调试准确率
This commit is contained in:
parent
744594ac76
commit
1f827d8224
@ -178,25 +178,25 @@ def predict_main():
|
||||
row, col = df.shape
|
||||
|
||||
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
||||
ex_Model(df,
|
||||
horizon=horizon,
|
||||
input_size=input_size,
|
||||
train_steps=train_steps,
|
||||
val_check_steps=val_check_steps,
|
||||
early_stop_patience_steps=early_stop_patience_steps,
|
||||
is_debug=is_debug,
|
||||
dataset=dataset,
|
||||
is_train=is_train,
|
||||
is_fivemodels=is_fivemodels,
|
||||
val_size=val_size,
|
||||
test_size=test_size,
|
||||
settings=settings,
|
||||
now=now,
|
||||
etadata=etadata,
|
||||
modelsindex=modelsindex,
|
||||
data=data,
|
||||
is_eta=is_eta,
|
||||
)
|
||||
# ex_Model(df,
|
||||
# horizon=horizon,
|
||||
# input_size=input_size,
|
||||
# train_steps=train_steps,
|
||||
# val_check_steps=val_check_steps,
|
||||
# early_stop_patience_steps=early_stop_patience_steps,
|
||||
# is_debug=is_debug,
|
||||
# dataset=dataset,
|
||||
# is_train=is_train,
|
||||
# is_fivemodels=is_fivemodels,
|
||||
# val_size=val_size,
|
||||
# test_size=test_size,
|
||||
# settings=settings,
|
||||
# now=now,
|
||||
# etadata=etadata,
|
||||
# modelsindex=modelsindex,
|
||||
# data=data,
|
||||
# is_eta=is_eta,
|
||||
# )
|
||||
|
||||
|
||||
logger.info('模型训练完成')
|
||||
|
@ -395,28 +395,28 @@ def model_losss(sqlitedb):
|
||||
df_predict2 = df_combined3.tail(horizon)
|
||||
|
||||
# 保存到数据库
|
||||
# if not sqlitedb.check_table_exists('accuracy'):
|
||||
# columns = ','.join(df_combined3.columns.to_list()+['id','CREAT_DATE'])
|
||||
# sqlitedb.create_table('accuracy',columns=columns)
|
||||
# existing_data = sqlitedb.select_data(table_name = "accuracy")
|
||||
# update_y = sqlitedb.select_data(table_name = "accuracy",where_condition='y is null')
|
||||
# df_combined4 = df_combined3[(df_combined3['ds'].isin(update_y['ds'])) & (df_combined3['y'].notnull())]
|
||||
# if len(df_combined4) > 0:
|
||||
# for index, row in df_combined4.iterrows():
|
||||
# sqlitedb.update_data('accuracy',f"y = {row['y']}",f"ds = '{row['ds']}'")
|
||||
# print(df_combined4)
|
||||
# if not existing_data.empty:
|
||||
# max_id = existing_data['id'].astype(int).max()
|
||||
# df_predict2['id'] = range(max_id + 1, max_id + 1 + len(df_predict2))
|
||||
# else:
|
||||
# df_predict2['id'] = range(1, 1 + len(df_predict2))
|
||||
if not sqlitedb.check_table_exists('accuracy'):
|
||||
columns = ','.join(df_combined3.columns.to_list()+['id','CREAT_DATE'])
|
||||
sqlitedb.create_table('accuracy',columns=columns)
|
||||
existing_data = sqlitedb.select_data(table_name = "accuracy")
|
||||
update_y = sqlitedb.select_data(table_name = "accuracy",where_condition='y is null')
|
||||
df_combined4 = df_combined3[(df_combined3['ds'].isin(update_y['ds'])) & (df_combined3['y'].notnull())]
|
||||
if len(df_combined4) > 0:
|
||||
for index, row in df_combined4.iterrows():
|
||||
sqlitedb.update_data('accuracy',f"y = {row['y']}",f"ds = '{row['ds']}'")
|
||||
print(df_combined4)
|
||||
if not existing_data.empty:
|
||||
max_id = existing_data['id'].astype(int).max()
|
||||
df_predict2['id'] = range(max_id + 1, max_id + 1 + len(df_predict2))
|
||||
else:
|
||||
df_predict2['id'] = range(1, 1 + len(df_predict2))
|
||||
|
||||
# df_predict2['CREAT_DATE'] = now if end_time == '' else end_time
|
||||
df_predict2['CREAT_DATE'] = now if end_time == '' else end_time
|
||||
# df_predict2['PREDICT_DATE'] = df_predict2['ds']
|
||||
# df_predict2['MIN_PRICE'] = df_predict2['min_within_quantile']
|
||||
# df_predict2['MAX_PRICE'] = df_predict2['max_within_quantile']
|
||||
# df_predict2 = df_predict2[['id','PREDICT_DATE','CREAT_DATE','MIN_PRICE','MAX_PRICE']]
|
||||
# df_predict2.to_sql("accuracy", con=sqlitedb.connection, if_exists='append', index=False)
|
||||
df_predict2.to_sql("accuracy", con=sqlitedb.connection, if_exists='append', index=False)
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user