石油苯数据更新,聚烯烃配置,聚烯烃周度配置,聚烯烃主函数
This commit is contained in:
		
							parent
							
								
									4f2a888dff
								
							
						
					
					
						commit
						38fbd7c810
					
				
							
								
								
									
										6
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										6
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							| @ -10,11 +10,7 @@ __pycache__/ | ||||
| # Distribution / packaging | ||||
| .Python | ||||
| build/ | ||||
| dataset/ | ||||
| yuanyoudataset/ | ||||
| yuanyouzhoududataset/ | ||||
| yuanyouyuedudataset/ | ||||
| juxitingdataset/ | ||||
| *dataset/ | ||||
| logs/ | ||||
| develop-eggs/ | ||||
| dist/ | ||||
|  | ||||
							
								
								
									
										
											BIN
										
									
								
								aisenzhecode/石油苯/日度价格预测_最佳模型.pkl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								aisenzhecode/石油苯/日度价格预测_最佳模型.pkl
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| @ -2,7 +2,7 @@ | ||||
|  "cells": [ | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 11, | ||||
|    "execution_count": 6, | ||||
|    "metadata": {}, | ||||
|    "outputs": [ | ||||
|     { | ||||
| @ -706,27 +706,28 @@ | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 12, | ||||
|    "execution_count": 7, | ||||
|    "metadata": {}, | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "20241017\n" | ||||
|       "20250201\n", | ||||
|       "{'dataDate': '20250201', 'dataItemNo': 'C01100047|TURNOVER'}\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:280: UserWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n", | ||||
|       "\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.602e+05, tolerance: 3.845e+04\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.321e+05, tolerance: 4.074e+04\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
| @ -734,7 +735,7 @@ | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Using matplotlib backend: QtAgg\n", | ||||
|       "Using matplotlib backend: <object object at 0x0000028F59DBAF30>\n", | ||||
|       "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", | ||||
|       "Populating the interactive namespace from numpy and matplotlib\n", | ||||
|       "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" | ||||
| @ -749,11 +750,11 @@ | ||||
|       "pylab import has clobbered these variables: ['datetime', '__version__', 'plot', 'random']\n", | ||||
|       "`%matplotlib` prevents importing * from pylab and numpy\n", | ||||
|       "\n", | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:233: UserWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:263: FutureWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n", | ||||
|       "\n", | ||||
|       "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", | ||||
|       "\n" | ||||
| @ -764,24 +765,25 @@ | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Date\n", | ||||
|       "2024-10-17    7541.753418\n", | ||||
|       "2025-02-01    7738.433105\n", | ||||
|       "Name: 日度预测价格, dtype: float32\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20241017', 'dataStatus': 'add', 'dataValue': 7541.75}]}\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250201', 'dataStatus': 'add', 'dataValue': 7738.43}]}\n", | ||||
|       "{\"confirmFlg\":false,\"status\":true}\n", | ||||
|       "20241018\n" | ||||
|       "20250202\n", | ||||
|       "{'dataDate': '20250202', 'dataItemNo': 'C01100047|TURNOVER'}\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:280: UserWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n", | ||||
|       "\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.716e+05, tolerance: 3.895e+04\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.506e+05, tolerance: 4.089e+04\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
| @ -799,11 +801,11 @@ | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:233: UserWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:263: FutureWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n", | ||||
|       "\n", | ||||
|       "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", | ||||
|       "\n" | ||||
| @ -814,24 +816,25 @@ | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Date\n", | ||||
|       "2024-10-18    7399.281738\n", | ||||
|       "2025-02-02    7700.021484\n", | ||||
|       "Name: 日度预测价格, dtype: float32\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20241018', 'dataStatus': 'add', 'dataValue': 7399.28}]}\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250202', 'dataStatus': 'add', 'dataValue': 7700.02}]}\n", | ||||
|       "{\"confirmFlg\":false,\"status\":true}\n", | ||||
|       "20241019\n" | ||||
|       "20250203\n", | ||||
|       "{'dataDate': '20250203', 'dataItemNo': 'C01100047|TURNOVER'}\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:280: UserWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n", | ||||
|       "\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.669e+05, tolerance: 3.913e+04\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.696e+05, tolerance: 4.096e+04\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
| @ -849,11 +852,11 @@ | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:233: UserWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:263: FutureWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n", | ||||
