线上数据维护

This commit is contained in:
workpc 2025-07-09 17:52:29 +08:00
parent 0ca7553951
commit 34770b83a3
5 changed files with 1037 additions and 1194 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,8 +1,34 @@
from statsmodels.tools.eval_measures import mse, rmse
from pandas import Series, DataFrame
import cufflinks as cf
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import pickle
import warnings
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import mean_absolute_error
from xgboost import plot_importance, plot_tree
import xgboost as xgb
import plotly.graph_objects as go
import plotly.express as px
import statsmodels.api as sm
from xgboost import XGBRegressor
from sklearn.linear_model import Lasso
import sklearn.datasets as datasets
from sklearn import preprocessing
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
from plotly import __version__
import random
import seaborn as sn
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import requests
import json
import xlrd
import xlwt
from datetime import datetime,timedelta
from datetime import datetime, timedelta
import time
# 变量定义
login_url = "http://10.200.32.39/jingbo-api/api/server/login"
@ -38,69 +64,29 @@ read_file_path_name = "纯苯数据项.xls"
one_cols = []
two_cols = []
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sn
import random
import time
# 导入机器学习算法模型
from plotly import __version__
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
from sklearn import preprocessing
from pandas import Series,DataFrame
import matplotlib.pyplot as plt
import sklearn.datasets as datasets
#导入机器学习算法模型
from sklearn.linear_model import Lasso
from xgboost import XGBRegressor
import statsmodels.api as sm
try:
from keras.preprocessing.sequence import TimeseriesGenerator
except:
from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator
import plotly.express as px
import plotly.graph_objects as go
import xgboost as xgb
from xgboost import plot_importance, plot_tree
from sklearn.metrics import mean_absolute_error
from statsmodels.tools.eval_measures import mse,rmse
from sklearn.model_selection import GridSearchCV
from xgboost import XGBRegressor
import warnings
import pickle
# 切割训练数据和样本数据
from sklearn.metrics import mean_squared_error
#切割训练数据和样本数据
from sklearn.model_selection import train_test_split
#用于模型评分
from sklearn.metrics import r2_score
# 用于模型评分
le = preprocessing.LabelEncoder()
# print(__version__) # requires version >= 1.9.0
import cufflinks as cf
cf.go_offline()
random.seed(100)
# 数据获取
def get_head_auth():
@ -114,7 +100,7 @@ def get_head_auth():
return None
def get_data_value(token, dataItemNoList,date):
def get_data_value(token, dataItemNoList, date):
search_data = {
"data": {
"date": getNow(date)[0],
@ -124,7 +110,8 @@ def get_data_value(token, dataItemNoList,date):
"funcOperation": "查询"
}
headers = {"Authorization": token}
search_res = requests.post(url=search_url, headers=headers, json=search_data, timeout=(3, 5))
search_res = requests.post(
url=search_url, headers=headers, json=search_data, timeout=(3, 5))
search_value = json.loads(search_res.text)["data"]
if search_value:
return search_value
@ -136,10 +123,7 @@ def get_data_value(token, dataItemNoList,date):
