石油苯数据更新,聚烯烃配置,聚烯烃周度配置,聚烯烃主函数
This commit is contained in:
parent
4f2a888dff
commit
38fbd7c810
6
.gitignore
vendored
6
.gitignore
vendored
@ -10,11 +10,7 @@ __pycache__/
|
|||||||
# Distribution / packaging
|
# Distribution / packaging
|
||||||
.Python
|
.Python
|
||||||
build/
|
build/
|
||||||
dataset/
|
*dataset/
|
||||||
yuanyoudataset/
|
|
||||||
yuanyouzhoududataset/
|
|
||||||
yuanyouyuedudataset/
|
|
||||||
juxitingdataset/
|
|
||||||
logs/
|
logs/
|
||||||
develop-eggs/
|
develop-eggs/
|
||||||
dist/
|
dist/
|
||||||
|
BIN
aisenzhecode/石油苯/日度价格预测_最佳模型.pkl
Normal file
BIN
aisenzhecode/石油苯/日度价格预测_最佳模型.pkl
Normal file
Binary file not shown.
@ -2,7 +2,7 @@
|
|||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 11,
|
"execution_count": 6,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
@ -706,27 +706,28 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 12,
|
"execution_count": 7,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"20241017\n"
|
"20250201\n",
|
||||||
|
"{'dataDate': '20250201', 'dataItemNo': 'C01100047|TURNOVER'}\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:280: UserWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.602e+05, tolerance: 3.845e+04\n",
|
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.321e+05, tolerance: 4.074e+04\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -734,7 +735,7 @@
|
|||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Using matplotlib backend: QtAgg\n",
|
"Using matplotlib backend: <object object at 0x0000028F59DBAF30>\n",
|
||||||
"%pylab is deprecated, use %matplotlib inline and import the required libraries.\n",
|
"%pylab is deprecated, use %matplotlib inline and import the required libraries.\n",
|
||||||
"Populating the interactive namespace from numpy and matplotlib\n",
|
"Populating the interactive namespace from numpy and matplotlib\n",
|
||||||
"Fitting 3 folds for each of 180 candidates, totalling 540 fits\n"
|
"Fitting 3 folds for each of 180 candidates, totalling 540 fits\n"
|
||||||
@ -749,11 +750,11 @@
|
|||||||
"pylab import has clobbered these variables: ['datetime', '__version__', 'plot', 'random']\n",
|
"pylab import has clobbered these variables: ['datetime', '__version__', 'plot', 'random']\n",
|
||||||
"`%matplotlib` prevents importing * from pylab and numpy\n",
|
"`%matplotlib` prevents importing * from pylab and numpy\n",
|
||||||
"\n",
|
"\n",
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:233: UserWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:263: FutureWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
||||||
"\n"
|
"\n"
|
||||||
@ -764,24 +765,25 @@
|
|||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Date\n",
|
"Date\n",
|
||||||
"2024-10-17 7541.753418\n",
|
"2025-02-01 7738.433105\n",
|
||||||
"Name: 日度预测价格, dtype: float32\n",
|
"Name: 日度预测价格, dtype: float32\n",
|
||||||
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20241017', 'dataStatus': 'add', 'dataValue': 7541.75}]}\n",
|
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250201', 'dataStatus': 'add', 'dataValue': 7738.43}]}\n",
|
||||||
"{\"confirmFlg\":false,\"status\":true}\n",
|
"{\"confirmFlg\":false,\"status\":true}\n",
|
||||||
"20241018\n"
|
"20250202\n",
|
||||||
|
"{'dataDate': '20250202', 'dataItemNo': 'C01100047|TURNOVER'}\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:280: UserWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.716e+05, tolerance: 3.895e+04\n",
|
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.506e+05, tolerance: 4.089e+04\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -799,11 +801,11 @@
|
|||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:233: UserWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:263: FutureWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
||||||
"\n"
|
"\n"
|
||||||
@ -814,24 +816,25 @@
|
|||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Date\n",
|
"Date\n",
|
||||||
"2024-10-18 7399.281738\n",
|
"2025-02-02 7700.021484\n",
|
||||||
"Name: 日度预测价格, dtype: float32\n",
|
"Name: 日度预测价格, dtype: float32\n",
|
||||||
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20241018', 'dataStatus': 'add', 'dataValue': 7399.28}]}\n",
|
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250202', 'dataStatus': 'add', 'dataValue': 7700.02}]}\n",
|
||||||
"{\"confirmFlg\":false,\"status\":true}\n",
|
"{\"confirmFlg\":false,\"status\":true}\n",
|
||||||
"20241019\n"
|
"20250203\n",
|
||||||
|
"{'dataDate': '20250203', 'dataItemNo': 'C01100047|TURNOVER'}\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:280: UserWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.669e+05, tolerance: 3.913e+04\n",
|
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.696e+05, tolerance: 4.096e+04\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -849,11 +852,11 @@
|
|||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:233: UserWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:263: FutureWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
||||||
"\n"
|
"\n"
|
||||||
@ -864,24 +867,25 @@
|
|||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Date\n",
|
"Date\n",
|
||||||
"2024-10-19 7404.584473\n",
|
"2025-02-03 7693.463379\n",
|
||||||
"Name: 日度预测价格, dtype: float32\n",
|
"Name: 日度预测价格, dtype: float32\n",
|
||||||
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20241019', 'dataStatus': 'add', 'dataValue': 7404.58}]}\n",
|
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250203', 'dataStatus': 'add', 'dataValue': 7693.46}]}\n",
|
||||||
"{\"confirmFlg\":false,\"status\":true}\n",
|
"{\"confirmFlg\":false,\"status\":true}\n",
|
||||||
"20241020\n"
|
"20250204\n",
|
||||||
|
"{'dataDate': '20250204', 'dataItemNo': 'C01100047|TURNOVER'}\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:280: UserWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.833e+05, tolerance: 3.773e+04\n",
|
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.780e+05, tolerance: 4.200e+04\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -899,11 +903,11 @@
|
|||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:233: UserWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:263: FutureWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
||||||
"\n"
|
"\n"
|
||||||
@ -914,24 +918,25 @@
|
|||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Date\n",
|
"Date\n",
|
||||||
"2024-10-20 7375.245605\n",
|
"2025-02-04 7798.116211\n",
|
||||||
"Name: 日度预测价格, dtype: float32\n",
|
"Name: 日度预测价格, dtype: float32\n",
|
||||||
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20241020', 'dataStatus': 'add', 'dataValue': 7375.25}]}\n",
|
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250204', 'dataStatus': 'add', 'dataValue': 7798.12}]}\n",
|
||||||
"{\"confirmFlg\":false,\"status\":true}\n",
|
"{\"confirmFlg\":false,\"status\":true}\n",
|
||||||
"20241021\n"
|
"20250205\n",
|
||||||
|
"{'dataDate': '20250205', 'dataItemNo': 'C01100047|TURNOVER'}\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:280: UserWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.912e+05, tolerance: 3.684e+04\n",
|
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.551e+05, tolerance: 4.144e+04\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -949,11 +954,11 @@
|
|||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:233: UserWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:263: FutureWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
||||||
"\n"
|
"\n"
|
||||||
@ -964,24 +969,24 @@
|
|||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Date\n",
|
"Date\n",
|
||||||
"2024-10-21 7272.15332\n",
|
"2025-02-05 7865.974609\n",
|
||||||
"Name: 日度预测价格, dtype: float32\n",
|
"Name: 日度预测价格, dtype: float32\n",
|
||||||
