
||||
# # ex_GRU(df)
|
||||
|
||||
# 发送邮件
|
||||
m = SendMail(
|
||||
username=username,
|
||||
passwd=passwd,
|
||||
recv=recv,
|
||||
title=title,
|
||||
content=content,
|
||||
file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
|
||||
ssl=ssl,
|
||||
)
|
||||
# m = SendMail(
|
||||
# username=username,
|
||||
# passwd=passwd,
|
||||
# recv=recv,
|
||||
# title=title,
|
||||
# content=content,
|
||||
# file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
|
||||
# ssl=ssl,
|
||||
# )
|
||||
# m.send_mail()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
global end_time
|
||||
is_on = True
|
||||
# 遍历2024-11-25 到 2024-12-3 之间的工作日日期
|
||||
for i_time in pd.date_range('2024-10-07', '2024-12-16', freq='B'):
|
||||
|
@ -39,7 +39,7 @@ pdfmetrics.registerFont(TTFont('SimSun', 'SimSun.ttf'))
|
||||
@exception_logger
|
||||
def ex_Model(df,horizon,input_size,train_steps,val_check_steps,early_stop_patience_steps,
|
||||
is_debug,dataset,is_train,is_fivemodels,val_size,test_size,settings,now,
|
||||
etadata,modelsindex,data,is_eta):
|
||||
etadata,modelsindex,data,is_eta,end_time):
|
||||
'''
|
||||
模型训练与预测
|
||||
:param df: 数据集
|
||||
@ -186,10 +186,10 @@ def ex_Model(df,horizon,input_size,train_steps,val_check_steps,early_stop_patien
|
||||
filename = max(glob.glob(os.path.join(dataset,'*.joblib')), key=os.path.getctime)
|
||||
logger.info('读取模型:'+ filename)
|
||||
nf = load(filename)
|
||||
# # # 测试集预测
|
||||
nf_test_preds = nf.cross_validation(df=df_test, val_size=val_size, test_size=test_size, n_windows=None)
|
||||
# # 测试集预测结果保存
|
||||
nf_test_preds.to_csv(os.path.join(dataset,"cross_validation.csv"),index=False)
|
||||
# 测试集预测
|
||||
# nf_test_preds = nf.cross_validation(df=df_test, val_size=val_size, test_size=test_size, n_windows=None)
|
||||
# 测试集预测结果保存
|
||||
# nf_test_preds.to_csv(os.path.join(dataset,"cross_validation.csv"),index=False)
|
||||
|
||||
df_test['ds'] = pd.to_datetime(df_test['ds'], errors='coerce')
|
||||
|
||||
@ -205,6 +205,8 @@ def ex_Model(df,horizon,input_size,train_steps,val_check_steps,early_stop_patien
|
||||
|
||||
# 将预测结果保存到数据库
|
||||
def save_to_database(df):
|
||||
# ds列转为日期字符串
|
||||
df['ds'] = df['ds'].dt.strftime('%Y-%m-%d')
|
||||
if not sqlitedb.check_table_exists('predict'):
|
||||
df.to_sql('predict',sqlitedb.connection,index=False)
|
||||
else:
|
||||
@ -213,13 +215,14 @@ def ex_Model(df,horizon,input_size,train_steps,val_check_steps,early_stop_patien
|
||||
for row in df.itertuples(index=False):
|
||||
row_dict = row._asdict()
|
||||
columns=row_dict.keys()
|
||||
check_query = sqlitedb.select_data('predict',where_condition = f"ds = '{row.ds} and model = {row.model}'")
|
||||
check_query = sqlitedb.select_data('predict',where_condition = f"ds = '{row.ds}' and created_dt = '{end_time}'")
|
||||
if len(check_query) > 0:
|
||||
set_clause = ", ".join([f"{key} = '{value}'" for key, value in row_dict.items()])
|
||||
sqlitedb.update_data('predict',set_clause,where_condition = f"ds = '{row.ds}'")
|
||||