# xls文件处理
def write_xls(data,date):
def write_xls(data, date):
# 创建一个Workbook对象
workbook = xlwt.Workbook()
@ -155,7 +139,6 @@ def write_xls(data,date):
workbook.save(get_cur_time(date)[0] + '.xls')
def getNow(date='', offset=0):
"""生成指定日期的两种格式字符串
Args:
@ -168,7 +151,7 @@ def getNow(date='', offset=0):
tuple: (紧凑日期字符串, 标准日期字符串)
"""
# 日期解析逻辑
from datetime import datetime,timedelta
from datetime import datetime, timedelta
if isinstance(date, datetime):
now = date
else:
@ -186,7 +169,7 @@ def getNow(date='', offset=0):
# 应用日期偏移
now = now - timedelta(days=offset)
# 统一格式化输出
date_str = now.strftime("%Y-%m-%d")
compact_date = date_str.replace("-", "")
@ -215,7 +198,8 @@ def get_cur_time(date=''):
def get_head_push_auth():
login_res = requests.post(url=login_push_url, json=login_push_data, timeout=(3, 5))
login_res = requests.post(
url=login_push_url, json=login_push_data, timeout=(3, 5))
text = json.loads(login_res.text)
if text["status"]:
token = text["data"]["accessToken"]
@ -225,8 +209,7 @@ def get_head_push_auth():
return None
def upload_data_to_system(token_push,date):
def upload_data_to_system(token_push, date):
datavalue = forecast_price()
data = {
"funcModule": "数据表信息列表",
@ -242,85 +225,85 @@ def upload_data_to_system(token_push,date):
}
print(data)
headers = {"Authorization": token_push}
res = requests.post(url=upload_url, headers=headers, json=data, timeout=(3, 5))
res = requests.post(url=upload_url, headers=headers,
json=data, timeout=(3, 5))
print(res.text)
def forecast_price():
# df_test = pd.read_csv('定价模型数据收集0212.csv')
df_test = pd.read_excel('纯苯数据项.xls',sheet_name='Sheet1')
df_test.drop([0],inplace=True)
df_test = pd.read_excel('纯苯数据项.xls', sheet_name='Sheet1')
df_test.drop([0], inplace=True)
# df_test['Date']=pd.to_datetime(df_test['Date'], format='%m/%d/%Y',infer_datetime_format=True)
df_test['Date']=pd.to_datetime(df_test['Date'], format=r'%Y-%m-%d',infer_datetime_format=True)
df_test['Date'] = pd.to_datetime(
df_test['Date'], format=r'%Y-%m-%d', infer_datetime_format=True)
df_test_1 = df_test
df_test_1=df_test_1.fillna(df_test.ffill())
df_test_1=df_test_1.fillna(df_test_1.bfill())
df_test_1 = df_test_1.fillna(df_test.ffill())
df_test_1 = df_test_1.fillna(df_test_1.bfill())
# 选择用于模型训练的列名称
col_for_training = df_test_1.columns
import joblib
Best_model_DalyLGPrice = joblib.load("日度价格预测_最佳模型.pkl")
# 最新的一天为最后一行的数据
df_test_1_Day = df_test_1.tail(1)
# 移除不需要的列
df_test_1_Day.index = df_test_1_Day["Date"]
df_test_1_Day = df_test_1_Day.drop(["Date"], axis= 1)
df_test_1_Day=df_test_1_Day.drop('Price',axis=1)
df_test_1_Day=df_test_1_Day.dropna()
df_test_1_Day = df_test_1_Day.drop(["Date"], axis=1)
df_test_1_Day = df_test_1_Day.drop('Price', axis=1)
df_test_1_Day = df_test_1_Day.dropna()
for col in df_test_1_Day.columns:
df_test_1_Day[col] = pd.to_numeric(df_test_1_Day[col],errors='coerce')
#预测今日价格,显示至小数点后两位
Ypredict_Today=Best_model_DalyLGPrice.predict(df_test_1_Day)
df_test_1_Day[col] = pd.to_numeric(df_test_1_Day[col], errors='coerce')
# 预测今日价格,显示至小数点后两位
Ypredict_Today = Best_model_DalyLGPrice.predict(df_test_1_Day)
df_test_1_Day['日度预测价格']=Ypredict_Today
df_test_1_Day['日度预测价格'] = Ypredict_Today