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20241021', 'dataStatus': 'add', 'dataValue': 7272.15}]}\n",
|
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250205', 'dataStatus': 'add', 'dataValue': 7865.97}]}\n",
|
||||||
"{\"confirmFlg\":false,\"status\":true}\n",
|
"{\"confirmFlg\":false,\"status\":true}\n",
|
||||||
"20241022\n"
|
"20250206\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:280: UserWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.991e+05, tolerance: 3.700e+04\n",
|
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.553e+05, tolerance: 4.144e+04\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -999,11 +1004,11 @@
|
|||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:233: UserWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:263: FutureWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
||||||
"\n"
|
"\n"
|
||||||
@ -1014,24 +1019,24 @@
|
|||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Date\n",
|
"Date\n",
|
||||||
"2024-10-22 7265.592773\n",
|
"2025-02-06 7896.265137\n",
|
||||||
"Name: 日度预测价格, dtype: float32\n",
|
"Name: 日度预测价格, dtype: float32\n",
|
||||||
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20241022', 'dataStatus': 'add', 'dataValue': 7265.59}]}\n",
|
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250206', 'dataStatus': 'add', 'dataValue': 7896.27}]}\n",
|
||||||
"{\"confirmFlg\":false,\"status\":true}\n",
|
"{\"confirmFlg\":false,\"status\":true}\n",
|
||||||
"20241023\n"
|
"20250207\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:280: UserWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.866e+05, tolerance: 3.682e+04\n",
|
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.955e+05, tolerance: 4.168e+04\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -1049,11 +1054,11 @@
|
|||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:233: UserWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:263: FutureWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
||||||
"\n"
|
"\n"
|
||||||
@ -1064,24 +1069,24 @@
|
|||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Date\n",
|
"Date\n",
|
||||||
"2024-10-23 7314.694336\n",
|
"2025-02-07 7841.537109\n",
|
||||||
"Name: 日度预测价格, dtype: float32\n",
|
"Name: 日度预测价格, dtype: float32\n",
|
||||||
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20241023', 'dataStatus': 'add', 'dataValue': 7314.69}]}\n",
|
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250207', 'dataStatus': 'add', 'dataValue': 7841.54}]}\n",
|
||||||
"{\"confirmFlg\":false,\"status\":true}\n",
|
"{\"confirmFlg\":false,\"status\":true}\n",
|
||||||
"20241024\n"
|
"20250208\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:280: UserWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.886e+05, tolerance: 3.690e+04\n",
|
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.733e+05, tolerance: 4.197e+04\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -1099,11 +1104,11 @@
|
|||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:233: UserWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:263: FutureWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
||||||
"\n"
|
"\n"
|
||||||
@ -1114,24 +1119,24 @@
|
|||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Date\n",
|
"Date\n",
|
||||||
"2024-10-24 7340.938477\n",
|
"2025-02-08 7814.474609\n",
|
||||||
"Name: 日度预测价格, dtype: float32\n",
|
"Name: 日度预测价格, dtype: float32\n",
|
||||||
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20241024', 'dataStatus': 'add', 'dataValue': 7340.94}]}\n",
|
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250208', 'dataStatus': 'add', 'dataValue': 7814.47}]}\n",
|
||||||
"{\"confirmFlg\":false,\"status\":true}\n",
|
"{\"confirmFlg\":false,\"status\":true}\n",
|
||||||
"20241025\n"
|
"20250209\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:280: UserWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.843e+05, tolerance: 3.691e+04\n",
|
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.675e+05, tolerance: 4.062e+04\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -1149,11 +1154,11 @@
|
|||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:233: UserWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:263: FutureWarning:\n",
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
||||||
"\n"
|
"\n"
|
||||||
@ -1164,9 +1169,463 @@
|
|||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Date\n",
|
"Date\n",
|
||||||
"2024-10-25 7299.914062\n",
|
"2025-02-09 7832.284668\n",
|
||||||
"Name: 日度预测价格, dtype: float32\n",
|
"Name: 日度预测价格, dtype: float32\n",
|
||||||
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20241025', 'dataStatus': 'add', 'dataValue': 7299.91}]}\n",
|
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250209', 'dataStatus': 'add', 'dataValue': 7832.28}]}\n",
|
||||||
|
"{\"confirmFlg\":false,\"status\":true}\n",
|
||||||
|
"20250210\n",
|
||||||
|
"{'dataDate': '20250210', 'dataItemNo': 'C01100047|TURNOVER'}\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
|
"\n",
|
||||||
|
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.531e+05, tolerance: 4.103e+04\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Using matplotlib backend: QtAgg\n",
|
||||||
|
"%pylab is deprecated, use %matplotlib inline and import the required libraries.\n",
|
||||||
|
"Populating the interactive namespace from numpy and matplotlib\n",
|
||||||
|
"Fitting 3 folds for each of 180 candidates, totalling 540 fits\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
|
"\n",
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Date\n",
|
||||||
|
"2025-02-10 7917.837891\n",
|
||||||
|
"Name: 日度预测价格, dtype: float32\n",
|
||||||
|
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250210', 'dataStatus': 'add', 'dataValue': 7917.84}]}\n",
|
||||||
|
"{\"confirmFlg\":false,\"status\":true}\n",
|
||||||
|
"20250211\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
|
"\n",
|
||||||
|
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.307e+05, tolerance: 4.073e+04\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Using matplotlib backend: QtAgg\n",
|
||||||
|
"%pylab is deprecated, use %matplotlib inline and import the required libraries.\n",
|
||||||
|
"Populating the interactive namespace from numpy and matplotlib\n",
|
||||||
|
"Fitting 3 folds for each of 180 candidates, totalling 540 fits\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
|
"\n",
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Date\n",
|
||||||
|
"2025-02-11 7919.563965\n",
|
||||||
|
"Name: 日度预测价格, dtype: float32\n",
|
||||||
|
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250211', 'dataStatus': 'add', 'dataValue': 7919.56}]}\n",
|
||||||
|
"{\"confirmFlg\":false,\"status\":true}\n",
|
||||||
|
"20250212\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
|
"\n",
|
||||||
|
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.644e+05, tolerance: 4.133e+04\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Using matplotlib backend: QtAgg\n",
|
||||||
|
"%pylab is deprecated, use %matplotlib inline and import the required libraries.\n",
|
||||||
|
"Populating the interactive namespace from numpy and matplotlib\n",
|
||||||
|
"Fitting 3 folds for each of 180 candidates, totalling 540 fits\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
|
"\n",
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Date\n",
|
||||||
|
"2025-02-12 7902.145508\n",
|
||||||
|
"Name: 日度预测价格, dtype: float32\n",
|
||||||
|
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250212', 'dataStatus': 'add', 'dataValue': 7902.15}]}\n",
|
||||||
|
"{\"confirmFlg\":false,\"status\":true}\n",
|
||||||
|
"20250213\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
|
"\n",
|
||||||
|
