聚烯烃保存数据逻辑更改,更新数据库改为删除数据库,
This commit is contained in:
parent
2f0c2a94fa
commit
22842b5710
@ -17,10 +17,7 @@
|
||||
"id": "07e338e7-1dd1-417f-b4e2-65d0efc983d6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df = pd.read_csv(os.path.join(dataset,'last_update_times.csv'))\n",
|
||||
"df = df.sort_values(by=['warning_date'], ascending=[False])"
|
||||
]
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
|
@ -211,7 +211,7 @@ upload_data = {
|
||||
### 开关
|
||||
is_train = True # 是否训练
|
||||
is_debug = False # 是否调试
|
||||
is_eta = True # 是否使用eta接口
|
||||
is_eta = False # 是否使用eta接口
|
||||
is_timefurture = True # 是否使用时间特征
|
||||
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
||||
is_edbcode = False # 特征使用edbcoding列表中的
|
||||
|
@ -425,6 +425,11 @@ class SQLiteHandler:
|
||||
result = self.execute_query(query).fetchone()
|
||||
return result is not None
|
||||
|
||||
def drop_table(self, table_name):
|
||||
query = f"DROP TABLE IF EXISTS {table_name}"
|
||||
self.execute_query(query)
|
||||
self.commit()
|
||||
|
||||
def add_column_if_not_exists(self, table_name, column_name, column_type):
|
||||
# 查询表结构
|
||||
query = f"PRAGMA table_info({table_name})"
|
||||
|
File diff suppressed because it is too large
Load Diff
10107
logs/pricepredict.log.3
10107
logs/pricepredict.log.3
File diff suppressed because one or more lines are too long
11783
logs/pricepredict.log.5
11783
logs/pricepredict.log.5
File diff suppressed because it is too large
Load Diff
@ -69,7 +69,7 @@ def predict_main():
|
||||
|
||||
import datetime
|
||||
# 判断当前日期是不是周一
|
||||
is_weekday = datetime.datetime.now().weekday() == 1
|
||||
is_weekday = datetime.datetime.now().weekday() == 0
|
||||
if is_weekday:
|
||||
logger.info('今天是周一,更新预测模型')
|
||||
# 计算最近20天预测残差最低的模型名称
|
||||
|
@ -657,23 +657,10 @@ def model_losss_juxiting(sqlitedb):
|
||||
pass
|
||||
df_combined3.to_csv(os.path.join(dataset,"testandpredict_groupby.csv"),index=False)
|
||||
|
||||
# 历史价格+预测价格
|
||||
# 将预测结果保存到数据库
|
||||
# 判断表存在
|
||||
if not sqlitedb.check_table_exists('testandpredict_groupby'):
|
||||
df_combined3.to_sql('testandpredict_groupby',sqlitedb.connection,index=False)
|
||||
else:
|
||||
for row in df_combined3.itertuples(index=False):
|
||||
row_dict = row._asdict()
|
||||
print(row_dict)
|
||||
check_query = sqlitedb.select_data('testandpredict_groupby',where_condition = f"ds = '{row.ds}'")
|
||||
if len(check_query) > 0:
|
||||
set_clause = ", ".join([f"{key} = '{value}'" for key, value in row_dict.items()])
|
||||
sqlitedb.update_data('testandpredict_groupby',set_clause,where_condition = f"ds = '{row.ds}'")
|
||||
continue
|
||||
row_dict['ds'] = row.ds.strftime('%Y-%m-%d 00:00:00')
|
||||
sqlitedb.insert_data('testandpredict_groupby',tuple(row_dict.values()),columns=row_dict.keys())
|
||||
|
||||
# 历史价格+预测价格
|
||||
sqlitedb.drop_table('testandpredict_groupby')
|
||||
df_combined3.to_sql('testandpredict_groupby',sqlitedb.connection,index=False)
|
||||
|
||||
def _plt_predict_ture(df):
|
||||
lens = df.shape[0] if df.shape[0] < 180 else 90
|
||||
|
Loading…
Reference in New Issue
Block a user