print(df_test_1_Day['日度预测价格'])
a = df_test_1_Day['日度预测价格']
a = a[0]
a = float(a)
a = round(a,2)
a = round(a, 2)
return a
def optimize_Model():
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OrdinalEncoder
from sklearn.feature_selection import SelectFromModel
from sklearn.metrics import mean_squared_error, r2_score
import pandas as pd
pd.set_option('display.max_rows',40)
pd.set_option('display.max_columns',40)
pd.set_option('display.max_rows', 40)
pd.set_option('display.max_columns', 40)
df_test = pd.read_excel('纯苯数据项.xls')
df_test.drop([0],inplace=True)
df_test.drop([0], inplace=True)
# df_test['Date']=pd.to_datetime(df_test['Date'], format='%m/%d/%Y',infer_datetime_format=True)
df_test['Date']=pd.to_datetime(df_test['Date'], format='%Y-%m-%d',infer_datetime_format=True)
df_test['Date'] = pd.to_datetime(
df_test['Date'], format='%Y-%m-%d', infer_datetime_format=True)
#将缺失值补为前一个或者后一个数值
# 将缺失值补为前一个或者后一个数值
df_test_1 = df_test
df_test_1=df_test_1.fillna(df_test.ffill())
df_test_1=df_test_1.fillna(df_test_1.bfill())
df_test_1 = df_test_1.fillna(df_test.ffill())
df_test_1 = df_test_1.fillna(df_test_1.bfill())
df_test_1["Date"] = pd.to_datetime(df_test_1["Date"])
df_test_1.index = df_test_1["Date"]
df_test_1 = df_test_1.drop(["Date"], axis= 1)
df_test_1 = df_test_1.drop(["Date"], axis=1)
df_test_1 = df_test_1.astype('float')
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
from pandas import Series, DataFrame
import matplotlib.pyplot as plt
import sklearn.datasets as datasets
#导入机器学习算法模型
# 导入机器学习算法模型
from sklearn.linear_model import Lasso
from xgboost import XGBRegressor
@ -336,7 +319,7 @@ def optimize_Model():
import xgboost as xgb
from xgboost import plot_importance, plot_tree
from sklearn.metrics import mean_absolute_error
from statsmodels.tools.eval_measures import mse,rmse
from statsmodels.tools.eval_measures import mse, rmse
from sklearn.model_selection import GridSearchCV
from xgboost import XGBRegressor
import warnings
@ -344,63 +327,67 @@ def optimize_Model():
from sklearn.metrics import mean_squared_error
#切割训练数据和样本数据
# 切割训练数据和样本数据
from sklearn.model_selection import train_test_split
#用于模型评分
# 用于模型评分
from sklearn.metrics import r2_score
dataset1=df_test_1.drop('Price',axis=1)#.astype(float)
dataset1 = df_test_1.drop('Price', axis=1) # .astype(float)
y=df_test_1['Price']
y = df_test_1['Price']
x=dataset1
x = dataset1
train = x
target = y
#切割数据样本集合测试集
X_train,x_test,y_train,y_true = train_test_split(train,target,test_size=0.2,random_state=0)
# 切割数据样本集合测试集
X_train, x_test, y_train, y_true = train_test_split(
train, target, test_size=0.2, random_state=0)
#模型缩写
Lasso = Lasso(random_state=0)
# 模型缩写
Lasso = Lasso(random_state=0)
XGBR = XGBRegressor(random_state=0)
#训练模型
Lasso.fit(X_train,y_train)
XGBR.fit(X_train,y_train)
#模型拟合
# 训练模型
Lasso.fit(X_train, y_train)
XGBR.fit(X_train, y_train)
# 模型拟合
y_pre_Lasso = Lasso.predict(x_test)
y_pre_XGBR = XGBR.predict(x_test)
#计算Lasso、XGBR、RandomForestR、AdaBoostR、GradientBoostingR、BaggingRegressor各模型的R²
Lasso_score = r2_score(y_true,y_pre_Lasso)
XGBR_score=r2_score(y_true,y_pre_XGBR)
# 计算Lasso、XGBR、RandomForestR、AdaBoostR、GradientBoostingR、BaggingRegressor各模型的R²
Lasso_score = r2_score(y_true, y_pre_Lasso)
