液化气预测调试
This commit is contained in:
parent
d529d0cee6
commit
0ca7553951
Binary file not shown.
Binary file not shown.
@ -1,3 +1,30 @@
|
||||
from statsmodels.tools.eval_measures import mse, rmse
|
||||
from pandas import Series, DataFrame
|
||||
import cufflinks as cf
|
||||
from sklearn.metrics import r2_score
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import mean_squared_error
|
||||
import pickle
|
||||
import warnings
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.metrics import mean_absolute_error
|
||||
from xgboost import plot_importance, plot_tree
|
||||
import xgboost as xgb
|
||||
import plotly.graph_objects as go
|
||||
import plotly.express as px
|
||||
import statsmodels.api as sm
|
||||
from xgboost import XGBRegressor
|
||||
from sklearn.linear_model import Lasso
|
||||
import sklearn.datasets as datasets
|
||||
from sklearn import preprocessing
|
||||
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
|
||||
from plotly import __version__
|
||||
import time
|
||||
import random
|
||||
import seaborn as sn
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import requests
|
||||
import json
|
||||
|
||||
@ -38,60 +65,24 @@ read_file_path_name = "液化气数据.xlsx"
|
||||
one_cols = []
|
||||
two_cols = []
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sn
|
||||
import random
|
||||
import time
|
||||
|
||||
from plotly import __version__
|
||||
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
|
||||
|
||||
from sklearn import preprocessing
|
||||
|
||||
from pandas import Series,DataFrame
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
import sklearn.datasets as datasets
|
||||
|
||||
# 导入机器学习算法模型
|
||||
from sklearn.linear_model import Lasso
|
||||
from xgboost import XGBRegressor
|
||||
|
||||
import statsmodels.api as sm
|
||||
try:
|
||||
from keras.preprocessing.sequence import TimeseriesGenerator
|
||||
except:
|
||||
from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator
|
||||
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
|
||||
import xgboost as xgb
|
||||
from xgboost import plot_importance, plot_tree
|
||||
from sklearn.metrics import mean_absolute_error
|
||||
from statsmodels.tools.eval_measures import mse,rmse
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from xgboost import XGBRegressor
|
||||
import warnings
|
||||
import pickle
|
||||
|
||||
from sklearn.metrics import mean_squared_error
|
||||
|
||||
# 切割训练数据和样本数据
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
# 用于模型评分
|
||||
from sklearn.metrics import r2_score
|
||||
|
||||
le = preprocessing.LabelEncoder()
|
||||
|
||||
# print(__version__) # requires version >= 1.9.0
|
||||
|
||||
|
||||
import cufflinks as cf
|
||||
cf.go_offline()
|
||||
|
||||
random.seed(100)
|
||||
@ -121,9 +112,9 @@ def get_data_value(token, dataItemNoList,date):
|
||||
"funcOperation": "查询"
|
||||
}
|
||||
|
||||
|
||||
headers = {"Authorization": token}
|
||||
search_res = requests.post(url=search_url, headers=headers, json=search_data, timeout=(3, 5))
|
||||
search_res = requests.post(
|
||||
url=search_url, headers=headers, json=search_data, timeout=(3, 5))