|       "\n", | ||||
|       "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", | ||||
|       "\n" | ||||
| @ -864,24 +867,25 @@ | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Date\n", | ||||
|       "2024-10-19    7404.584473\n", | ||||
|       "2025-02-03    7693.463379\n", | ||||
|       "Name: 日度预测价格, dtype: float32\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20241019', 'dataStatus': 'add', 'dataValue': 7404.58}]}\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250203', 'dataStatus': 'add', 'dataValue': 7693.46}]}\n", | ||||
|       "{\"confirmFlg\":false,\"status\":true}\n", | ||||
|       "20241020\n" | ||||
|       "20250204\n", | ||||
|       "{'dataDate': '20250204', 'dataItemNo': 'C01100047|TURNOVER'}\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:280: UserWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n", | ||||
|       "\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.833e+05, tolerance: 3.773e+04\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.780e+05, tolerance: 4.200e+04\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
| @ -899,11 +903,11 @@ | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:233: UserWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:263: FutureWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n", | ||||
|       "\n", | ||||
|       "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", | ||||
|       "\n" | ||||
| @ -914,24 +918,25 @@ | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Date\n", | ||||
|       "2024-10-20    7375.245605\n", | ||||
|       "2025-02-04    7798.116211\n", | ||||
|       "Name: 日度预测价格, dtype: float32\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20241020', 'dataStatus': 'add', 'dataValue': 7375.25}]}\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250204', 'dataStatus': 'add', 'dataValue': 7798.12}]}\n", | ||||
|       "{\"confirmFlg\":false,\"status\":true}\n", | ||||
|       "20241021\n" | ||||
|       "20250205\n", | ||||
|       "{'dataDate': '20250205', 'dataItemNo': 'C01100047|TURNOVER'}\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:280: UserWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n", | ||||
|       "\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.912e+05, tolerance: 3.684e+04\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.551e+05, tolerance: 4.144e+04\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
| @ -949,11 +954,11 @@ | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:233: UserWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:263: FutureWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n", | ||||
|       "\n", | ||||
|       "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", | ||||
|       "\n" | ||||
| @ -964,24 +969,24 @@ | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Date\n", | ||||
|       "2024-10-21    7272.15332\n", | ||||
|       "2025-02-05    7865.974609\n", | ||||
|       "Name: 日度预测价格, dtype: float32\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20241021', 'dataStatus': 'add', 'dataValue': 7272.15}]}\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250205', 'dataStatus': 'add', 'dataValue': 7865.97}]}\n", | ||||
|       "{\"confirmFlg\":false,\"status\":true}\n", | ||||
|       "20241022\n" | ||||
|       "20250206\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:280: UserWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n", | ||||
|       "\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.991e+05, tolerance: 3.700e+04\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.553e+05, tolerance: 4.144e+04\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
| @ -999,11 +1004,11 @@ | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:233: UserWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:263: FutureWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n", | ||||
|       "\n", | ||||
|       "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", | ||||
|       "\n" | ||||
| @ -1014,24 +1019,24 @@ | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Date\n", | ||||
|       "2024-10-22    7265.592773\n", | ||||
|       "2025-02-06    7896.265137\n", | ||||
|       "Name: 日度预测价格, dtype: float32\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20241022', 'dataStatus': 'add', 'dataValue': 7265.59}]}\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250206', 'dataStatus': 'add', 'dataValue': 7896.27}]}\n", | ||||
|       "{\"confirmFlg\":false,\"status\":true}\n", | ||||
|       "20241023\n" | ||||
|       "20250207\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:280: UserWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n", | ||||
|       "\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.866e+05, tolerance: 3.682e+04\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.955e+05, tolerance: 4.168e+04\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
| @ -1049,11 +1054,11 @@ | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:233: UserWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:263: FutureWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n", | ||||
|       "\n", | ||||
|       "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", | ||||
|       "\n" | ||||
| @ -1064,24 +1069,24 @@ | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Date\n", | ||||
