更改准确率计算逻辑
This commit is contained in:
parent
6e7f425382
commit
1ad1553e01
@ -234,12 +234,12 @@ def predict_main(end_time):
|
|||||||
file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
|
file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
|
||||||
ssl=ssl,
|
ssl=ssl,
|
||||||
)
|
)
|
||||||
# m.send_mail()
|
m.send_mail()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
# 遍历2024-11-25 到 2024-12-3 之间的工作日日期
|
# 遍历2024-11-25 到 2024-12-3 之间的工作日日期
|
||||||
for i_time in pd.date_range('2024-12-16', '2024-12-17', freq='B'):
|
for i_time in pd.date_range('2024-11-22', '2024-12-16', freq='B'):
|
||||||
end_time = i_time.strftime('%Y-%m-%d')
|
end_time = i_time.strftime('%Y-%m-%d')
|
||||||
# print(e_time)
|
# print(e_time)
|
||||||
predict_main(end_time)
|
predict_main(end_time)
|
@ -187,9 +187,9 @@ def ex_Model(df,horizon,input_size,train_steps,val_check_steps,early_stop_patien
|
|||||||
logger.info('读取模型:'+ filename)
|
logger.info('读取模型:'+ filename)
|
||||||
nf = load(filename)
|
nf = load(filename)
|
||||||
# # # 测试集预测
|
# # # 测试集预测
|
||||||
# nf_test_preds = nf.cross_validation(df=df_test, val_size=val_size, test_size=test_size, n_windows=None)
|
nf_test_preds = nf.cross_validation(df=df_test, val_size=val_size, test_size=test_size, n_windows=None)
|
||||||
# # 测试集预测结果保存
|
# # 测试集预测结果保存
|
||||||
# nf_test_preds.to_csv(os.path.join(dataset,"cross_validation.csv"),index=False)
|
nf_test_preds.to_csv(os.path.join(dataset,"cross_validation.csv"),index=False)
|
||||||
|
|
||||||
df_test['ds'] = pd.to_datetime(df_test['ds'], errors='coerce')
|
df_test['ds'] = pd.to_datetime(df_test['ds'], errors='coerce')
|
||||||
|
|
||||||
@ -426,7 +426,12 @@ def model_losss(sqlitedb,end_time):
|
|||||||
# 上周准确率计算
|
# 上周准确率计算
|
||||||
predict_y = sqlitedb.select_data(table_name = "accuracy")
|
predict_y = sqlitedb.select_data(table_name = "accuracy")
|
||||||
ids = predict_y[predict_y['min_price'].isnull()]['id'].tolist()
|
ids = predict_y[predict_y['min_price'].isnull()]['id'].tolist()
|
||||||
predict_y[['min_price','max_price']] = predict_y[['min_within_quantile','max_within_quantile']]
|
# 模型评估前五最大最小
|
||||||
|
# predict_y[['min_price','max_price']] = predict_y[['min_within_quantile','max_within_quantile']]
|
||||||
|
# 模型评估前五均值 df_combined3['mean'] = df_combined3[modelnames].mean(axis=1)
|
||||||
|
|
||||||
|
predict_y['min_price'] = predict_y[modelnames].mean(axis=1) -1
|
||||||
|
predict_y['max_price'] = predict_y[modelnames].mean(axis=1) +1
|
||||||
for id in ids:
|
for id in ids:
|
||||||
row = predict_y[predict_y['id'] == id]
|
row = predict_y[predict_y['id'] == id]
|
||||||
try:
|
try:
|
||||||
|
Loading…
Reference in New Issue
Block a user