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.711e+05, tolerance: 4.105e+04\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Using matplotlib backend: QtAgg\n",
|
||||||
|
"%pylab is deprecated, use %matplotlib inline and import the required libraries.\n",
|
||||||
|
"Populating the interactive namespace from numpy and matplotlib\n",
|
||||||
|
"Fitting 3 folds for each of 180 candidates, totalling 540 fits\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
|
"\n",
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Date\n",
|
||||||
|
"2025-02-13 8001.087891\n",
|
||||||
|
"Name: 日度预测价格, dtype: float32\n",
|
||||||
|
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250213', 'dataStatus': 'add', 'dataValue': 8001.09}]}\n",
|
||||||
|
"{\"confirmFlg\":false,\"status\":true}\n",
|
||||||
|
"20250214\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
|
"\n",
|
||||||
|
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.949e+05, tolerance: 4.129e+04\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Using matplotlib backend: QtAgg\n",
|
||||||
|
"%pylab is deprecated, use %matplotlib inline and import the required libraries.\n",
|
||||||
|
"Populating the interactive namespace from numpy and matplotlib\n",
|
||||||
|
"Fitting 3 folds for each of 180 candidates, totalling 540 fits\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
|
"\n",
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Date\n",
|
||||||
|
"2025-02-14 8032.705566\n",
|
||||||
|
"Name: 日度预测价格, dtype: float32\n",
|
||||||
|
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250214', 'dataStatus': 'add', 'dataValue': 8032.71}]}\n",
|
||||||
|
"{\"confirmFlg\":false,\"status\":true}\n",
|
||||||
|
"20250215\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
|
"\n",
|
||||||
|
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.966e+05, tolerance: 4.129e+04\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Using matplotlib backend: QtAgg\n",
|
||||||
|
"%pylab is deprecated, use %matplotlib inline and import the required libraries.\n",
|
||||||
|
"Populating the interactive namespace from numpy and matplotlib\n",
|
||||||
|
"Fitting 3 folds for each of 180 candidates, totalling 540 fits\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
|
"\n",
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Date\n",
|
||||||
|
"2025-02-15 8040.26709\n",
|
||||||
|
"Name: 日度预测价格, dtype: float32\n",
|
||||||
|
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250215', 'dataStatus': 'add', 'dataValue': 8040.27}]}\n",
|
||||||
|
"{\"confirmFlg\":false,\"status\":true}\n",
|
||||||
|
"20250216\n",
|
||||||
|
"{'dataDate': '20250216', 'dataItemNo': 'C01100047|TURNOVER'}\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
|
"\n",
|
||||||
|
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.442e+05, tolerance: 4.138e+04\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Using matplotlib backend: QtAgg\n",
|
||||||
|
"%pylab is deprecated, use %matplotlib inline and import the required libraries.\n",
|
||||||
|
"Populating the interactive namespace from numpy and matplotlib\n",
|
||||||
|
"Fitting 3 folds for each of 180 candidates, totalling 540 fits\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
|
"\n",
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Date\n",
|
||||||
|
"2025-02-16 8044.537109\n",
|
||||||
|
"Name: 日度预测价格, dtype: float32\n",
|
||||||
|
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250216', 'dataStatus': 'add', 'dataValue': 8044.54}]}\n",
|
||||||
|
"{\"confirmFlg\":false,\"status\":true}\n",
|
||||||
|
"20250217\n",
|
||||||
|
"{'dataDate': '20250217', 'dataItemNo': 'C01100047|TURNOVER'}\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
|
"\n",
|
||||||
|
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.555e+05, tolerance: 4.072e+04\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Using matplotlib backend: QtAgg\n",
|
||||||
|
"%pylab is deprecated, use %matplotlib inline and import the required libraries.\n",
|
||||||
|
"Populating the interactive namespace from numpy and matplotlib\n",
|
||||||
|
"Fitting 3 folds for each of 180 candidates, totalling 540 fits\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
|
"\n",
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Date\n",
|
||||||
|
"2025-02-17 7998.32373\n",
|
||||||
|
"Name: 日度预测价格, dtype: float32\n",
|
||||||
|
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250217', 'dataStatus': 'add', 'dataValue': 7998.32}]}\n",
|
||||||
|
"{\"confirmFlg\":false,\"status\":true}\n",
|
||||||
|
"20250218\n",
|
||||||
|
"{'dataDate': '20250218', 'dataItemNo': 'C01100047|TURNOVER'}\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
|
"\n",
|
||||||
|
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.680e+05, tolerance: 4.121e+04\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Using matplotlib backend: QtAgg\n",
|
||||||
|
"%pylab is deprecated, use %matplotlib inline and import the required libraries.\n",
|
||||||
|
"Populating the interactive namespace from numpy and matplotlib\n",
|
||||||
|
"Fitting 3 folds for each of 180 candidates, totalling 540 fits\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||||
|
"\n",
|
||||||
|
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n",
|
||||||
|
"\n",
|
||||||
|
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Date\n",
|
||||||
|
"2025-02-18 7988.078125\n",
|
||||||
|
"Name: 日度预测价格, dtype: float32\n",
|
||||||
|
"{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250218', 'dataStatus': 'add', 'dataValue': 7988.08}]}\n",
|
||||||
"{\"confirmFlg\":false,\"status\":true}\n"
|
"{\"confirmFlg\":false,\"status\":true}\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
@ -1174,16 +1633,23 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"from datetime import datetime, timedelta\n",
|
"from datetime import datetime, timedelta\n",
|
||||||
"\n",
|
"\n",
|
||||||
"start_date = datetime(2024, 10, 17)\n",
|
"start_date = datetime(2025, 2, 1)\n",
|
||||||
"end_date = datetime(2024, 10, 26)\n",
|
"end_date = datetime(2025, 2, 19)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"while start_date < end_date:\n",
|
"while start_date < end_date:\n",
|
||||||
" print(start_date.strftime('%Y%m%d'))\n",
|
" print(start_date.strftime('%Y%m%d'))\n",
|
||||||
" start(start_date)\n",
|
" start(start_date)\n",
|
||||||
" # time.sleep(1)\n",
|
" # time.sleep(2)\n",
|
||||||
" # start_1(start_date)\n",
|
" # start_1(start_date)\n",
|
||||||
" start_date += timedelta(days=1)"
|
" start_date += timedelta(days=1)"
|
||||||
]
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
|
Binary file not shown.
BIN
aisenzhecode/石油苯/纯苯数据项2025年2月18日备份.xls
Normal file
BIN
aisenzhecode/石油苯/纯苯数据项2025年2月18日备份.xls
Normal file
Binary file not shown.
@ -95,9 +95,9 @@ ClassifyId = 1214
|
|||||||
server_host = '192.168.100.53'
|
server_host = '192.168.100.53'
|
||||||
|
|
||||||
login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login"
|
login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login"
|
||||||
upload_url = f"http://{server_host}:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
|
upload_url = f"http://{server_host}:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave" # 上传报告
|
||||||
upload_warning_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
|
upload_warning_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save" # 停更预警
|
||||||
query_data_list_item_nos_url = f"http://{server_host}:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos"
|
query_data_list_item_nos_url = f"http://{server_host}:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos" # 查询数据项编码
|
||||||
|
|
||||||
login_data = {
|
login_data = {
|
||||||
"data": {
|
"data": {
|
||||||
@ -162,8 +162,8 @@ table_name = 'v_tbl_crude_oil_warning'
|
|||||||
|
|
||||||
### 开关
|