|       "2024-10-23    7314.694336\n", | ||||
|       "2025-02-07    7841.537109\n", | ||||
|       "Name: 日度预测价格, dtype: float32\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20241023', 'dataStatus': 'add', 'dataValue': 7314.69}]}\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250207', 'dataStatus': 'add', 'dataValue': 7841.54}]}\n", | ||||
|       "{\"confirmFlg\":false,\"status\":true}\n", | ||||
|       "20241024\n" | ||||
|       "20250208\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:280: UserWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n", | ||||
|       "\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.886e+05, tolerance: 3.690e+04\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.733e+05, tolerance: 4.197e+04\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
| @ -1099,11 +1104,11 @@ | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:233: UserWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:263: FutureWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n", | ||||
|       "\n", | ||||
|       "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", | ||||
|       "\n" | ||||
| @ -1114,24 +1119,24 @@ | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Date\n", | ||||
|       "2024-10-24    7340.938477\n", | ||||
|       "2025-02-08    7814.474609\n", | ||||
|       "Name: 日度预测价格, dtype: float32\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20241024', 'dataStatus': 'add', 'dataValue': 7340.94}]}\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250208', 'dataStatus': 'add', 'dataValue': 7814.47}]}\n", | ||||
|       "{\"confirmFlg\":false,\"status\":true}\n", | ||||
|       "20241025\n" | ||||
|       "20250209\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:280: UserWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n", | ||||
|       "\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.843e+05, tolerance: 3.691e+04\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.675e+05, tolerance: 4.062e+04\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
| @ -1149,11 +1154,11 @@ | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:233: UserWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "C:\\Users\\Hello\\AppData\\Local\\Temp\\ipykernel_13372\\3095856616.py:263: FutureWarning:\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n", | ||||
|       "\n", | ||||
|       "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", | ||||
|       "\n" | ||||
| @ -1164,9 +1169,463 @@ | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Date\n", | ||||
|       "2024-10-25    7299.914062\n", | ||||
|       "2025-02-09    7832.284668\n", | ||||
|       "Name: 日度预测价格, dtype: float32\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20241025', 'dataStatus': 'add', 'dataValue': 7299.91}]}\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250209', 'dataStatus': 'add', 'dataValue': 7832.28}]}\n", | ||||
|       "{\"confirmFlg\":false,\"status\":true}\n", | ||||
|       "20250210\n", | ||||
|       "{'dataDate': '20250210', 'dataItemNo': 'C01100047|TURNOVER'}\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n", | ||||
|       "\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.531e+05, tolerance: 4.103e+04\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Using matplotlib backend: QtAgg\n", | ||||
|       "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", | ||||
|       "Populating the interactive namespace from numpy and matplotlib\n", | ||||
|       "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n", | ||||
|       "\n", | ||||
|       "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Date\n", | ||||
|       "2025-02-10    7917.837891\n", | ||||
|       "Name: 日度预测价格, dtype: float32\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250210', 'dataStatus': 'add', 'dataValue': 7917.84}]}\n", | ||||
|       "{\"confirmFlg\":false,\"status\":true}\n", | ||||
|       "20250211\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n", | ||||
|       "\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.307e+05, tolerance: 4.073e+04\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Using matplotlib backend: QtAgg\n", | ||||
|       "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", | ||||
|       "Populating the interactive namespace from numpy and matplotlib\n", | ||||
|       "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n", | ||||
|       "\n", | ||||
|       "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Date\n", | ||||
|       "2025-02-11    7919.563965\n", | ||||
|       "Name: 日度预测价格, dtype: float32\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250211', 'dataStatus': 'add', 'dataValue': 7919.56}]}\n", | ||||
|       "{\"confirmFlg\":false,\"status\":true}\n", | ||||
|       "20250212\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n", | ||||
|       "\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.644e+05, tolerance: 4.133e+04\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Using matplotlib backend: QtAgg\n", | ||||
|       "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", | ||||
|       "Populating the interactive namespace from numpy and matplotlib\n", | ||||
|       "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n", | ||||