sqlitedb.update_data('predict',set_clause,where_condition = f"ds = '{row.ds} and created_dt = {end_time}'")
|
||||
continue
|
||||
sqlitedb.insert_data('predict',tuple(row_dict.values()),columns=columns)
|
||||
save_to_database(df_predict,)
|
||||
else:
|
||||
sqlitedb.insert_data('predict',tuple(row_dict.values()),columns=columns)
|
||||
save_to_database(df_predict)
|
||||
|
||||
# 把预测值上传到eta
|
||||
if is_update_eta:
|
||||
@ -648,6 +651,414 @@ def model_losss(sqlitedb,end_time):
|
||||
|
||||
return model_results3
|
||||
|
||||
# 原油计算预测评估指数
|
||||
@exception_logger
|
||||
def model_losss_bak(sqlitedb,end_time):
|
||||
global dataset
|
||||
global rote
|
||||
most_model = [sqlitedb.select_data('most_model',columns=['most_common_model'],order_by='ds desc',limit=1).values[0][0]]
|
||||
most_model_name = most_model[0]
|
||||
|
||||
# 预测数据处理 predict
|
||||
df_combined = loadcsv(os.path.join(dataset,"cross_validation.csv"))
|
||||
df_combined = dateConvert(df_combined)
|
||||
# 删除空列
|
||||
df_combined.dropna(axis=1,inplace=True)
|
||||
# 删除缺失值,预测过程不能有缺失值
|
||||
df_combined.dropna(inplace=True)
|
||||
# 其他列转为数值类型
|
||||
df_combined = df_combined.astype({col: 'float32' for col in df_combined.columns if col not in ['cutoff','ds'] })
|
||||
# 使用 groupby 和 transform 结合 lambda 函数来获取每个分组中 cutoff 的最小值,并创建一个新的列来存储这个最大值
|
||||
df_combined['max_cutoff'] = df_combined.groupby('ds')['cutoff'].transform('max')
|
||||
|
||||
# 然后筛选出那些 cutoff 等于 max_cutoff 的行,这样就得到了每个分组中 cutoff 最大的行,并保留了其他列
|
||||
df_combined = df_combined[df_combined['cutoff'] == df_combined['max_cutoff']]
|
||||
# 删除模型生成的cutoff列
|
||||
df_combined.drop(columns=['cutoff', 'max_cutoff'], inplace=True)
|
||||
# 获取模型名称
|
||||
modelnames = df_combined.columns.to_list()[1:]
|
||||
if 'y' in modelnames:
|
||||
modelnames.remove('y')
|
||||
df_combined3 = df_combined.copy() # 备份df_combined,后面画图需要
|
||||
|
||||
|
||||
# 空的列表存储每个模型的MSE、RMSE、MAE、MAPE、SMAPE
|
||||
cellText = []
|
||||
|
||||
# 遍历模型名称,计算模型评估指标
|
||||
for model in modelnames:
|
||||
modelmse = mse(df_combined['y'], df_combined[model])
|
||||
modelrmse = rmse(df_combined['y'], df_combined[model])
|
||||
modelmae = mae(df_combined['y'], df_combined[model])
|
||||
# modelmape = mape(df_combined['y'], df_combined[model])
|
||||
# modelsmape = smape(df_combined['y'], df_combined[model])
|
||||
# modelr2 = r2_score(df_combined['y'], df_combined[model])
|
||||
cellText.append([model,round(modelmse, 3), round(modelrmse, 3), round(modelmae, 3)])
|
||||
|
||||
model_results3 = pd.DataFrame(cellText,columns=['模型(Model)','平均平方误差(MSE)', '均方根误差(RMSE)', '平均绝对误差(MAE)'])
|
||||
# 按MSE降序排列
|
||||
model_results3 = model_results3.sort_values(by='平均平方误差(MSE)', ascending=True)
|
||||
model_results3.to_csv(os.path.join(dataset,"model_evaluation.csv"),index=False)
|
||||
modelnames = model_results3['模型(Model)'].tolist()
|
||||
allmodelnames = modelnames.copy()
|
||||
# 保存5个最佳模型的名称
|
||||
if len(modelnames) > 5:
|
||||
modelnames = modelnames[0:5]
|
||||
if is_fivemodels:
|
||||
pass
|
||||
else:
|
||||
with open(os.path.join(dataset,"best_modelnames.txt"), 'w') as f:
|