|
||||
print('数据项查询参数search_data:')
|
||||
print(search_data)
|
||||
print('数据项查询结果search_res:')
|
||||
@ -145,7 +136,8 @@ def get_data_value(token, dataItemNoList,date):
|
||||
|
||||
|
||||
def get_head_push_auth():
|
||||
login_res = requests.post(url=login_push_url, json=login_push_data, timeout=(3, 5))
|
||||
login_res = requests.post(
|
||||
url=login_push_url, json=login_push_data, timeout=(3, 5))
|
||||
text = json.loads(login_res.text)
|
||||
if text["status"]:
|
||||
token = text["data"]["accessToken"]
|
||||
@ -155,7 +147,6 @@ def get_head_push_auth():
|
||||
return None
|
||||
|
||||
|
||||
|
||||
def upload_data_to_system(token_push, date):
|
||||
data = {
|
||||
"funcModule": "数据表信息列表",
|
||||
@ -170,22 +161,25 @@ def upload_data_to_system(token_push,date):
|
||||
]
|
||||
}
|
||||
headers = {"Authorization": token_push}
|
||||
res = requests.post(url=upload_url, headers=headers, json=data, timeout=(3, 5))
|
||||
res = requests.post(url=upload_url, headers=headers,
|
||||
json=data, timeout=(3, 5))
|
||||
print(res.text)
|
||||
print('预测值:', data['data'][0]['dataValue'])
|
||||
|
||||
|
||||
price_list = []
|
||||
|
||||
|
||||
def forecast_price():
|
||||
# df_test = pd.read_csv('定价模型数据收集0212.csv')
|
||||
df_test = pd.read_excel('液化气数据.xlsx')
|
||||
df_test.drop([0], inplace=True)
|
||||
try:
|
||||
df_test['Date']=pd.to_datetime(df_test['Date'], format='%m/%d/%Y',infer_datetime_format=True)
|
||||
df_test['Date'] = pd.to_datetime(
|
||||
df_test['Date'], format='%m/%d/%Y', infer_datetime_format=True)
|
||||
except:
|
||||
df_test['Date']=pd.to_datetime(df_test['Date'], format=r'%Y-%m-%d',infer_datetime_format=True)
|
||||
|
||||
df_test['Date'] = pd.to_datetime(
|
||||
df_test['Date'], format=r'%Y-%m-%d', infer_datetime_format=True)
|
||||
|
||||
df_test_1 = df_test
|
||||
df_test_1 = df_test_1.fillna(df_test.ffill())
|
||||
@ -194,9 +188,6 @@ def forecast_price():
|
||||
# 选择用于模型训练的列名称
|
||||
col_for_training = df_test_1.columns
|
||||
|
||||
|
||||
|
||||
|
||||
import joblib
|
||||
Best_model_DalyLGPrice = joblib.load("日度价格预测_液化气最佳模型.pkl")
|
||||
# 最新的一天为最后一行的数据
|
||||
@ -221,6 +212,8 @@ def forecast_price():
|
||||
a = round(a, 2)
|
||||
price_list.append(a)
|
||||
return a
|
||||
|
||||
|
||||
def optimize_Model():
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.impute import SimpleImputer
|
||||
@ -234,10 +227,11 @@ def optimize_Model():
|
||||
df_test = pd.read_excel('液化气数据.xlsx')
|
||||
df_test.drop([0], inplace=True)
|
||||
try:
|
||||
df_test['Date']=pd.to_datetime(df_test['Date'], format='%m/%d/%Y',infer_datetime_format=True)
|
||||
df_test['Date'] = pd.to_datetime(
|
||||
df_test['Date'], format='%m/%d/%Y', infer_datetime_format=True)
|
||||
except:
|
||||
df_test['Date']=pd.to_datetime(df_test['Date'], format=r'%Y-%m-%d',infer_datetime_format=True)
|
||||
|
||||
df_test['Date'] = pd.to_datetime(
|
||||
df_test['Date'], format=r'%Y-%m-%d', infer_datetime_format=True)
|
||||
|
||||
# 将缺失值补为前一个或者后一个数值
|
||||
df_test_1 = df_test
|
||||
@ -248,7 +242,6 @@ def optimize_Model():
|
||||
df_test_1 = df_test_1.drop(["Date"], axis=1)
|
||||