|       "\n", | ||||
|       "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Date\n", | ||||
|       "2025-02-12    7902.145508\n", | ||||
|       "Name: 日度预测价格, dtype: float32\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250212', 'dataStatus': 'add', 'dataValue': 7902.15}]}\n", | ||||
|       "{\"confirmFlg\":false,\"status\":true}\n", | ||||
|       "20250213\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n", | ||||
|       "\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.711e+05, tolerance: 4.105e+04\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Using matplotlib backend: QtAgg\n", | ||||
|       "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", | ||||
|       "Populating the interactive namespace from numpy and matplotlib\n", | ||||
|       "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n", | ||||
|       "\n", | ||||
|       "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Date\n", | ||||
|       "2025-02-13    8001.087891\n", | ||||
|       "Name: 日度预测价格, dtype: float32\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250213', 'dataStatus': 'add', 'dataValue': 8001.09}]}\n", | ||||
|       "{\"confirmFlg\":false,\"status\":true}\n", | ||||
|       "20250214\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n", | ||||
|       "\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.949e+05, tolerance: 4.129e+04\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Using matplotlib backend: QtAgg\n", | ||||
|       "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", | ||||
|       "Populating the interactive namespace from numpy and matplotlib\n", | ||||
|       "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n", | ||||
|       "\n", | ||||
|       "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Date\n", | ||||
|       "2025-02-14    8032.705566\n", | ||||
|       "Name: 日度预测价格, dtype: float32\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250214', 'dataStatus': 'add', 'dataValue': 8032.71}]}\n", | ||||
|       "{\"confirmFlg\":false,\"status\":true}\n", | ||||
|       "20250215\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n", | ||||
|       "\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.966e+05, tolerance: 4.129e+04\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Using matplotlib backend: QtAgg\n", | ||||
|       "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", | ||||
|       "Populating the interactive namespace from numpy and matplotlib\n", | ||||
|       "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n", | ||||
|       "\n", | ||||
|       "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Date\n", | ||||
|       "2025-02-15    8040.26709\n", | ||||
|       "Name: 日度预测价格, dtype: float32\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250215', 'dataStatus': 'add', 'dataValue': 8040.27}]}\n", | ||||
|       "{\"confirmFlg\":false,\"status\":true}\n", | ||||
|       "20250216\n", | ||||
|       "{'dataDate': '20250216', 'dataItemNo': 'C01100047|TURNOVER'}\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n", | ||||
|       "\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.442e+05, tolerance: 4.138e+04\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Using matplotlib backend: QtAgg\n", | ||||
|       "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", | ||||
|       "Populating the interactive namespace from numpy and matplotlib\n", | ||||
|       "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n", | ||||
|       "\n", | ||||
|       "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Date\n", | ||||
|       "2025-02-16    8044.537109\n", | ||||
|       "Name: 日度预测价格, dtype: float32\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250216', 'dataStatus': 'add', 'dataValue': 8044.54}]}\n", | ||||
|       "{\"confirmFlg\":false,\"status\":true}\n", | ||||
|       "20250217\n", | ||||
|       "{'dataDate': '20250217', 'dataItemNo': 'C01100047|TURNOVER'}\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n", | ||||
|       "\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.555e+05, tolerance: 4.072e+04\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Using matplotlib backend: QtAgg\n", | ||||
|       "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", | ||||
|       "Populating the interactive namespace from numpy and matplotlib\n", | ||||
|       "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n", | ||||
|       "\n", | ||||
|       "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Date\n", | ||||
|       "2025-02-17    7998.32373\n", | ||||
|       "Name: 日度预测价格, dtype: float32\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250217', 'dataStatus': 'add', 'dataValue': 7998.32}]}\n", | ||||
|       "{\"confirmFlg\":false,\"status\":true}\n", | ||||
|       "20250218\n", | ||||
|       "{'dataDate': '20250218', 'dataItemNo': 'C01100047|TURNOVER'}\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:280: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "d:\\ProgramData\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:631: ConvergenceWarning:\n", | ||||
|       "\n", | ||||
|       "Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.680e+05, tolerance: 4.121e+04\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Using matplotlib backend: QtAgg\n", | ||||