||||
f.write(','.join(modelnames) + '\n')
|
||||
|
||||
# 预测值与真实值对比图
|
||||
plt.rcParams['font.sans-serif'] = ['SimHei']
|
||||
plt.figure(figsize=(15, 10))
|
||||
for n,model in enumerate(modelnames[:5]):
|
||||
plt.subplot(3, 2, n+1)
|
||||
plt.plot(df_combined3['ds'], df_combined3['y'], label='真实值')
|
||||
plt.plot(df_combined3['ds'], df_combined3[model], label=model)
|
||||
plt.legend()
|
||||
plt.xlabel('日期')
|
||||
plt.ylabel('价格')
|
||||
plt.title(model+'拟合')
|
||||
plt.subplots_adjust(hspace=0.5)
|
||||
plt.savefig(os.path.join(dataset,'预测值与真实值对比图.png'), bbox_inches='tight')
|
||||
plt.close()
|
||||
|
||||
|
||||
# # 历史数据+预测数据
|
||||
# # 拼接未来时间预测
|
||||
df_predict = pd.read_csv(os.path.join(dataset,'predict.csv'))
|
||||
df_predict.drop('unique_id',inplace=True,axis=1)
|
||||
df_predict.dropna(axis=1,inplace=True)
|
||||
|
||||
try:
|
||||
df_predict['ds'] = pd.to_datetime(df_predict['ds'],format=r'%Y-%m-%d')
|
||||
except ValueError :
|
||||
df_predict['ds'] = pd.to_datetime(df_predict['ds'],format=r'%Y/%m/%d')
|
||||
|
||||
# def first_row_to_database(df):
|
||||
# # # 取第一行数据存储到数据库中
|
||||
# first_row = df.head(1)
|
||||
# first_row['ds'] = first_row['ds'].dt.strftime('%Y-%m-%d 00:00:00')
|
||||
# # 将预测结果保存到数据库
|
||||
# if not sqlitedb.check_table_exists('trueandpredict'):
|
||||
# first_row.to_sql('trueandpredict',sqlitedb.connection,index=False)
|
||||
# else:
|
||||
# for col in first_row.columns:
|
||||
# sqlitedb.add_column_if_not_exists('trueandpredict',col,'TEXT')
|
||||
# for row in first_row.itertuples(index=False):
|
||||
# row_dict = row._asdict()
|
||||
# columns=row_dict.keys()
|
||||
# check_query = sqlitedb.select_data('trueandpredict',where_condition = f"ds = '{row.ds}'")
|
||||
# if len(check_query) > 0:
|
||||
# set_clause = ", ".join([f"{key} = '{value}'" for key, value in row_dict.items()])
|
||||
# sqlitedb.update_data('trueandpredict',set_clause,where_condition = f"ds = '{row.ds}'")
|
||||
# continue
|
||||
# sqlitedb.insert_data('trueandpredict',tuple(row_dict.values()),columns=columns)
|
||||
|
||||
# first_row_to_database(df_predict)
|
||||
|
||||
|
||||
|
||||
df_combined3 = pd.concat([df_combined3, df_predict]).reset_index(drop=True)
|
||||
|
||||
# 计算每个模型与最佳模型的绝对误差比例,根据设置的阈值rote筛选预测值显示最大最小值
|
||||
names = []
|
||||
names_df = df_combined3.copy()
|
||||
for col in allmodelnames:
|
||||
names_df[f'{col}-{most_model_name}-误差比例'] = abs(names_df[col] - names_df[most_model_name]) / names_df[most_model_name]
|
||||
names.append(f'{col}-{most_model_name}-误差比例')
|
||||
|
||||
names_df = names_df[names]
|
||||
def add_rote_column(row):
|
||||
columns = []
|
||||
for r in names_df.columns:
|
||||
if row[r] <= rote:
|
||||
columns.append(r.split('-')[0])
|
||||
return pd.Series([columns], index=['columns'])
|
||||
names_df['columns'] = names_df.apply(add_rote_column, axis=1)
|
||||
|
||||
def add_upper_lower_bound(row):
|
||||
|
||||
# 计算上边界值
|
||||
upper_bound = row.max()
|
||||
# 计算下边界值
|
||||
lower_bound = row.min()
|
||||
return pd.Series([lower_bound, upper_bound], index=['min_within_quantile', 'max_within_quantile'])