### 开关
|
||||||
is_train = False # 是否训练
|
is_train = False # 是否训练
|
||||||
is_debug = False # 是否调试
|
is_debug = True # 是否调试
|
||||||
is_eta = True # 是否使用eta接口
|
is_eta = False # 是否使用eta接口
|
||||||
is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
|
is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
|
||||||
is_timefurture = True # 是否使用时间特征
|
is_timefurture = True # 是否使用时间特征
|
||||||
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
||||||
@ -185,7 +185,7 @@ print("数据库连接成功",host,dbname,dbusername)
|
|||||||
|
|
||||||
# 数据截取日期
|
# 数据截取日期
|
||||||
start_year = 2020 # 数据开始年份
|
start_year = 2020 # 数据开始年份
|
||||||
end_time = '' # 数据截取日期
|
end_time = '' # 数据截取日期 格式为 2024-01-01
|
||||||
freq = 'B' # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日
|
freq = 'B' # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日
|
||||||
delweekenday = True if freq == 'B' else False # 是否删除周末数据
|
delweekenday = True if freq == 'B' else False # 是否删除周末数据
|
||||||
is_corr = False # 特征是否参与滞后领先提升相关系数
|
is_corr = False # 特征是否参与滞后领先提升相关系数
|
||||||
@ -194,7 +194,8 @@ if add_kdj and is_edbnamelist:
|
|||||||
edbnamelist = edbnamelist+['K','D','J']
|
edbnamelist = edbnamelist+['K','D','J']
|
||||||
|
|
||||||
### 模型参数
|
### 模型参数
|
||||||
y = 'Brent连1合约价格' # 原油指标数据的目标变量 Brent连1合约价格 Brent活跃合约
|
y = 'Brent连1合约价格' # 原油指标数据的目标变量 Brent连1合约价格 Brent活跃合约
|
||||||
|
# y = 'Brent连1合约价格' # 原油指标数据的目标变量 Brent连1合约价格 Brent活跃合约
|
||||||
horizon =5 # 预测的步长
|
horizon =5 # 预测的步长
|
||||||
input_size = 40 # 输入序列长度
|
input_size = 40 # 输入序列长度
|
||||||
train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数
|
train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数
|
||||||
|
@ -157,6 +157,7 @@ upload_data = {
|
|||||||
"funcModule":'研究报告信息',
|
"funcModule":'研究报告信息',
|
||||||
"funcOperation":'上传聚烯烃PP价格预测报告',
|
"funcOperation":'上传聚烯烃PP价格预测报告',
|
||||||
"data":{
|
"data":{
|
||||||
|
"groupNo": "000127",
|
||||||
"ownerAccount":'arui', #报告所属用户账号
|
"ownerAccount":'arui', #报告所属用户账号
|
||||||
"reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
"reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
||||||
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
|
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
|
||||||
@ -174,6 +175,7 @@ warning_data = {
|
|||||||
"funcModule":'原油特征停更预警',
|
"funcModule":'原油特征停更预警',
|
||||||
"funcOperation":'原油特征停更预警',
|
"funcOperation":'原油特征停更预警',
|
||||||
"data":{
|
"data":{
|
||||||
|
"groupNo": "000127",
|
||||||
'WARNING_TYPE_NAME':'特征数据停更预警',
|
'WARNING_TYPE_NAME':'特征数据停更预警',
|
||||||
'WARNING_CONTENT':'',
|
'WARNING_CONTENT':'',
|
||||||
'WARNING_DATE':''
|
'WARNING_DATE':''
|
||||||
@ -202,16 +204,16 @@ table_name = 'v_tbl_crude_oil_warning'
|
|||||||
|
|
||||||
### 开关
|
### 开关
|
||||||
is_train = False # 是否训练
|
is_train = False # 是否训练
|
||||||
is_debug = False # 是否调试
|
is_debug = True # 是否调试
|
||||||
is_eta = False # 是否使用eta接口
|
is_eta = False # 是否使用eta接口
|
||||||
is_market = False # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
|
is_market = False # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
|
||||||
is_timefurture = True # 是否使用时间特征
|
is_timefurture = True # 是否使用时间特征
|
||||||
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
||||||
is_edbcode = False # 特征使用edbcoding列表中的
|
is_edbcode = False # 特征使用edbcoding列表中的
|
||||||
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
||||||
is_update_eta = True # 预测结果上传到eta
|
is_update_eta = False # 预测结果上传到eta
|
||||||
is_update_report = True # 是否上传报告
|
is_update_report = True # 是否上传报告
|
||||||
is_update_warning_data = False # 是否上传预警数据
|
is_update_warning_data = True # 是否上传预警数据
|
||||||
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
||||||
is_del_tow_month = True # 是否删除两个月不更新的特征
|
is_del_tow_month = True # 是否删除两个月不更新的特征
|
||||||
|
|
||||||
|
318
config_juxiting_zhoudu.py
Normal file
318
config_juxiting_zhoudu.py
Normal file
@ -0,0 +1,318 @@
|
|||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import logging.handlers
|
||||||
|
import datetime
|
||||||
|
from lib.tools import MySQLDB,SQLiteHandler
|
||||||
|
|
||||||
|
|
||||||
|
# eta 接口token
|
||||||
|
APPID = "XNLDvxZHHugj7wJ7"
|
||||||
|
SECRET = "iSeU4s6cKKBVbt94htVY1p0sqUMqb2xa"
|
||||||
|
|
||||||
|
# eta 接口url
|
||||||
|
sourcelisturl = 'http://10.189.2.78:8108/v1/edb/source/list'
|
||||||
|
classifylisturl = 'http://10.189.2.78:8108/v1/edb/classify/list?ClassifyType='
|
||||||
|
uniquecodedataurl = 'http://10.189.2.78:8108/v1/edb/data?UniqueCode=4991c37becba464609b409909fe4d992&StartDate=2024-02-01'
|
||||||
|
classifyidlisturl = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId='
|
||||||
|
edbcodedataurl = 'http://10.189.2.78:8108/v1/edb/data?EdbCode='
|
||||||
|
edbdatapushurl = 'http://10.189.2.78:8108/v1/edb/push'
|
||||||
|
edbdeleteurl = 'http://10.189.2.78:8108/v1/edb/business/edb/del'
|
||||||
|
edbbusinessurl = 'http://10.189.2.78:8108/v1/edb/business/data/del'
|
||||||
|
edbcodelist = ['ID01385938','lmcads03 lme comdty',
|
||||||
|
'GC1 COMB Comdty',
|
||||||
|
'C2404171822',
|
||||||
|
'dxy curncy',
|
||||||
|
'S5443199 ',
|
||||||
|
'S5479800',
|
||||||
|
'S5443108',
|
||||||
|
'H7358586',
|
||||||
|
'LC3FM1 INDEX',
|
||||||
|
'CNY REGN Curncy',
|
||||||
|
's0105897',
|
||||||
|
'M0067419',
|
||||||
|
'M0066351',
|
||||||
|
'S0266372',
|
||||||
|
'S0266438',
|
||||||
|
'S0266506',
|
||||||
|
'ID01384463']
|
||||||
|
|
||||||
|
# 临时写死用指定的列,与上面的edbcode对应,后面更改
|
||||||
|
edbnamelist = [
|
||||||
|
'ds','y',
|
||||||
|
'LME铜价',
|
||||||
|
'黄金连1合约',
|
||||||
|
'Brent-WTI',
|
||||||
|
'美元指数',
|
||||||
|
'甲醇鲁南价格',
|
||||||
|
'甲醇太仓港口价格',
|
||||||
|
'山东丙烯主流价',
|
||||||
|
'丙烷(山东)',
|
||||||
|
'FEI丙烷 M1',
|
||||||
|
'在岸人民币汇率',
|
||||||
|
'南华工业品指数',
|
||||||
|
'PVC期货主力',
|
||||||
|
'PE期货收盘价',
|
||||||
|
'PP连续-1月',
|
||||||
|
'PP连续-5月',
|
||||||
|
'PP连续-9月',
|
||||||
|
'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)'
|
||||||
|
]
|
||||||
|
|
||||||
|
edbcodenamedict = {
|
||||||
|
'ID01385938':'PP:拉丝:1102K:市场价:青州:国家能源宁煤(日)',
|
||||||
|
'ID01384463':'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)',
|
||||||
|
'lmcads03 lme comdty':'LME铜价',
|
||||||
|
'GC1 COMB Comdty':'黄金连1合约',
|
||||||
|
'C2404171822':'Brent-WTI',
|
||||||
|
'dxy curncy':'美元指数',
|
||||||
|
'S5443199 ':'甲醇鲁南价格',
|
||||||
|
'S5479800':'甲醇太仓港口价格',
|
||||||
|
'S5443108':'山东丙烯主流价',
|
||||||
|
'H7358586':'丙烷(山东)',
|
||||||
|
'LC3FM1 INDEX':'FEI丙烷 M1',
|
||||||
|
'CNY REGN Curncy':'在岸人民币汇率',
|
||||||
|
's0105897':'南华工业品指数',
|
||||||
|
'M0067419':'PVC期货主力',
|
||||||
|
'M0066351':'PE期货收盘价',
|
||||||
|
'S0266372':'PP连续-1月',
|
||||||
|
'S0266438':'PP连续-5月',
|
||||||
|
'S0266506':'PP连续-9月',
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
# eta自有数据指标编码
|
||||||
|
modelsindex = {
|
||||||
|
'NHITS': 'SELF0000077',
|
||||||
|
'Informer':'SELF0000078',
|
||||||
|
'LSTM':'SELF0000079',
|
||||||
|
'iTransformer':'SELF0000080',
|
||||||
|
'TSMixer':'SELF0000081',
|
||||||
|
'TSMixerx':'SELF0000082',
|
||||||
|
'PatchTST':'SELF0000083',
|
||||||
|
'RNN':'SELF0000084',
|
||||||
|
'GRU':'SELF0000085',
|
||||||
|
'TCN':'SELF0000086',
|
||||||
|
'BiTCN':'SELF0000087',
|
||||||
|
'DilatedRNN':'SELF0000088',
|
||||||
|
'MLP':'SELF0000089',
|
||||||
|
'DLinear':'SELF0000090',
|
||||||
|
'NLinear':'SELF0000091',
|
||||||
|
'TFT':'SELF0000092',
|
||||||
|
'FEDformer':'SELF0000093',
|
||||||
|
'StemGNN':'SELF0000094',
|
||||||
|
'MLPMultivariate':'SELF0000095',
|
||||||
|
'TiDE':'SELF0000096',
|
||||||
|
'DeepNPTS':'SELF0000097'
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# eta 上传预测结果的请求体,后面发起请求的时候更改 model datalist 数据
|
||||||
|
data = {
|
||||||
|
"IndexCode": "",
|
||||||
|
"IndexName": "价格预测模型",
|
||||||
|
"Unit": "无",
|
||||||
|
"Frequency": "日度",
|
||||||
|
"SourceName": f"价格预测",
|
||||||
|
"Remark": 'ddd',
