聚烯烃保存数据逻辑更改,更新数据库改为删除数据库,
This commit is contained in:
parent
2f0c2a94fa
commit
22842b5710
@ -17,10 +17,7 @@
|
|||||||
"id": "07e338e7-1dd1-417f-b4e2-65d0efc983d6",
|
"id": "07e338e7-1dd1-417f-b4e2-65d0efc983d6",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": []
|
||||||
"df = pd.read_csv(os.path.join(dataset,'last_update_times.csv'))\n",
|
|
||||||
"df = df.sort_values(by=['warning_date'], ascending=[False])"
|
|
||||||
]
|
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
|
@ -211,7 +211,7 @@ upload_data = {
|
|||||||
### 开关
|
### 开关
|
||||||
is_train = True # 是否训练
|
is_train = True # 是否训练
|
||||||
is_debug = False # 是否调试
|
is_debug = False # 是否调试
|
||||||
is_eta = True # 是否使用eta接口
|
is_eta = False # 是否使用eta接口
|
||||||
is_timefurture = True # 是否使用时间特征
|
is_timefurture = True # 是否使用时间特征
|
||||||
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
||||||
is_edbcode = False # 特征使用edbcoding列表中的
|
is_edbcode = False # 特征使用edbcoding列表中的
|
||||||
|
@ -425,6 +425,11 @@ class SQLiteHandler:
|
|||||||
result = self.execute_query(query).fetchone()
|
result = self.execute_query(query).fetchone()
|
||||||
return result is not None
|
return result is not None
|
||||||
|
|
||||||
|
def drop_table(self, table_name):
|
||||||
|
query = f"DROP TABLE IF EXISTS {table_name}"
|
||||||
|
self.execute_query(query)
|
||||||
|
self.commit()
|
||||||
|
|
||||||
def add_column_if_not_exists(self, table_name, column_name, column_type):
|
def add_column_if_not_exists(self, table_name, column_name, column_type):
|
||||||
# 查询表结构
|
# 查询表结构
|
||||||
query = f"PRAGMA table_info({table_name})"
|
query = f"PRAGMA table_info({table_name})"
|
||||||
|
File diff suppressed because it is too large
Load Diff
10107
logs/pricepredict.log.3
10107
logs/pricepredict.log.3
File diff suppressed because one or more lines are too long
11783
logs/pricepredict.log.5
11783
logs/pricepredict.log.5
File diff suppressed because it is too large
Load Diff
@ -69,7 +69,7 @@ def predict_main():
|
|||||||
|
|
||||||
import datetime
|
import datetime
|
||||||
# 判断当前日期是不是周一
|
# 判断当前日期是不是周一
|
||||||
is_weekday = datetime.datetime.now().weekday() == 1
|
is_weekday = datetime.datetime.now().weekday() == 0
|
||||||
if is_weekday:
|
if is_weekday:
|
||||||
logger.info('今天是周一,更新预测模型')
|
logger.info('今天是周一,更新预测模型')
|
||||||
# 计算最近20天预测残差最低的模型名称
|
# 计算最近20天预测残差最低的模型名称
|
||||||
|
@ -657,23 +657,10 @@ def model_losss_juxiting(sqlitedb):
|
|||||||
pass
|
pass
|
||||||
df_combined3.to_csv(os.path.join(dataset,"testandpredict_groupby.csv"),index=False)
|
df_combined3.to_csv(os.path.join(dataset,"testandpredict_groupby.csv"),index=False)
|
||||||
|
|
||||||
# 历史价格+预测价格
|
|
||||||
# 将预测结果保存到数据库
|
|
||||||
# 判断表存在
|
|
||||||
if not sqlitedb.check_table_exists('testandpredict_groupby'):
|
|
||||||
df_combined3.to_sql('testandpredict_groupby',sqlitedb.connection,index=False)
|
|
||||||
else:
|
|
||||||
for row in df_combined3.itertuples(index=False):
|
|
||||||
row_dict = row._asdict()
|
|
||||||
print(row_dict)
|
|
||||||
check_query = sqlitedb.select_data('testandpredict_groupby',where_condition = f"ds = '{row.ds}'")
|
|
||||||
if len(check_query) > 0:
|
|
||||||
set_clause = ", ".join([f"{key} = '{value}'" for key, value in row_dict.items()])
|
|
||||||
sqlitedb.update_data('testandpredict_groupby',set_clause,where_condition = f"ds = '{row.ds}'")
|
|
||||||
continue
|
|
||||||
row_dict['ds'] = row.ds.strftime('%Y-%m-%d 00:00:00')
|
|
||||||
sqlitedb.insert_data('testandpredict_groupby',tuple(row_dict.values()),columns=row_dict.keys())
|
|
||||||
|
|
||||||
|
# 历史价格+预测价格
|
||||||
|
sqlitedb.drop_table('testandpredict_groupby')
|
||||||
|
df_combined3.to_sql('testandpredict_groupby',sqlitedb.connection,index=False)
|
||||||
|
|
||||||
def _plt_predict_ture(df):
|
def _plt_predict_ture(df):
|
||||||
lens = df.shape[0] if df.shape[0] < 180 else 90
|
lens = df.shape[0] if df.shape[0] < 180 else 90
|
||||||
|
Loading…
Reference in New Issue
Block a user