|
||||
|
||||
# df_combined3[['min_within_quantile','max_within_quantile']] = names_df.apply(add_upper_lower_bound, axis=1)
|
||||
|
||||
# 取前五最佳模型的最大最小值作为上下边界值
|
||||
df_combined3[['min_within_quantile','max_within_quantile']]= df_combined3[modelnames].apply(add_upper_lower_bound, axis=1)
|
||||
|
||||
def find_closest_values(row):
|
||||
x = row.y
|
||||
if x is None or np.isnan(x):
|
||||
return pd.Series([None, None], index=['min_price','max_price'])
|
||||
# row = row.drop('ds')
|
||||
row = row.values.tolist()
|
||||
row.sort()
|
||||
print(row)
|
||||
# x 在row中的索引
|
||||
index = row.index(x)
|
||||
if index == 0:
|
||||
return pd.Series([row[index+1], row[index+2]], index=['min_price','max_price'])
|
||||
elif index == len(row)-1:
|
||||
return pd.Series([row[index-2], row[index-1]], index=['min_price','max_price'])
|
||||
else:
|
||||
return pd.Series([row[index-1], row[index+1]], index=['min_price','max_price'])
|
||||
|
||||
|
||||
|
||||
def find_most_common_model():
|
||||
# 最多频率的模型名称
|
||||
min_model_max_frequency_model = df_combined3['min_model'].tail(60).value_counts().idxmax()
|
||||
max_model_max_frequency_model = df_combined3['max_model'].tail(60).value_counts().idxmax()
|
||||
if min_model_max_frequency_model == max_model_max_frequency_model:
|
||||
# 取60天第二多的模型
|
||||
max_model_max_frequency_model = df_combined3['max_model'].tail(60).value_counts().nlargest(2).index[1]
|
||||
|
||||
df_predict['min_model'] = min_model_max_frequency_model
|
||||
df_predict['max_model'] = max_model_max_frequency_model
|
||||
df_predict['min_within_quantile'] = df_predict[min_model_max_frequency_model]
|
||||
df_predict['max_within_quantile'] = df_predict[max_model_max_frequency_model]
|
||||
|
||||
|
||||
# find_most_common_model()
|
||||
|
||||
df_combined3['ds'] = pd.to_datetime(df_combined3['ds'])
|
||||
df_combined3['ds'] = df_combined3['ds'].dt.strftime('%Y-%m-%d')
|
||||
df_predict2 = df_combined3.tail(horizon)
|
||||
|
||||
# 保存到数据库
|
||||
if not sqlitedb.check_table_exists('accuracy'):
|
||||
columns = ','.join(df_combined3.columns.to_list()+['id','CREAT_DATE','min_price','max_price'])
|
||||
sqlitedb.create_table('accuracy',columns=columns)
|
||||
existing_data = sqlitedb.select_data(table_name = "accuracy")
|
||||
|
||||
if not existing_data.empty:
|
||||
max_id = existing_data['id'].astype(int).max()
|
||||
df_predict2['id'] = range(max_id + 1, max_id + 1 + len(df_predict2))
|
||||
else:
|
||||
df_predict2['id'] = range(1, 1 + len(df_predict2))
|
||||
# df_predict2['CREAT_DATE'] = now if end_time == '' else end_time
|
||||
df_predict2['CREAT_DATE'] = end_time
|
||||
def get_common_columns(df1, df2):
|
||||
# 获取两个DataFrame的公共列名
|
||||
return list(set(df1.columns).intersection(df2.columns))
|
||||
|
||||
common_columns = get_common_columns(df_predict2, existing_data)
|
||||
try:
|
||||
df_predict2[common_columns].to_sql("accuracy", con=sqlitedb.connection, if_exists='append', index=False)
|
||||
except:
|
||||