|
||||||
|
"DataList": [
|
||||||
|
{
|
||||||
|
"Date": "2024-05-02",
|
||||||
|
"Value": 333444
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
|
||||||
|
# eta 分类
|
||||||
|
# level:3才可以获取到数据,所以需要人工把能源化工下所有的level3级都找到
|
||||||
|
# url = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId=1214'
|
||||||
|
#ParentId ":1160, 能源化工
|
||||||
|
# ClassifyId ":1214,原油
|
||||||
|
#ParentId ":1214,",就是原油下所有的数据。
|
||||||
|
ClassifyId = 1161
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
############################################################################################################### 变量定义--测试环境
|
||||||
|
server_host = '192.168.100.53'
|
||||||
|
|
||||||
|
login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login"
|
||||||
|
upload_url = f"http://{server_host}:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
|
||||||
|
upload_warning_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
|
||||||
|
query_data_list_item_nos_url = f"http://{server_host}:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos"
|
||||||
|
|
||||||
|
login_data = {
|
||||||
|
"data": {
|
||||||
|
"account": "api_test",
|
||||||
|
# "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
|
||||||
|
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
|
||||||
|
"tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
|
||||||
|
"terminal": "API"
|
||||||
|
},
|
||||||
|
"funcModule": "API",
|
||||||
|
"funcOperation": "获取token"
|
||||||
|
}
|
||||||
|
|
||||||
|
upload_data = {
|
||||||
|
"funcModule":'研究报告信息',
|
||||||
|
"funcOperation":'上传聚烯烃PP价格预测报告',
|
||||||
|
"data":{
|
||||||
|
"ownerAccount":'arui', #报告所属用户账号
|
||||||
|
"reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
||||||
|
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
|
||||||
|
"fileBase64": '' ,#文件内容base64
|
||||||
|
"categoryNo":'yyjgycbg', # 研究报告分类编码
|
||||||
|
"smartBusinessClassCode":'JXTJGYCBG', #分析报告分类编码
|
||||||
|
"reportEmployeeCode":"E40116", # 报告人
|
||||||
|
"reportDeptCode" :"D0044" ,# 报告部门
|
||||||
|
"productGroupCode":"RAW_MATERIAL" # 商品分类
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
warning_data = {
|
||||||
|
"funcModule":'原油特征停更预警',
|
||||||
|
"funcOperation":'原油特征停更预警',
|
||||||
|
"data":{
|
||||||
|
'WARNING_TYPE_NAME':'特征数据停更预警',
|
||||||
|
'WARNING_CONTENT':'',
|
||||||
|
'WARNING_DATE':''
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
query_data_list_item_nos_data = {
|
||||||
|
"funcModule": "数据项",
|
||||||
|
"funcOperation": "查询",
|
||||||
|
"data": {
|
||||||
|
"dateStart":"20200101",
|
||||||
|
"dateEnd":"20241231",
|
||||||
|
"dataItemNoList":["Brentzdj","Brentzgj"] # 数据项编码,代表 brent最低价和最高价
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
# 北京环境数据库
|
||||||
|
host = '192.168.101.27'
|
||||||
|
port = 3306
|
||||||
|
dbusername ='root'
|
||||||
|
password = '123456'
|
||||||
|
dbname = 'jingbo_test'
|
||||||
|
table_name = 'v_tbl_crude_oil_warning'
|
||||||
|
|
||||||
|
|
||||||
|
### 开关
|
||||||
|
is_train = False # 是否训练
|
||||||
|
is_debug = False # 是否调试
|
||||||
|
is_eta = False # 是否使用eta接口
|
||||||
|
is_market = False # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
|
||||||
|
is_timefurture = True # 是否使用时间特征
|
||||||
|
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
||||||
|
is_edbcode = False # 特征使用edbcoding列表中的
|
||||||
|
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
||||||
|
is_update_eta = True # 预测结果上传到eta
|
||||||
|
is_update_report = True # 是否上传报告
|
||||||
|
is_update_warning_data = False # 是否上传预警数据
|
||||||
|
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
||||||
|
is_del_tow_month = True # 是否删除两个月不更新的特征
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# 连接到数据库
|
||||||
|
db_mysql = MySQLDB(host=host, user=dbusername, password=password, database=dbname)
|
||||||
|
db_mysql.connect()
|
||||||
|
print("数据库连接成功",host,dbname,dbusername)
|
||||||
|
|
||||||
|
|
||||||
|
# 数据截取日期
|
||||||
|
start_year = 2020 # 数据开始年份
|
||||||
|
end_time = '2025-01-27' # 数据截取日期
|
||||||
|
freq = 'W' # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日
|
||||||
|
delweekenday = True if freq == 'B' else False # 是否删除周末数据
|
||||||
|
is_corr = False # 特征是否参与滞后领先提升相关系数
|
||||||
|
add_kdj = False # 是否添加kdj指标
|
||||||
|
if add_kdj and is_edbnamelist:
|
||||||
|
edbnamelist = edbnamelist+['K','D','J']
|
||||||
|
|
||||||
|
### 模型参数
|
||||||
|
y = 'AVG-金能大唐久泰青州'
|
||||||
|
avg_cols = [
|
||||||
|
'PP:拉丝:1102K:出厂价:青州:国家能源宁煤(日)',
|
||||||
|
'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)',
|
||||||
|
'PP:拉丝:L5E89:出厂价:河北、鲁北:大唐内蒙多伦(日)',
|
||||||
|
'PP:拉丝:HP550J:市场价:青岛:金能化学(日)'
|
||||||
|
]
|
||||||
|
offsite = 80
|
||||||
|
offsite_col = ['PP:拉丝:HP550J:市场价:青岛:金能化学(日)']
|
||||||
|
horizon =1 # 预测的步长
|
||||||
|
input_size = 7 # 输入序列长度
|
||||||
|
train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数
|
||||||
|
val_check_steps = 30 # 评估频率
|
||||||
|
early_stop_patience_steps = 5 # 早停的耐心步数
|
||||||
|
# --- 交叉验证用的参数
|
||||||
|
test_size = 200 # 测试集大小,定义100,后面使用的时候重新赋值
|
||||||
|
val_size = test_size # 验证集大小,同测试集大小
|
||||||
|
|
||||||
|
### 特征筛选用到的参数
|
||||||
|
k = 100 # 特征筛选数量,如果是0或者值比特征数量大,代表全部特征
|
||||||
|
corr_threshold = 0.6 # 相关性大于0.6的特征
|
||||||
|
rote = 0.06 # 绘图上下界阈值
|
||||||
|
|
||||||
|
### 计算准确率
|
||||||
|
weight_dict = [0.4,0.15,0.1,0.1,0.25] # 权重
|
||||||
|
|
||||||
|
|
||||||
|
### 文件
|
||||||
|
data_set = 'PP指标数据.xlsx' # 数据集文件
|
||||||
|
dataset = 'juxitingzhududataset' # 数据集文件夹
|
||||||
|
|
||||||
|
# 数据库名称
|
||||||
|
db_name = os.path.join(dataset,'jbsh_juxiting.db')
|
||||||
|
sqlitedb = SQLiteHandler(db_name)
|
||||||
|
sqlitedb.connect()
|
||||||
|
|
||||||
|
settings = f'{input_size}-{horizon}-{train_steps}--{k}-{data_set}-{y}'
|
||||||
|
# 获取日期时间
|
||||||
|
# now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') # 获取当前日期时间
|
||||||
|
now = datetime.datetime.now().strftime('%Y-%m-%d') # 获取当前日期时间
|
||||||
|
reportname = f'PP大模型预测报告--{end_time}.pdf' # 报告文件名
|
||||||
|
reportname = reportname.replace(':', '-') # 替换冒号
|
||||||
|
if end_time == '':
|
||||||
|
end_time = now
|
||||||
|
### 邮件配置
|
||||||
|
username='1321340118@qq.com'
|
||||||
|
passwd='wgczgyhtyyyyjghi'
|
||||||
|
# recv=['liurui_test@163.com','52585119@qq.com']
|
||||||
|
recv=['liurui_test@163.com']
|
||||||
|
# recv=['liurui_test@163.com']
|
||||||
|
title='reportname'
|
||||||
|
content=y+'预测报告请看附件'
|
||||||
|
file=os.path.join(dataset,'reportname')
|
||||||
|
# file=os.path.join(dataset,'14-7-50--100-原油指标数据.xlsx-Brent连1合约价格--20240731175936-预测报告.pdf')
|
||||||
|
ssl=True
|
||||||
|
|
||||||
|
|
||||||
|
### 日志配置
|
||||||
|
|
||||||
|
# 创建日志目录(如果不存在)
|
||||||
|
log_dir = 'logs'
|
||||||
|
if not os.path.exists(log_dir):
|
||||||
|
os.makedirs(log_dir)
|
||||||
|
|
||||||
|
# 配置日志记录器
|
||||||
|
logger = logging.getLogger('my_logger')
|
||||||
|
logger.setLevel(logging.INFO)
|
||||||
|
|
||||||
|
# 配置文件处理器,将日志记录到文件
|
||||||
|
file_handler = logging.handlers.RotatingFileHandler(os.path.join(log_dir, 'pricepredict.log'), maxBytes=1024 * 1024, backupCount=5)
|
||||||
|
file_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
|
||||||
|
|
||||||
|
# 配置控制台处理器,将日志打印到控制台
|
||||||
|
console_handler = logging.StreamHandler()
|
||||||
|
console_handler.setFormatter(logging.Formatter('%(message)s'))
|
||||||
|
|
||||||
|
# 将处理器添加到日志记录器
|
||||||
|
logger.addHandler(file_handler)
|
||||||
|
logger.addHandler(console_handler)
|
||||||
|
|
||||||
|
# logger.info('当前配置:'+settings)
|
||||||
|
|
@ -44,8 +44,9 @@ plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
|
|||||||
# from config_jingbo import *
|
# from config_jingbo import *
|
||||||
# from config_jingbo_zhoudu import *
|
# from config_jingbo_zhoudu import *
|
||||||
# from config_yongan import *
|
# from config_yongan import *
|
||||||