XGBR_score = r2_score(y_true, y_pre_XGBR)
#计算Lasso、XGBR的MSE和RMSE
Lasso_MSE=mean_squared_error(y_true, y_pre_Lasso)
XGBR_MSE=mean_squared_error(y_true, y_pre_XGBR)
# 计算Lasso、XGBR的MSE和RMSE
Lasso_MSE = mean_squared_error(y_true, y_pre_Lasso)
XGBR_MSE = mean_squared_error(y_true, y_pre_XGBR)
Lasso_RMSE=np.sqrt(Lasso_MSE)
XGBR_RMSE=np.sqrt(XGBR_MSE)
Lasso_RMSE = np.sqrt(Lasso_MSE)
XGBR_RMSE = np.sqrt(XGBR_MSE)
# 将不同模型的不同误差值整合成一个表格
model_results = pd.DataFrame([['Lasso', Lasso_RMSE, Lasso_score],
['XgBoost', XGBR_RMSE, XGBR_score]],
columns = ['模型(Model)','均方根误差(RMSE)', 'R^2 score'])
#将模型名称(Model)列设置为索引
model_results1=model_results.set_index('模型(Model)')
columns=['模型(Model)', '均方根误差(RMSE)', 'R^2 score'])
# 将模型名称(Model)列设置为索引
model_results1 = model_results.set_index('模型(Model)')
model_results1
#定义plot_feature_importance函数该函数用于计算特征重要性。此部分代码无需调整
def plot_feature_importance(importance,names,model_type):
# 定义plot_feature_importance函数该函数用于计算特征重要性。此部分代码无需调整
def plot_feature_importance(importance, names, model_type):
feature_importance = np.array(importance)
feature_names = np.array(names)
data={'feature_names':feature_names,'feature_importance':feature_importance}
data = {'feature_names': feature_names,
'feature_importance': feature_importance}
fi_df = pd.DataFrame(data)
fi_df.sort_values(by=['feature_importance'], ascending=False,inplace=True)
fi_df.sort_values(by=['feature_importance'],
ascending=False, inplace=True)
plt.figure(figsize=(10,8))
plt.figure(figsize=(10, 8))
sn.barplot(x=fi_df['feature_importance'], y=fi_df['feature_names'])
plt.title(model_type + " "+'FEATURE IMPORTANCE')
@ -408,60 +395,56 @@ def optimize_Model():
plt.ylabel('FEATURE NAMES')
from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']
## Xgboost 模型参数优化-初步
#参考: https://juejin.im/post/6844903661013827598
#每次调参时备选参数数值以同数量级的1、3、10设置即可比如设置1、3、10或0.1、0.3、1.0或0.01,0.03,0.10即可)
# Xgboost 模型参数优化-初步
# 参考: https://juejin.im/post/6844903661013827598
# 每次调参时备选参数数值以同数量级的1、3、10设置即可比如设置1、3、10或0.1、0.3、1.0或0.01,0.03,0.10即可)
from xgboost import XGBRegressor
from sklearn.model_selection import GridSearchCV
estimator = XGBRegressor(random_state=0,
nthread=4,
seed=0
)
nthread=4,
seed=0
)
parameters = {
'max_depth': range (2, 11, 2), # 树的最大深度
'n_estimators': range (50, 101, 10), # 迭代次数
'max_depth': range(2, 11, 2), # 树的最大深度
'n_estimators': range(50, 101, 10), # 迭代次数
'learning_rate': [0.01, 0.03, 0.1, 0.3, 0.5, 1]
}
grid_search_XGB = GridSearchCV(
estimator=estimator,
param_grid=parameters,
# n_jobs = 10,
cv = 3,
# n_jobs = 10,
cv=3,
verbose=True
)
grid_search_XGB.fit(X_train, y_train)
#如果电脑在此步骤报错可能是因为计算量太大超过硬件可支持程度可注释掉“n_jobs=10”一行
# 如果电脑在此步骤报错可能是因为计算量太大超过硬件可支持程度可注释掉“n_jobs=10”一行
best_parameters = grid_search_XGB.best_estimator_.get_params()
y_pred = grid_search_XGB.predict(x_test)
op_XGBR_score = r2_score(y_true,y_pred)
op_XGBR_MSE= mean_squared_error(y_true, y_pred)
op_XGBR_RMSE= np.sqrt(op_XGBR_MSE)
op_XGBR_score = r2_score(y_true, y_pred)
op_XGBR_MSE = mean_squared_error(y_true, y_pred)
op_XGBR_RMSE = np.sqrt(op_XGBR_MSE)
model_results2 = pd.DataFrame([['Optimized_Xgboost', op_XGBR_RMSE, op_XGBR_score]],
columns = ['模型(Model)', '均方根误差(RMSE)', 'R^2 score'])