df_predict2.to_sql("accuracy", con=sqlitedb.connection, if_exists='append', index=False)
|
||||
|
||||
# 更新accuracy表中的y值
|
||||
update_y = sqlitedb.select_data(table_name = "accuracy",where_condition='y is null')
|
||||
if len(update_y) > 0:
|
||||
df_combined4 = df_combined3[(df_combined3['ds'].isin(update_y['ds'])) & (df_combined3['y'].notnull())]
|
||||
if len(df_combined4) > 0:
|
||||
for index, row in df_combined4.iterrows():
|
||||
try:
|
||||
sqlitedb.update_data('accuracy',f"y = {row['y']}",f"ds = '{row['ds']}'")
|
||||
except:
|
||||
logger.error(f'更新accuracy表中的y值失败,row={row}')
|
||||
# 上周准确率计算
|
||||
predict_y = sqlitedb.select_data(table_name = "accuracy")
|
||||
# ids = predict_y[predict_y['min_price'].isnull()]['id'].tolist()
|
||||
ids = predict_y['id'].tolist()
|
||||
# 准确率基准与绘图上下界逻辑一致
|
||||
# predict_y[['min_price','max_price']] = predict_y[['min_within_quantile','max_within_quantile']]
|
||||
# 模型评估前五均值
|
||||
predict_y['min_price'] = predict_y[modelnames].mean(axis=1) -1
|
||||
predict_y['max_price'] = predict_y[modelnames].mean(axis=1) +1
|
||||
# 模型评估前十均值
|
||||
# predict_y['min_price'] = predict_y[allmodelnames[0:10]].mean(axis=1) -1
|
||||
# predict_y['max_price'] = predict_y[allmodelnames[0:10]].mean(axis=1) +1
|
||||
# 模型评估前十最大最小
|
||||
# allmodelnames 和 predict_y 列 重复的
|
||||
# allmodelnames = [col for col in allmodelnames if col in predict_y.columns]
|
||||
# predict_y['min_price'] = predict_y[allmodelnames[0:10]].min(axis=1)
|
||||
# predict_y['max_price'] = predict_y[allmodelnames[0:10]].max(axis=1)
|
||||
for id in ids:
|
||||
row = predict_y[predict_y['id'] == id]
|
||||
try:
|
||||
sqlitedb.update_data('accuracy',f"min_price = {row['min_price'].values[0]},max_price = {row['max_price'].values[0]}",f"id = {id}")
|
||||
except:
|
||||
logger.error(f'更新accuracy表中的min_price,max_price值失败,row={row}')
|
||||
# 拼接市场最高最低价
|
||||
xlsfilename = os.path.join(dataset,'数据项下载.xls')
|
||||
df2 = pd.read_excel(xlsfilename)[5:]
|
||||
df2 = df2.rename(columns = {'数据项名称':'ds','布伦特最低价':'LOW_PRICE','布伦特最高价':'HIGH_PRICE'})
|
||||
print(df2.shape)
|
||||
df = pd.merge(predict_y,df2,on=['ds'],how='left')
|
||||
df['ds'] = pd.to_datetime(df['ds'])
|
||||
df = df.reindex()
|
||||
|
||||
# 判断预测值在不在布伦特最高最低价范围内,准确率为1,否则为0
|
||||
def is_within_range(row):
|
||||
for model in allmodelnames:
|
||||
if row['LOW_PRICE'] <= row[col] <= row['HIGH_PRICE']:
|
||||
return 1
|
||||
else:
|
||||
return 0
|
||||
|
||||
# 比较真实最高最低,和预测最高最低 计算准确率
|
||||
def calculate_accuracy(row):
|
||||
# 全子集情况:
|
||||
if (row['max_price'] >= row['HIGH_PRICE'] and row['min_price'] <= row['LOW_PRICE']) or \
|
||||
(row['max_price'] <= row['HIGH_PRICE'] and row['min_price'] >= row['LOW_PRICE']):
|
||||
return 1
|
||||
# 无交集情况:
|
||||
if row['max_price'] < row['LOW_PRICE'] or \
|
||||
row['min_price'] > row['HIGH_PRICE']:
|
||||
return 0
|
||||
# 有交集情况:
|
||||
else:
|
||||
sorted_prices = sorted([row['LOW_PRICE'], row['min_price'], row['max_price'], row['HIGH_PRICE']])
|
||||
middle_diff = sorted_prices[2] - sorted_prices[1]
|
||||
price_range = row['HIGH_PRICE'] - row['LOW_PRICE']