# from config_juxiting import *
|
from config_juxiting import *
|
||||||
from config_juxiting_pro import *
|
# from config_juxiting_zhoudu import *
|
||||||
|
# from config_juxiting_pro import *
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -259,12 +260,13 @@ def upload_warning_info(df_count):
|
|||||||
try:
|
try:
|
||||||
# 获取当前日期
|
# 获取当前日期
|
||||||
warning_date = datetime.datetime.now().strftime('%Y-%m-%d')
|
warning_date = datetime.datetime.now().strftime('%Y-%m-%d')
|
||||||
|
warning_date2 = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
||||||
|
|
||||||
# 构建预警内容
|
# 构建预警内容
|
||||||
content = f'{warning_date}有{df_count}个停更'
|
content = f'{warning_date}有{df_count}个停更'
|
||||||
|
|
||||||
# 更新预警数据中的日期和内容
|
# 更新预警数据中的日期和内容
|
||||||
warning_data['data']['WARNING_DATE'] = warning_date
|
warning_data['data']['WARNING_DATE'] = warning_date2
|
||||||
warning_data['data']['WARNING_CONTENT'] = content
|
warning_data['data']['WARNING_CONTENT'] = content
|
||||||
|
|
||||||
# 调用 upload_warning_data 函数上传预警数据
|
# 调用 upload_warning_data 函数上传预警数据
|
||||||
|
@ -188,33 +188,35 @@ def predict_main():
|
|||||||
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
|
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
|
||||||
|
|
||||||
try:
|
try:
|
||||||
if is_weekday:
|
# if is_weekday:
|
||||||
# if True:
|
if True:
|
||||||
logger.info('今天是周一,发送特征预警')
|
# logger.info('今天是周一,发送特征预警')
|
||||||
# 上传预警信息到数据库
|
# # 上传预警信息到数据库
|
||||||
warning_data_df = df_zhibiaoliebiao.copy()
|
# warning_data_df = df_zhibiaoliebiao.copy()
|
||||||
warning_data_df = warning_data_df[warning_data_df['停更周期']> 3 ][['指标名称', '指标id', '频度','更新周期','指标来源','最后更新时间','停更周期']]
|
# warning_data_df = warning_data_df[warning_data_df['停更周期']> 3 ][['指标名称', '指标id', '频度','更新周期','指标来源','最后更新时间','停更周期']]
|
||||||
# 重命名列名
|
# # 重命名列名
|
||||||
warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY', '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
|
# warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY', '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
|
||||||
from sqlalchemy import create_engine
|
# from sqlalchemy import create_engine
|
||||||
import urllib
|
# import urllib
|
||||||
global password
|
# global password
|
||||||
if '@' in password:
|
# if '@' in password:
|
||||||
password = urllib.parse.quote_plus(password)
|
# password = urllib.parse.quote_plus(password)
|
||||||
|
|
||||||
engine = create_engine(f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
|
# engine = create_engine(f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
|
||||||
warning_data_df['WARNING_DATE'] = datetime.date.today().strftime("%Y-%m-%d %H:%M:%S")
|
# warning_data_df['WARNING_DATE'] = datetime.date.today().strftime("%Y-%m-%d %H:%M:%S")
|
||||||
warning_data_df['TENANT_CODE'] = 'T0004'
|
# warning_data_df['TENANT_CODE'] = 'T0004'
|
||||||
# 插入数据之前查询表数据然后新增id列
|
# # 插入数据之前查询表数据然后新增id列
|
||||||
existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
|
# existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
|
||||||
if not existing_data.empty:
|
# if not existing_data.empty:
|
||||||
max_id = existing_data['ID'].astype(int).max()
|
# max_id = existing_data['ID'].astype(int).max()
|
||||||
warning_data_df['ID'] = range(max_id + 1, max_id + 1 + len(warning_data_df))
|
# warning_data_df['ID'] = range(max_id + 1, max_id + 1 + len(warning_data_df))
|
||||||
else:
|
# else:
|
||||||
warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
|
# warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
|
||||||
warning_data_df.to_sql(table_name, con=engine, if_exists='append', index=False)
|
# warning_data_df.to_sql(table_name, con=engine, if_exists='append', index=False)
|
||||||
|
# if is_update_warning_data:
|
||||||
|
# upload_warning_info(len(warning_data_df))
|
||||||
if is_update_warning_data:
|
if is_update_warning_data:
|
||||||
upload_warning_info(len(warning_data_df))
|
upload_warning_info(10)
|
||||||
except:
|
except:
|
||||||
logger.info('上传预警信息到数据库失败')
|
logger.info('上传预警信息到数据库失败')
|
||||||
|
|
||||||
@ -226,26 +228,26 @@ def predict_main():
|
|||||||
row, col = df.shape
|
row, col = df.shape
|
||||||
|
|
||||||
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
||||||
ex_Model_Juxiting(df,
|
# ex_Model_Juxiting(df,
|
||||||
horizon=horizon,
|
# horizon=horizon,
|
||||||
input_size=input_size,
|
# input_size=input_size,
|
||||||
train_steps=train_steps,
|
# train_steps=train_steps,
|
||||||
val_check_steps=val_check_steps,
|
# val_check_steps=val_check_steps,
|
||||||
early_stop_patience_steps=early_stop_patience_steps,
|
# early_stop_patience_steps=early_stop_patience_steps,
|
||||||
is_debug=is_debug,
|
# is_debug=is_debug,
|
||||||
dataset=dataset,
|
# dataset=dataset,
|
||||||
is_train=is_train,
|
# is_train=is_train,
|
||||||
is_fivemodels=is_fivemodels,
|
# is_fivemodels=is_fivemodels,
|
||||||
val_size=val_size,
|
# val_size=val_size,
|
||||||
test_size=test_size,
|
# test_size=test_size,
|
||||||
settings=settings,
|
# settings=settings,
|
||||||
now=now,
|
# now=now,
|
||||||
etadata=etadata,
|
# etadata=etadata,
|
||||||
modelsindex=modelsindex,
|
# modelsindex=modelsindex,
|
||||||
data=data,
|
# data=data,
|
||||||
is_eta=is_eta,
|
# is_eta=is_eta,
|
||||||
end_time=end_time,
|
# end_time=end_time,
|
||||||
)
|
# )
|
||||||
|
|
||||||
|
|
||||||
logger.info('模型训练完成')
|
logger.info('模型训练完成')
|
||||||
|
301
main_juxiting_zhoudu.py
Normal file
301
main_juxiting_zhoudu.py
Normal file
@ -0,0 +1,301 @@
|
|||||||
|
# 读取配置
|
||||||
|
from lib.dataread import *
|
||||||
|
from lib.tools import SendMail,exception_logger
|
||||||
|
from models.nerulforcastmodels import ex_Model_Juxiting,model_losss,model_losss_juxiting,brent_export_pdf,tansuanli_export_pdf,pp_export_pdf,model_losss_juxiting
|
||||||
|
|
||||||
|
import glob
|
||||||
|
import torch
|
||||||
|
torch.set_float32_matmul_precision("high")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def predict_main():
|
||||||
|
"""
|
||||||
|
主预测函数,用于从 ETA 获取数据、处理数据、训练模型并进行预测。
|
||||||
|
|
||||||
|
参数:
|
||||||
|
signature (BinanceAPI): Binance API 实例。
|
||||||
|
etadata (EtaReader): ETA 数据读取器实例。
|
||||||
|
is_eta (bool): 是否从 ETA 获取数据。
|
||||||
|
data_set (str): 数据集名称。
|
||||||
|
dataset (str): 数据集路径。
|
||||||
|
add_kdj (bool): 是否添加 KDJ 指标。
|
||||||
|
is_timefurture (bool): 是否添加时间衍生特征。
|
||||||
|
end_time (str): 结束时间。
|
||||||
|
is_edbnamelist (bool): 是否使用 EDB 名称列表。
|
||||||
|
edbnamelist (list): EDB 名称列表。
|
||||||
|
y (str): 预测目标列名。
|
||||||
|
sqlitedb (SQLiteDB): SQLite 数据库实例。
|
||||||
|
is_corr (bool): 是否进行相关性分析。
|
||||||
|
horizon (int): 预测时域。
|
||||||
|
input_size (int): 输入数据大小。
|
||||||
|
train_steps (int): 训练步数。
|
||||||
|
val_check_steps (int): 验证检查步数。
|
||||||
|
early_stop_patience_steps (int): 早停耐心步数。
|
||||||
|
is_debug (bool): 是否调试模式。
|
||||||
|
dataset (str): 数据集名称。
|
||||||
|
is_train (bool): 是否训练模型。
|
||||||
|
is_fivemodels (bool): 是否使用五个模型。
|
||||||
|
val_size (float): 验证集大小。
|
||||||
|
test_size (float): 测试集大小。
|
||||||
|
settings (dict): 模型设置。
|
||||||
|
now (str): 当前时间。
|
||||||
|
etadata (EtaReader): ETA 数据读取器实例。
|
||||||
|
modelsindex (list): 模型索引列表。
|
||||||
|
data (str): 数据类型。
|
||||||
|
is_eta (bool): 是否从 ETA 获取数据。
|
||||||
|
|
||||||
|
返回:
|
||||||
|
None
|
||||||
|
"""
|
||||||
|
global end_time
|
||||||
|
signature = BinanceAPI(APPID, SECRET)
|
||||||
|
etadata = EtaReader(signature=signature,
|
||||||
|
classifylisturl=classifylisturl,
|
||||||
|
classifyidlisturl=classifyidlisturl,
|
||||||
|
edbcodedataurl=edbcodedataurl,
|
||||||
|
edbcodelist=edbcodelist,
|
||||||
|
edbdatapushurl=edbdatapushurl,
|
||||||
|
edbdeleteurl=edbdeleteurl,
|
||||||
|
edbbusinessurl=edbbusinessurl
|
||||||
|
)
|
||||||
|
# 获取数据
|
||||||
|
if is_eta:
|
||||||
|
logger.info('从eta获取数据...')
