添加市场信息接口到数据特征文件

This commit is contained in:
workpc 2024-12-26 14:33:31 +08:00
parent c074f1eeae
commit 0c13c27173
5 changed files with 2679 additions and 27 deletions

View File

@ -214,14 +214,13 @@ warning_data = {
} }
query_data_list_item_nos_data = { query_data_list_item_nos_data = {
"funcModule":'数据项管理', "funcModule": "数据项",
"funcOperation":'查询数据项编码', "funcOperation": "查询",
"data":{ "data": {
"dataItemNoList":['Brent活跃合约',''], "dateStart":"20200101",
"dateEnd":'', "dateEnd":"20241231",
"dateStart":'2023-01-01' "dataItemNoList":["Brentzdj","Brentzgj"]
}
}
} }
@ -238,6 +237,7 @@ table_name = 'v_tbl_crude_oil_warning'
is_train = False # 是否训练 is_train = False # 是否训练
is_debug = False # 是否调试 is_debug = False # 是否调试
is_eta = True # 是否使用eta接口 is_eta = True # 是否使用eta接口
is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
is_timefurture = True # 是否使用时间特征 is_timefurture = True # 是否使用时间特征
is_fivemodels = False # 是否使用之前保存的最佳的5个模型 is_fivemodels = False # 是否使用之前保存的最佳的5个模型
is_edbcode = False # 特征使用edbcoding列表中的 is_edbcode = False # 特征使用edbcoding列表中的

2567
data.csv Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1639,6 +1639,33 @@ class EtaReader():
raise Exception(f'Error: {response.status_code}, {response.text}') raise Exception(f'Error: {response.status_code}, {response.text}')
def get_market_data(end_time,df):
"""
获取市场数据拼接到df中
"""
# 获取token
token = get_head_auth_report()
# 定义请求参数
query_data_list_item_nos_data['data']['dateEnd'] = end_time.replace('-','')
# 发送请求
headers = {"Authorization": token}
items_res = requests.post(url=query_data_list_item_nos_url, headers=headers, json=query_data_list_item_nos_data, timeout=(3, 35))
json_data = json.loads(items_res.text)
df = pd.DataFrame(json_data['data'])
# 按照dataItemNo 分组 得到多个dataframe 最后根据dataDate merge 成一个dataframe
df2 = pd.DataFrame()
for i in df['dataItemNo'].unique():
df1 = df[df['dataItemNo'] == i]
df1 = df1[['dataDate', 'dataValue']]
df1 = df1.rename(columns={'dataValue': i})
df2 = pd.concat([df2, df1], axis=0)
df2 = df2.rename(columns={'dataDate': 'ds'})
# 20240101 转换为 2024-01-01
df2['ds'] = pd.to_datetime(df2['ds'], format='%Y%m%d')
df2['ds'] = df2['ds'].dt.strftime('%Y-%m-%d')
df = pd.merge(df, df2, how='outer',on='ds')
return df
# 时间特征,年,月,一年的多少天,周几,第几周,第几季度,每月的第几天, 每季度的第几天,是否每月的第一天,是否每月的最后一天,是否每季度的第一天,是否每季度的最后一天,是否每年的第一天,是否每年的最后一天 # 时间特征,年,月,一年的多少天,周几,第几周,第几季度,每月的第几天, 每季度的第几天,是否每月的第一天,是否每月的最后一天,是否每季度的第一天,是否每季度的最后一天,是否每年的第一天,是否每年的最后一天
def addtimecharacteristics(df,dataset): def addtimecharacteristics(df,dataset):
""" """

View File

@ -74,6 +74,10 @@ def predict_main():
) )
df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(data_set=data_set, dataset=dataset) # 原始数据,未处理 df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(data_set=data_set, dataset=dataset) # 原始数据,未处理
if is_market:
logger.info('从市场信息平台获取数据...')
df_zhibiaoshuju = get_market_data(end_time,df_zhibiaoshuju)
# 数据处理 # 数据处理
df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture, df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
end_time=end_time) end_time=end_time)
@ -94,11 +98,11 @@ def predict_main():
# 取第一行数据存储到数据库中 # 取第一行数据存储到数据库中
first_row = df[['ds', 'y']].tail(1) first_row = df[['ds', 'y']].tail(1)
# 判断ds是否与ent_time 一致且 y 不为空 # 判断ds是否与ent_time 一致且 y 不为空
if len(first_row) > 0 and first_row['y'].values[0] is not None: if first_row['ds'].values[0] == end_time and not np.isnan(first_row['y'].values[0]):
pass pass
else: else:
logger.info('{end_time}预测目标数据为空,跳过') logger.info(f'{end_time}预测目标数据为空,跳过')
return return None
# 将最新真实值保存到数据库 # 将最新真实值保存到数据库
if not sqlitedb.check_table_exists('trueandpredict'): if not sqlitedb.check_table_exists('trueandpredict'):
first_row.to_sql('trueandpredict', sqlitedb.connection, index=False) first_row.to_sql('trueandpredict', sqlitedb.connection, index=False)
@ -190,7 +194,6 @@ def predict_main():
except: except:
logger.info('上传预警信息到数据库失败') logger.info('上传预警信息到数据库失败')
if is_corr: if is_corr:
df = corr_feature(df=df) df = corr_feature(df=df)
@ -263,7 +266,7 @@ if __name__ == '__main__':
global end_time global end_time
is_on = True is_on = True
# 遍历2024-11-25 到 2024-12-3 之间的工作日日期 # 遍历2024-11-25 到 2024-12-3 之间的工作日日期
for i_time in pd.date_range('2024-12-25', '2024-12-26', freq='B'): for i_time in pd.date_range('2024-12-24', '2024-12-26', freq='B'):
end_time = i_time.strftime('%Y-%m-%d') end_time = i_time.strftime('%Y-%m-%d')
predict_main() predict_main()
if is_on: if is_on:

File diff suppressed because one or more lines are too long