|
||||
accuracy = middle_diff / price_range
|
||||
return accuracy
|
||||
|
||||
columns = ['HIGH_PRICE','LOW_PRICE','min_price','max_price']
|
||||
df[columns] = df[columns].astype(float)
|
||||
df['ACCURACY'] = df.apply(calculate_accuracy, axis=1)
|
||||
# df['ACCURACY'] = df.apply(is_within_range, axis=1)
|
||||
# 取结束日期上一周的日期
|
||||
def get_week_date(end_time):
|
||||
endtime = end_time
|
||||
endtimeweek = datetime.datetime.strptime(endtime, '%Y-%m-%d')
|
||||
up_week = endtimeweek - datetime.timedelta(days=endtimeweek.weekday() + 14)
|
||||
up_week_dates = [up_week + datetime.timedelta(days=i) for i in range(14)][4:-2]
|
||||
up_week_dates = [date.strftime('%Y-%m-%d') for date in up_week_dates]
|
||||
return up_week_dates
|
||||
up_week_dates = get_week_date(end_time)
|
||||
|
||||
# 计算准确率并保存结果
|
||||
def _get_accuracy_rate(df,up_week_dates,endtime):
|
||||
df3 = df.copy()
|
||||
df3 = df3[df3['CREAT_DATE'].isin(up_week_dates)]
|
||||
df3 = df3[df3['ds'].isin(up_week_dates)]
|
||||
accuracy_rote = 0
|
||||
for i,group in df3.groupby('ds'):
|
||||
print('权重:',weight_dict[len(group)-1])
|
||||
print('准确率:',(group['ACCURACY'].sum()/len(group))*weight_dict[len(group)-1])
|
||||
accuracy_rote += (group['ACCURACY'].sum()/len(group))*weight_dict[len(group)-1]
|
||||
df3.to_csv(os.path.join(dataset,f'accuracy_{endtime}.csv'),index=False)
|
||||
df4 = pd.DataFrame(columns=['开始日期','结束日期','准确率'])
|
||||
df4.loc[len(df4)] = {'开始日期':up_week_dates[0],'结束日期':up_week_dates[-1],'准确率':accuracy_rote}
|
||||
df4.to_sql("accuracy_rote", con=sqlitedb.connection, if_exists='append', index=False)
|
||||
_get_accuracy_rate(df,up_week_dates,end_time)
|
||||
|
||||
def _add_abs_error_rate():
|
||||
# 计算每个预测值与真实值之间的偏差率
|
||||
for model in allmodelnames:
|
||||
df_combined3[f'{model}_abs_error_rate'] = abs(df_combined3['y'] - df_combined3[model]) / df_combined3['y']
|
||||
|
||||
# 获取每行对应的最小偏差率值
|
||||
min_abs_error_rate_values = df_combined3.apply(lambda row: row[[f'{model}_abs_error_rate' for model in allmodelnames]].min(), axis=1)
|
||||
# 获取每行对应的最小偏差率值对应的列名
|
||||
min_abs_error_rate_column_name = df_combined3.apply(lambda row: row[[f'{model}_abs_error_rate' for model in allmodelnames]].idxmin(), axis=1)
|
||||
# 将列名索引转换为列名
|
||||
min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(lambda x: x.split('_')[0])
|
||||
# 获取最小偏差率对应的模型的预测值
|
||||
min_abs_error_rate_predictions = df_combined3.apply(lambda row: row[min_abs_error_rate_column_name[row.name]], axis=1)
|
||||
# 将最小偏差率对应的模型的预测值添加到DataFrame中
|
||||
df_combined3['min_abs_error_rate_prediction'] = min_abs_error_rate_predictions
|
||||
df_combined3['min_abs_error_rate_column_name'] = min_abs_error_rate_column_name
|
||||
# _add_abs_error_rate()
|
||||
|
||||
# 判断 df 的数值列转为float
|
||||
for col in df_combined3.columns:
|
||||
try:
|
||||
if col != 'ds':
|
||||
df_combined3[col] = df_combined3[col].astype(float)
|
||||
df_combined3[col] = df_combined3[col].round(2)
|
||||
except ValueError:
|
||||
pass
|
||||
df_combined3.to_csv(os.path.join(dataset,"testandpredict_groupby.csv"),index=False)