|
||||||
|
signature = BinanceAPI(APPID, SECRET)
|
||||||
|
etadata = EtaReader(signature=signature,
|
||||||
|
classifylisturl=classifylisturl,
|
||||||
|
classifyidlisturl=classifyidlisturl,
|
||||||
|
edbcodedataurl=edbcodedataurl,
|
||||||
|
edbcodelist=edbcodelist,
|
||||||
|
edbdatapushurl=edbdatapushurl,
|
||||||
|
edbdeleteurl=edbdeleteurl,
|
||||||
|
edbbusinessurl=edbbusinessurl,
|
||||||
|
)
|
||||||
|
df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_pp_data(data_set=data_set, dataset=dataset) # 原始数据,未处理
|
||||||
|
|
||||||
|
if is_market:
|
||||||
|
logger.info('从市场信息平台获取数据...')
|
||||||
|
try:
|
||||||
|
# 如果是测试环境,最高价最低价取excel文档
|
||||||
|
if server_host == '192.168.100.53':
|
||||||
|
logger.info('从excel文档获取最高价最低价')
|
||||||
|
df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
|
||||||
|
else:
|
||||||
|
logger.info('从市场信息平台获取数据')
|
||||||
|
df_zhibiaoshuju = get_market_data(end_time,df_zhibiaoshuju)
|
||||||
|
|
||||||
|
except :
|
||||||
|
logger.info('最高最低价拼接失败')
|
||||||
|
|
||||||
|
# 保存到xlsx文件的sheet表
|
||||||
|
with pd.ExcelWriter(os.path.join(dataset,data_set)) as file:
|
||||||
|
df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
|
||||||
|
df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
|
||||||
|
|
||||||
|
|
||||||
|
# 数据处理
|
||||||
|
df = datachuli_juxiting(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
|
||||||
|
end_time=end_time)
|
||||||
|
|
||||||
|
else:
|
||||||
|
# 读取数据
|
||||||
|
logger.info('读取本地数据:' + os.path.join(dataset, data_set))
|
||||||
|
df,df_zhibiaoliebiao = getdata_juxiting(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
|
||||||
|
is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
|
||||||
|
|
||||||
|
# 更改预测列名称
|
||||||
|
df.rename(columns={y: 'y'}, inplace=True)
|
||||||
|
|
||||||
|
if is_edbnamelist:
|
||||||
|
df = df[edbnamelist]
|
||||||
|
df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False)
|
||||||
|
# 保存最新日期的y值到数据库
|
||||||
|
# 取第一行数据存储到数据库中
|
||||||
|
first_row = df[['ds', 'y']].tail(1)
|
||||||
|
# 判断y的类型是否为float
|
||||||
|
if not isinstance(first_row['y'].values[0], float):
|
||||||
|
logger.info(f'{end_time}预测目标数据为空,跳过')
|
||||||
|
return None
|
||||||
|
|
||||||
|
# 将最新真实值保存到数据库
|
||||||
|
if not sqlitedb.check_table_exists('trueandpredict'):
|
||||||
|
first_row.to_sql('trueandpredict', sqlitedb.connection, index=False)
|
||||||
|
else:
|
||||||
|
for row in first_row.itertuples(index=False):
|
||||||
|
row_dict = row._asdict()
|
||||||
|
row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
|
||||||
|
check_query = sqlitedb.select_data('trueandpredict', where_condition=f"ds = '{row.ds}'")
|
||||||
|
if len(check_query) > 0:
|
||||||
|
set_clause = ", ".join([f"{key} = '{value}'" for key, value in row_dict.items()])
|
||||||
|
sqlitedb.update_data('trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
|
||||||
|
continue
|
||||||
|
sqlitedb.insert_data('trueandpredict', tuple(row_dict.values()), columns=row_dict.keys())
|
||||||
|
|
||||||
|
# 更新accuracy表的y值
|
||||||
|
if not sqlitedb.check_table_exists('accuracy'):
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
update_y = sqlitedb.select_data('accuracy',where_condition="y is null")
|
||||||
|
if len(update_y) > 0:
|
||||||
|
logger.info('更新accuracy表的y值')
|
||||||
|
# 找到update_y 中ds且df中的y的行
|
||||||
|
update_y = update_y[update_y['ds']<=end_time]
|
||||||
|
logger.info(f'要更新y的信息:{update_y}')
|
||||||
|
# try:
|
||||||
|
for row in update_y.itertuples(index=False):
|
||||||
|
try:
|
||||||
|
row_dict = row._asdict()
|
||||||
|
yy = df[df['ds']==row_dict['ds']]['y'].values[0]
|
||||||
|
LOW = df[df['ds']==row_dict['ds']]['Brentzdj'].values[0]
|
||||||
|
HIGH = df[df['ds']==row_dict['ds']]['Brentzgj'].values[0]
|
||||||
|
sqlitedb.update_data('accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
|
||||||
|
except:
|
||||||
|
logger.info(f'更新accuracy表的y值失败:{row_dict}')
|
||||||
|
# except Exception as e:
|
||||||
|
# logger.info(f'更新accuracy表的y值失败:{e}')
|
||||||
|
|
||||||
|
import datetime
|
||||||
|
# 判断当前日期是不是周一
|
||||||
|
is_weekday = datetime.datetime.now().weekday() == 0
|
||||||
|
if is_weekday:
|
||||||
|
logger.info('今天是周一,更新预测模型')
|
||||||
|
# 计算最近60天预测残差最低的模型名称
|
||||||
|
model_results = sqlitedb.select_data('trueandpredict', order_by="ds DESC", limit="60")
|
||||||
|
# 删除空值率为90%以上的列
|
||||||
|
if len(model_results) > 10:
|
||||||
|
model_results = model_results.dropna(thresh=len(model_results)*0.1,axis=1)
|
||||||
|
# 删除空行
|
||||||
|
model_results = model_results.dropna()
|
||||||
|
modelnames = model_results.columns.to_list()[2:-1]
|
||||||
|
for col in model_results[modelnames].select_dtypes(include=['object']).columns:
|
||||||
|
model_results[col] = model_results[col].astype(np.float32)
|
||||||
|
# 计算每个预测值与真实值之间的偏差率
|
||||||
|
for model in modelnames:
|
||||||
|
model_results[f'{model}_abs_error_rate'] = abs(model_results['y'] - model_results[model]) / model_results['y']
|
||||||
|
# 获取每行对应的最小偏差率值
|
||||||
|
min_abs_error_rate_values = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
|
||||||
|
# 获取每行对应的最小偏差率值对应的列名
|
||||||
|
min_abs_error_rate_column_name = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
|
||||||
|
# 将列名索引转换为列名
|
||||||
|
min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(lambda x: x.split('_')[0])
|
||||||
|
# 取出现次数最多的模型名称
|
||||||
|
most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
|
||||||
|
logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}")
|
||||||
|
# 保存结果到数据库
|
||||||
|
if not sqlitedb.check_table_exists('most_model'):
|
||||||
|
sqlitedb.create_table('most_model', columns="ds datetime, most_common_model TEXT")
|
||||||
|
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
|
||||||
|
|
||||||
|
try:
|
||||||
|
if is_weekday:
|
||||||
|
# if True:
|
||||||
|
logger.info('今天是周一,发送特征预警')
|
||||||
|
# 上传预警信息到数据库
|
||||||
|
warning_data_df = df_zhibiaoliebiao.copy()
|
||||||
|
warning_data_df = warning_data_df[warning_data_df['停更周期']> 3 ][['指标名称', '指标id', '频度','更新周期','指标来源','最后更新时间','停更周期']]
|
||||||
|
# 重命名列名
|
||||||
|
warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY', '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
|
||||||
|
from sqlalchemy import create_engine
|
||||||
|
import urllib
|
||||||
|
global password
|
||||||
|
if '@' in password:
|
||||||
|
password = urllib.parse.quote_plus(password)
|
||||||
|
|
||||||
|
engine = create_engine(f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
|
||||||
|
warning_data_df['WARNING_DATE'] = datetime.date.today().strftime("%Y-%m-%d %H:%M:%S")
|
||||||
|
warning_data_df['TENANT_CODE'] = 'T0004'
|
||||||
|
# 插入数据之前查询表数据然后新增id列
|
||||||
|
existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
|
||||||
|
if not existing_data.empty:
|
||||||
|
max_id = existing_data['ID'].astype(int).max()
|
||||||
|
warning_data_df['ID'] = range(max_id + 1, max_id + 1 + len(warning_data_df))
|
||||||
|
else:
|
||||||
|
warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
|
||||||
|
warning_data_df.to_sql(table_name, con=engine, if_exists='append', index=False)
|
||||||
|
if is_update_warning_data:
|
||||||
|
upload_warning_info(len(warning_data_df))
|
||||||
|
except:
|
||||||
|
logger.info('上传预警信息到数据库失败')
|
||||||
|
|
||||||
|
if is_corr:
|
||||||
|
df = corr_feature(df=df)
|
||||||
|
|
||||||
|
df1 = df.copy() # 备份一下,后面特征筛选完之后加入ds y 列用
|
||||||
|
logger.info(f"开始训练模型...")