df_test_1 = df_test_1.astype('float')
|
||||
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from pandas import Series, DataFrame
|
||||
@ -297,7 +290,8 @@ def optimize_Model():
|
||||
target = y
|
||||
|
||||
# 切割数据样本集合测试集
|
||||
X_train,x_test,y_train,y_true = train_test_split(train,target,test_size=0.2,random_state=0)
|
||||
X_train, x_test, y_train, y_true = train_test_split(
|
||||
train, target, test_size=0.2, random_state=0)
|
||||
|
||||
# 模型缩写
|
||||
Lasso = Lasso(random_state=0)
|
||||
@ -328,14 +322,17 @@ def optimize_Model():
|
||||
|
||||
model_results1
|
||||
# 定义plot_feature_importance函数,该函数用于计算特征重要性。此部分代码无需调整
|
||||
|
||||
def plot_feature_importance(importance, names, model_type):
|
||||
feature_importance = np.array(importance)
|
||||
feature_names = np.array(names)
|
||||
|
||||
data={'feature_names':feature_names,'feature_importance':feature_importance}
|
||||
data = {'feature_names': feature_names,
|
||||
'feature_importance': feature_importance}
|
||||
fi_df = pd.DataFrame(data)
|
||||
|
||||
fi_df.sort_values(by=['feature_importance'], ascending=False,inplace=True)
|
||||
fi_df.sort_values(by=['feature_importance'],
|
||||
ascending=False, inplace=True)
|
||||
|
||||
plt.figure(figsize=(10, 8))
|
||||
sn.barplot(x=fi_df['feature_importance'], y=fi_df['feature_names'])
|
||||
@ -345,7 +342,7 @@ def optimize_Model():
|
||||
plt.ylabel('FEATURE NAMES')
|
||||
from pylab import mpl
|
||||
mpl.rcParams['font.sans-serif'] = ['SimHei']
|
||||
## Xgboost 模型参数优化-初步
|
||||
# Xgboost 模型参数优化-初步
|
||||
# 参考: https://juejin.im/post/6844903661013827598
|
||||
# 每次调参时,备选参数数值以同数量级的1、3、10设置即可(比如设置1、3、10,或0.1、0.3、1.0,或0.01,0.03,0.10即可)
|
||||
|
||||
@ -387,7 +384,8 @@ def optimize_Model():
|
||||
try:
|
||||
results = model_results1.append(model_results2, ignore_index=False)
|
||||
except:
|
||||
results = pd.concat([model_results1,model_results2],ignore_index=True)
|
||||
results = pd.concat(
|
||||
[model_results1, model_results2], ignore_index=True)
|
||||
import pickle
|
||||
|
||||
Pkl_Filename = "日度价格预测_液化气最佳模型.pkl"
|
||||
@ -395,6 +393,7 @@ def optimize_Model():
|
||||
with open(Pkl_Filename, 'wb') as file:
|
||||
pickle.dump(grid_search_XGB, file)
|
||||
|
||||
|
||||
def read_xls_data():
|
||||
"""获取特征项ID"""
|
||||
global one_cols, two_cols
|
||||
@ -425,7 +424,8 @@ def start(date=''):
|
||||
print(data_value)
|
||||
dataItemNo_dataValue[data_value["dataItemNo"]] = ""
|
||||
else:
|
||||
dataItemNo_dataValue[data_value["dataItemNo"]] = data_value["dataValue"]
|
||||
dataItemNo_dataValue[data_value["dataItemNo"]
|
||||
] = data_value["dataValue"]
|
||||
|
||||
for value in one_cols:
|
||||
if value in dataItemNo_dataValue:
|
||||
@ -472,6 +472,7 @@ def getNow(date='', offset=0):
|
||||
compact_date = date_str.replace("-", "")
|
||||
return compact_date, date_str
|
||||
|
||||
|
||||
def start_1(date=''):
|
||||
"""补充昨日数据"""
|
||||
read_xls_data()
|
||||
@ -493,7 +494,8 @@ def start_1(date=''):
|
||||
print(data_value)
|
||||
dataItemNo_dataValue[data_value["dataItemNo"]] = ""
|
||||
else:
|
||||
dataItemNo_dataValue[data_value["dataItemNo"]] = data_value["dataValue"]
|