|
||||
|
||||
|
||||
# 历史价格+预测价格
|
||||
sqlitedb.drop_table('testandpredict_groupby')
|
||||
df_combined3.to_sql('testandpredict_groupby',sqlitedb.connection,index=False)
|
||||
# 新增均值列
|
||||
df_combined3['mean'] = df_combined3[modelnames].mean(axis=1)
|
||||
|
||||
def _plt_predict_ture(df):
|
||||
lens = df.shape[0] if df.shape[0] < 180 else 90
|
||||
df = df[-lens:] # 取180个数据点画图
|
||||
# 历史价格
|
||||
plt.figure(figsize=(20, 10))
|
||||
plt.plot(df['ds'], df['y'], label='真实值')
|
||||
# 均值线
|
||||
plt.plot(df['ds'], df['mean'], color='r', linestyle='--', label='前五模型预测均值')
|
||||
# 颜色填充
|
||||
plt.fill_between(df['ds'], df['max_within_quantile'], df['min_within_quantile'], alpha=0.2)
|
||||
markers = ['o', 's', '^', 'D', 'v', '*', 'p', 'h', 'H', '+', 'x', 'd']
|
||||
random_marker = random.choice(markers)
|
||||
for model in modelnames:
|
||||
# for model in ['BiTCN','RNN']:
|
||||
plt.plot(df['ds'][-horizon:], df[model][-horizon:], label=model,marker=random_marker)
|
||||
# plt.plot(df_combined3['ds'], df_combined3['min_abs_error_rate_prediction'], label='最小绝对误差', linestyle='--', color='orange')
|
||||
# 网格
|
||||
plt.grid(True)
|
||||
# 显示历史值
|
||||
for i, j in zip(df['ds'], df['y']):
|
||||
plt.text(i, j, str(j), ha='center', va='bottom')
|
||||
|
||||
# for model in most_model:
|
||||
# plt.plot(df['ds'], df[model], label=model,marker='o')
|
||||
# 当前日期画竖虚线
|
||||
plt.axvline(x=df['ds'].iloc[-horizon], color='r', linestyle='--')
|
||||
plt.legend()
|
||||
plt.xlabel('日期')
|
||||
plt.ylabel('价格')
|
||||
|
||||
plt.savefig(os.path.join(dataset,'历史价格-预测值.png'), bbox_inches='tight')
|
||||
plt.close()
|
||||
|
||||
def _plt_predict_table(df):
|
||||
# 预测值表格
|
||||
fig, ax = plt.subplots(figsize=(20, 6))
|
||||
ax.axis('off') # 关闭坐标轴
|
||||
# 数值保留2位小数
|
||||
df = df.round(2)
|
||||
df = df[-horizon:]
|
||||
df['Day'] = [f'Day_{i}' for i in range(1,horizon+1)]
|
||||
# Day列放到最前面
|
||||
df = df[['Day'] + list(df.columns[:-1])]
|
||||
table = ax.table(cellText=df.values, colLabels=df.columns, loc='center')
|
||||
#加宽表格
|
||||
table.auto_set_font_size(False)
|
||||
table.set_fontsize(10)
|
||||
|
||||
# 设置表格样式,列数据最小的用绿色标识
|
||||
plt.savefig(os.path.join(dataset,'预测值表格.png'), bbox_inches='tight')
|
||||
plt.close()
|
||||
|
||||
def _plt_model_results3():
|
||||
# 可视化评估结果
|
||||
plt.rcParams['font.sans-serif'] = ['SimHei']
|
||||
fig, ax = plt.subplots(figsize=(20, 10))
|
||||
ax.axis('off') # 关闭坐标轴
|
||||
table = ax.table(cellText=model_results3.values, colLabels=model_results3.columns, loc='center')
|
||||
# 加宽表格
|
||||
table.auto_set_font_size(False)
|
||||
table.set_fontsize(10)
|
||||
|
||||
# 设置表格样式,列数据最小的用绿色标识
|
||||
plt.savefig(os.path.join(dataset,'模型评估.png'), bbox_inches='tight')
|
||||
plt.close()
|
||||
|
||||
_plt_predict_ture(df_combined3)
|
||||
_plt_predict_table(df_combined3)
|
||||
_plt_model_results3()
|
||||
|
||||
return model_results3
|
||||
|
||||
|
||||
# 聚烯烃计算预测评估指数
|
||||
@exception_logger
|
||||
|
Loading…
Reference in New Issue
Block a user