|
||||||
|
row, col = df.shape
|
||||||
|
|
||||||
|
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
||||||
|
ex_Model_Juxiting(df,
|
||||||
|
horizon=horizon,
|
||||||
|
input_size=input_size,
|
||||||
|
train_steps=train_steps,
|
||||||
|
val_check_steps=val_check_steps,
|
||||||
|
early_stop_patience_steps=early_stop_patience_steps,
|
||||||
|
is_debug=is_debug,
|
||||||
|
dataset=dataset,
|
||||||
|
is_train=is_train,
|
||||||
|
is_fivemodels=is_fivemodels,
|
||||||
|
val_size=val_size,
|
||||||
|
test_size=test_size,
|
||||||
|
settings=settings,
|
||||||
|
now=now,
|
||||||
|
etadata=etadata,
|
||||||
|
modelsindex=modelsindex,
|
||||||
|
data=data,
|
||||||
|
is_eta=is_eta,
|
||||||
|
end_time=end_time,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
logger.info('模型训练完成')
|
||||||
|
|
||||||
|
logger.info('训练数据绘图ing')
|
||||||
|
model_results3 = model_losss_juxiting(sqlitedb)
|
||||||
|
logger.info('训练数据绘图end')
|
||||||
|
|
||||||
|
# 模型报告
|
||||||
|
logger.info('制作报告ing')
|
||||||
|
title = f'{settings}--{end_time}-预测报告' # 报告标题
|
||||||
|
reportname = f'PP大模型预测报告--{end_time}.pdf' # 报告文件名
|
||||||
|
reportname = reportname.replace(':', '-') # 替换冒号
|
||||||
|
pp_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
|
||||||
|
reportname=reportname,sqlitedb=sqlitedb),
|
||||||
|
|
||||||
|
logger.info('制作报告end')
|
||||||
|
logger.info('模型训练完成')
|
||||||
|
|
||||||
|
# # LSTM 单变量模型
|
||||||
|
# ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset)
|
||||||
|
|
||||||
|
# # lstm 多变量模型
|
||||||
|
# ex_Lstm_M(df,n_days=input_size,out_days=horizon,is_debug=is_debug,datasetpath=dataset)
|
||||||
|
|
||||||
|
# # GRU 模型
|
||||||
|
# # ex_GRU(df)
|
||||||
|
|
||||||
|
# 发送邮件
|
||||||
|
m = SendMail(
|
||||||
|
username=username,
|
||||||
|
passwd=passwd,
|
||||||
|
recv=recv,
|
||||||
|
title=title,
|
||||||
|
content=content,
|
||||||
|
file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
|
||||||
|
ssl=ssl,
|
||||||
|
)
|
||||||
|
# m.send_mail()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# global end_time
|
||||||
|
# is_on = True
|
||||||
|
# # 遍历2024-11-25 到 2024-12-3 之间的工作日日期
|
||||||
|
# for i_time in pd.date_range('2025-1-20', '2025-2-6', freq='B'):
|
||||||
|
# end_time = i_time.strftime('%Y-%m-%d')
|
||||||
|
# try:
|
||||||
|
# predict_main()
|
||||||
|
# except:
|
||||||
|
# pass
|
||||||
|
|
||||||
|
predict_main()
|
@ -186,6 +186,8 @@ def predict_main():
|
|||||||
if not sqlitedb.check_table_exists('most_model'):
|
if not sqlitedb.check_table_exists('most_model'):
|
||||||
sqlitedb.create_table('most_model', columns="ds datetime, most_common_model TEXT")
|
sqlitedb.create_table('most_model', columns="ds datetime, most_common_model TEXT")
|
||||||
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
|
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
|
||||||
|
if is_update_warning_data:
|
||||||
|
upload_warning_info(len(warning_data_df))
|
||||||
|
|
||||||
try:
|
try:
|
||||||
if is_weekday:
|
if is_weekday:
|
||||||
@ -229,32 +231,32 @@ def predict_main():
|
|||||||
row, col = df.shape
|
row, col = df.shape
|
||||||
|
|
||||||
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
||||||
# ex_Model(df,
|
ex_Model(df,
|
||||||
# horizon=horizon,
|
horizon=horizon,
|
||||||
# input_size=input_size,
|
input_size=input_size,
|
||||||
# train_steps=train_steps,
|
train_steps=train_steps,
|
||||||
# val_check_steps=val_check_steps,
|
val_check_steps=val_check_steps,
|
||||||
# early_stop_patience_steps=early_stop_patience_steps,
|
early_stop_patience_steps=early_stop_patience_steps,
|
||||||
# is_debug=is_debug,
|
is_debug=is_debug,
|
||||||
# dataset=dataset,
|
dataset=dataset,
|
||||||
# is_train=is_train,
|
is_train=is_train,
|
||||||
# is_fivemodels=is_fivemodels,
|
is_fivemodels=is_fivemodels,
|
||||||
# val_size=val_size,
|
val_size=val_size,
|
||||||
# test_size=test_size,
|
test_size=test_size,
|
||||||
# settings=settings,
|
settings=settings,
|
||||||
# now=now,
|
now=now,
|
||||||
# etadata=etadata,
|
etadata=etadata,
|
||||||
# modelsindex=modelsindex,
|
modelsindex=modelsindex,
|
||||||
# data=data,
|
data=data,
|
||||||
# is_eta=is_eta,
|
is_eta=is_eta,
|
||||||
# end_time=end_time,
|
end_time=end_time,
|
||||||
# )
|
)
|
||||||
|
|
||||||
|
|
||||||
logger.info('模型训练完成')
|
logger.info('模型训练完成')
|
||||||
|
|
||||||
logger.info('训练数据绘图ing')
|
logger.info('训练数据绘图ing')
|
||||||
# model_results3 = model_losss(sqlitedb,end_time=end_time)
|
model_results3 = model_losss(sqlitedb,end_time=end_time)
|
||||||
logger.info('训练数据绘图end')
|
logger.info('训练数据绘图end')
|
||||||
|
|
||||||
# 模型报告
|
# 模型报告
|
||||||
@ -262,8 +264,8 @@ def predict_main():
|
|||||||
title = f'{settings}--{end_time}-预测报告' # 报告标题
|
title = f'{settings}--{end_time}-预测报告' # 报告标题
|
||||||
reportname = f'Brent原油大模型预测--{end_time}.pdf' # 报告文件名
|
reportname = f'Brent原油大模型预测--{end_time}.pdf' # 报告文件名
|
||||||
reportname = reportname.replace(':', '-') # 替换冒号
|
reportname = reportname.replace(':', '-') # 替换冒号
|
||||||
# brent_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
|
brent_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
|
||||||
# reportname=reportname,sqlitedb=sqlitedb),
|
reportname=reportname,sqlitedb=sqlitedb),
|
||||||
|
|
||||||
logger.info('制作报告end')
|
logger.info('制作报告end')
|
||||||
logger.info('模型训练完成')
|
logger.info('模型训练完成')
|
||||||
|
@ -379,16 +379,17 @@ def ex_Model_Juxiting(df,horizon,input_size,train_steps,val_check_steps,early_st
|
|||||||
logger.info('读取模型:'+ filename)
|
logger.info('读取模型:'+ filename)
|
||||||
nf = load(filename)
|
nf = load(filename)
|
||||||
# 测试集预测
|
# 测试集预测
|
||||||
# nf_test_preds = nf.cross_validation(df=df_test, val_size=val_size, test_size=test_size, n_windows=None)
|
nf_test_preds = nf.cross_validation(df=df_test, val_size=val_size, test_size=test_size, n_windows=None)
|
||||||
# # 测试集预测结果保存
|
# 测试集预测结果保存
|
||||||
# nf_test_preds.to_csv(os.path.join(dataset,"cross_validation.csv"),index=False)
|
nf_test_preds.to_csv(os.path.join(dataset,"cross_validation.csv"),index=False)
|
||||||
|
|
||||||
# df_test['ds'] = pd.to_datetime(df_test['ds'], errors='coerce')
|
df_test['ds'] = pd.to_datetime(df_test['ds'], errors='coerce')
|
||||||
|
|
||||||
#进行未来时间预测
|
#进行未来时间预测
|
||||||
df_predict=nf.predict(df_test).reset_index()
|
df_predict=nf.predict(df_test).reset_index()
|
||||||
# 去掉index列
|
# 去掉index列
|
||||||
df_predict.drop(columns=['index'], inplace=True)
|
if 'index' in df_predict.columns:
|
||||||
|
df_predict.drop(columns=['index'], inplace=True)
|
||||||
# 处理非有限值(NA 或 inf),将其替换为 0
|
# 处理非有限值(NA 或 inf),将其替换为 0
|
||||||
df_predict = df_predict.fillna(0)
|
df_predict = df_predict.fillna(0)
|
||||||
df_predict = df_predict.replace([np.inf, -np.inf], 0)
|
df_predict = df_predict.replace([np.inf, -np.inf], 0)
|
||||||
|
Loading…
Reference in New Issue
Block a user