model_results2=model_results2.set_index('模型(Model)')
columns=['模型(Model)', '均方根误差(RMSE)', 'R^2 score'])
model_results2 = model_results2.set_index('模型(Model)')
# results = model_results1.append(model_results2, ignore_index = False)
results = pd.concat([model_results1,model_results2],ignore_index=True)
results = pd.concat([model_results1, model_results2], ignore_index=True)
import pickle
Pkl_Filename = "日度价格预测_最佳模型.pkl"
Pkl_Filename = "日度价格预测_最佳模型.pkl"
with open(Pkl_Filename, 'wb') as file:
pickle.dump(grid_search_XGB, file)
with open(Pkl_Filename, 'wb') as file:
pickle.dump(grid_search_XGB, file)
def read_xls_data():
global one_cols, two_cols
# 打开 XLS 文件
@ -492,9 +475,7 @@ def read_xls_data():
# workbook.close()
def start(date=None,token=None,token_push=None):
def start(date=None, token=None, token_push=None):
read_xls_data()
if date == None:
date = getNow()[0]
@ -502,7 +483,7 @@ def start(date=None,token=None,token_push=None):
token = get_head_auth()
token_push = get_head_push_auth()
datas = get_data_value(token, one_cols,date)
datas = get_data_value(token, one_cols, date)
if not datas:
print("今天没有新数据")
return
@ -516,21 +497,22 @@ def start(date=None,token=None,token_push=None):
print(data_value)
dataItemNo_dataValue[data_value["dataItemNo"]] = ""
else:
dataItemNo_dataValue[data_value["dataItemNo"]] = data_value["dataValue"]
dataItemNo_dataValue[data_value["dataItemNo"]
] = data_value["dataValue"]
for value in one_cols:
if value in dataItemNo_dataValue:
append_rows.append(dataItemNo_dataValue[value])
else:
append_rows.append("")
save_xls(append_rows)
# 获取当月的数据写入到指定文件,如果是补充数据,不需要执行
queryDataListItemNos()
queryDataListItemNos(date=date)
# 模型训练
optimize_Model()
# 上传预测数据
upload_data_to_system(token_push,date)
upload_data_to_system(token_push, date)
# data_list.append(three_cols)
# write_xls(data_list)
@ -542,9 +524,8 @@ def start_1(date=None):
token = get_head_auth()
if not token:
return
datas = get_data_value(token, one_cols,date=date)
datas = get_data_value(token, one_cols, date=date)
# if not datas:
# return
@ -556,8 +537,9 @@ def start_1(date=None):
print(data_value)
dataItemNo_dataValue[data_value["dataItemNo"]] = ""
else:
dataItemNo_dataValue[data_value["dataItemNo"]] = data_value["dataValue"]
dataItemNo_dataValue[data_value["dataItemNo"]
] = data_value["dataValue"]
for value in one_cols:
if value in dataItemNo_dataValue:
append_rows.append(dataItemNo_dataValue[value])
@ -565,10 +547,10 @@ def start_1(date=None):
append_rows.append("")
save_xls_1(append_rows)
# data_list.append(three_cols)
# write_xls(data_list)
def save_xls_1(append_rows):
# 打开xls文件
@ -610,11 +592,9 @@ def save_xls_1(append_rows):
new_sheet.write(row_count, col, append_rows[col])
# 保存新的xls文件
new_workbook.save("纯苯数据项.xls")
new_workbook.save("纯苯数据项.xls")
def check_data(dataItemNo):
token = get_head_auth()
if not token:
@ -669,8 +649,6 @@ def save_xls(append_rows):
new_workbook.save("纯苯数据项.xls")
def get_queryDataListItemNos_value(token, url, dataItemNoList, dateStart, dateEnd):
search_data = {
@ -684,7 +662,8 @@ def get_queryDataListItemNos_value(token, url, dataItemNoList, dateStart, dateEn
}
headers = {"Authorization": token}