||||
dataItemNo_dataValue[data_value["dataItemNo"]
|
||||
] = data_value["dataValue"]
|
||||
|
||||
for value in one_cols:
|
||||
if value in dataItemNo_dataValue:
|
||||
@ -537,10 +539,12 @@ def save_xls_2(append_rows):
|
||||
|
||||
except FileNotFoundError:
|
||||
# 如果文件不存在则创建新文件
|
||||
pd.DataFrame([append_rows]).to_excel('液化气数据.xlsx', index=False, engine='openpyxl')
|
||||
pd.DataFrame([append_rows]).to_excel(
|
||||
'液化气数据.xlsx', index=False, engine='openpyxl')
|
||||
except Exception as e:
|
||||
print(f"保存数据时发生错误: {str(e)}")
|
||||
|
||||
|
||||
def check_data(dataItemNo):
|
||||
token = get_head_auth()
|
||||
if not token:
|
||||
@ -550,6 +554,7 @@ def check_data(dataItemNo):
|
||||
if not datas:
|
||||
return
|
||||
|
||||
|
||||
def get_queryDataListItemNos_value(token, url, dataItemNoList, dateStart, dateEnd):
|
||||
|
||||
search_data = {
|
||||
@ -563,13 +568,15 @@ def get_queryDataListItemNos_value(token, url, dataItemNoList, dateStart, dateEn
|
||||
}
|
||||
|
||||
headers = {"Authorization": token}
|
||||
search_res = requests.post(url=url, headers=headers, json=search_data, timeout=(3, 5))
|
||||
search_res = requests.post(
|
||||
url=url, headers=headers, json=search_data, timeout=(3, 5))
|
||||
search_value = json.loads(search_res.text)["data"]
|
||||
if search_value:
|
||||
return search_value
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def save_queryDataListItemNos_xls(data_df, dataItemNoList):
|
||||
from datetime import datetime, timedelta
|
||||
current_year_month = datetime.now().strftime('%Y-%m')
|
||||
@ -624,7 +631,9 @@ def queryDataListItemNos(date=None,token=None):
|
||||
# 格式化为 YYYYMMDD 格式
|
||||
dateEnd = current_date.strftime('%Y%m%d')
|
||||
dateStart = first_day_of_month.strftime('%Y%m%d')
|
||||
search_value = get_queryDataListItemNos_value(token, queryDataListItemNos_url, dataItemNoList, dateStart, dateEnd)
|
||||
# dateStart = '20250604'
|
||||
search_value = get_queryDataListItemNos_value(
|
||||
token, queryDataListItemNos_url, dataItemNoList, dateStart, dateEnd)
|
||||
data_df = pd.DataFrame(search_value)
|
||||
data_df["dataDate"] = pd.to_datetime(data_df["dataDate"])
|
||||
data_df["dataDate"] = data_df["dataDate"].dt.strftime('%Y-%m-%d')
|
||||
@ -632,8 +641,6 @@ def queryDataListItemNos(date=None,token=None):
|
||||
print('当月数据更新完成')
|
||||
|
||||
|
||||
|
||||
|
||||
def main(start_date=None, token=None, token_push=None):
|
||||
from datetime import datetime, timedelta
|
||||
if start_date is None:
|
||||
@ -654,10 +661,18 @@ def main(start_date=None,token=None,token_push=None):
|
||||
# start(date)
|
||||
# 训练模型
|
||||
optimize_Model()
|
||||
# # 预测&上传预测结果
|
||||
# 预测&上传预测结果
|
||||
upload_data_to_system(token_push, start_date)
|
||||
# forecast_price()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print("运行中ing...")
|
||||
# 遍历2024-11-25 到 2024-12-3 之间的工作日日期
|
||||
# for i_time in pd.date_range('2025-7-1', '2025-7-8', freq='D'):
|
||||
# # try:
|
||||
# print(i_time)
|
||||
# main(start_date=i_time)
|
||||
# except Exception as e:
|
||||
# continue
|
||||
main()
|
||||
|
Loading…
Reference in New Issue
Block a user