search_res = requests.post(url=url, headers=headers, json=search_data, timeout=(3, 5))
search_res = requests.post(
url=url, headers=headers, json=search_data, timeout=(3, 5))
search_value = json.loads(search_res.text)["data"]
if search_value:
return search_value
@ -692,9 +671,8 @@ def get_queryDataListItemNos_value(token, url, dataItemNoList, dateStart, dateEn
return None
def save_queryDataListItemNos_xls(data_df,dataItemNoList):
from datetime import datetime,timedelta
def save_queryDataListItemNos_xls(data_df, dataItemNoList):
from datetime import datetime, timedelta
current_year_month = datetime.now().strftime('%Y-%m')
grouped = data_df.groupby("dataDate")
@ -727,7 +705,6 @@ def save_queryDataListItemNos_xls(data_df,dataItemNoList):
# 创建sheet
new_sheet = new_workbook.add_sheet(sheet_names[i])
current_year_month_row = 0
# 将原有的数据写入新的sheet
for row in range(row_count):
@ -739,29 +716,28 @@ def save_queryDataListItemNos_xls(data_df,dataItemNoList):
break
new_sheet.write(row, col, data[row][col])
# print("current_year_month_row",current_year_month_row)
if i == 0:
rowFlag = 0
# 查看每组数据
for date, group in grouped:
new_sheet.write(row_count + rowFlag - current_year_month_row, 0, date)
new_sheet.write(row_count + rowFlag -
current_year_month_row, 0, date)
for j in range(len(dataItemNoList)):
dataItemNo = dataItemNoList[j]
if group[group["dataItemNo"] == dataItemNo]["dataValue"].values and (not str(group[group["dataItemNo"] == dataItemNo]["dataValue"].values[0]) == 'nan'):
new_sheet.write(row_count + rowFlag - current_year_month_row, j + 1, group[group["dataItemNo"] == dataItemNo]["dataValue"].values[0])
new_sheet.write(row_count + rowFlag - current_year_month_row, j + 1,
group[group["dataItemNo"] == dataItemNo]["dataValue"].values[0])
rowFlag += 1
# 保存新的xls文件
new_workbook.save("纯苯数据项.xls")
def queryDataListItemNos(date=None,token=None):
def queryDataListItemNos(date=None, token=None):
from datetime import datetime, timedelta
df = pd.read_excel('纯苯数据项.xls')
dataItemNoList = df.iloc[0].tolist()[1:]
@ -779,16 +755,29 @@ def queryDataListItemNos(date=None,token=None):
first_day_of_month = current_date.replace(day=1)
# 格式化为 YYYYMMDD 格式
dateEnd = current_date.strftime('%Y%m%d')
# dateEnd = date.strftime('%Y%m%d')
dateStart = first_day_of_month.strftime('%Y%m%d')
search_value = get_queryDataListItemNos_value(token, queryDataListItemNos_url, dataItemNoList, dateStart, dateEnd)
search_value = get_queryDataListItemNos_value(
token, queryDataListItemNos_url, dataItemNoList, dateStart, dateEnd)
data_df = pd.DataFrame(search_value)
data_df["dataDate"] = pd.to_datetime(data_df["dataDate"])
data_df["dataDate"] = data_df["dataDate"].dt.strftime('%Y-%m-%d')
save_queryDataListItemNos_xls(data_df,dataItemNoList)
save_queryDataListItemNos_xls(data_df, dataItemNoList)
print('当月数据更新完成')
if __name__ == "__main__":
print('运行中ing')
start()
# 自定义日期执行预测
# start_date = datetime(2025, 7, 6)
# end_date = datetime(2025, 7, 7)
# token = get_head_auth()
# token_push = get_head_push_auth()
# while start_date < end_date:
# print(start_date.strftime('%Y%m%d'))
# start(start_date, token, token_push)
# time.sleep(2)
# # start_1(start_date)
# start_date += timedelta(days=1)