|       "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", | ||||
|       "Populating the interactive namespace from numpy and matplotlib\n", | ||||
|       "Fitting 3 folds for each of 180 candidates, totalling 540 fits\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:233: UserWarning:\n", | ||||
|       "\n", | ||||
|       "The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", | ||||
|       "\n", | ||||
|       "C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_21000\\3095856616.py:263: FutureWarning:\n", | ||||
|       "\n", | ||||
|       "Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", | ||||
|       "\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Date\n", | ||||
|       "2025-02-18    7988.078125\n", | ||||
|       "Name: 日度预测价格, dtype: float32\n", | ||||
|       "{'funcModule': '数据表信息列表', 'funcOperation': '新增', 'data': [{'dataItemNo': 'C01100047|FORECAST_PRICE', 'dataDate': '20250218', 'dataStatus': 'add', 'dataValue': 7988.08}]}\n", | ||||
|       "{\"confirmFlg\":false,\"status\":true}\n" | ||||
|      ] | ||||
|     } | ||||
| @ -1174,16 +1633,23 @@ | ||||
|    "source": [ | ||||
|     "from datetime import datetime, timedelta\n", | ||||
|     "\n", | ||||
|     "start_date = datetime(2024, 10, 17)\n", | ||||
|     "end_date = datetime(2024, 10, 26)\n", | ||||
|     "start_date = datetime(2025, 2, 1)\n", | ||||
|     "end_date = datetime(2025, 2, 19)\n", | ||||
|     "\n", | ||||
|     "while start_date < end_date:\n", | ||||
|     "    print(start_date.strftime('%Y%m%d'))\n", | ||||
|     "    start(start_date)\n", | ||||
|     "    # time.sleep(1)\n", | ||||
|     "    # time.sleep(2)\n", | ||||
|     "    # start_1(start_date)\n", | ||||
|     "    start_date += timedelta(days=1)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   } | ||||
|  ], | ||||
|  "metadata": { | ||||
|  | ||||
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								aisenzhecode/石油苯/纯苯数据项2025年2月18日备份.xls
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								aisenzhecode/石油苯/纯苯数据项2025年2月18日备份.xls
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| @ -95,9 +95,9 @@ ClassifyId = 1214 | ||||
| server_host = '192.168.100.53' | ||||
| 
 | ||||
| login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login" | ||||
| upload_url = f"http://{server_host}:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave" | ||||
| upload_warning_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save" | ||||
| query_data_list_item_nos_url = f"http://{server_host}:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos" | ||||
| upload_url = f"http://{server_host}:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"  # 上传报告 | ||||
| upload_warning_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save"  # 停更预警 | ||||
| query_data_list_item_nos_url = f"http://{server_host}:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos" # 查询数据项编码 | ||||
| 
 | ||||
| login_data = { | ||||
|     "data": { | ||||
| @ -162,8 +162,8 @@ table_name = 'v_tbl_crude_oil_warning' | ||||
| 
 | ||||
| ### 开关 | ||||
| is_train = False # 是否训练 | ||||
| is_debug = False # 是否调试 | ||||
| is_eta = True # 是否使用eta接口 | ||||
| is_debug = True # 是否调试 | ||||
| is_eta = False # 是否使用eta接口 | ||||
| is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效 | ||||
| is_timefurture = True # 是否使用时间特征 | ||||
| is_fivemodels = False # 是否使用之前保存的最佳的5个模型 | ||||
| @ -185,7 +185,7 @@ print("数据库连接成功",host,dbname,dbusername) | ||||
| 
 | ||||
| # 数据截取日期 | ||||
| start_year = 2020 # 数据开始年份 | ||||
| end_time = '' # 数据截取日期 | ||||
| end_time = '' # 数据截取日期 格式为 2024-01-01 | ||||
| freq = 'B'  # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日 | ||||
| delweekenday = True if freq == 'B' else False # 是否删除周末数据 | ||||
| is_corr = False # 特征是否参与滞后领先提升相关系数 | ||||
| @ -195,6 +195,7 @@ if add_kdj and is_edbnamelist: | ||||
| 
 | ||||
| ### 模型参数   | ||||
| y = 'Brent连1合约价格' # 原油指标数据的目标变量  Brent连1合约价格   Brent活跃合约  | ||||
| # y = 'Brent连1合约价格' # 原油指标数据的目标变量  Brent连1合约价格   Brent活跃合约  | ||||
| horizon =5 # 预测的步长 | ||||
| input_size = 40  # 输入序列长度 | ||||
| train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数 | ||||
|  | ||||
| @ -157,6 +157,7 @@ upload_data = { | ||||
|     "funcModule":'研究报告信息', | ||||
|     "funcOperation":'上传聚烯烃PP价格预测报告', | ||||
|     "data":{ | ||||
|         "groupNo": "000127", | ||||
|         "ownerAccount":'arui', #报告所属用户账号 | ||||
|         "reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST | ||||
|         "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称  | ||||
| @ -174,6 +175,7 @@ warning_data = { | ||||
|     "funcModule":'原油特征停更预警', | ||||
|     "funcOperation":'原油特征停更预警', | ||||
|     "data":{ | ||||
|     "groupNo": "000127", | ||||
|     'WARNING_TYPE_NAME':'特征数据停更预警', | ||||
|     'WARNING_CONTENT':'', | ||||
|     'WARNING_DATE':'' | ||||
| @ -202,16 +204,16 @@ table_name = 'v_tbl_crude_oil_warning' | ||||
| 
 | ||||
| ### 开关 | ||||
| is_train = False # 是否训练 | ||||
| is_debug = False # 是否调试 | ||||
| is_debug = True # 是否调试 | ||||
| is_eta = False # 是否使用eta接口 | ||||
| is_market = False # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效 | ||||
| is_timefurture = True # 是否使用时间特征 | ||||
| is_fivemodels = False # 是否使用之前保存的最佳的5个模型 | ||||
| is_edbcode = False # 特征使用edbcoding列表中的 | ||||
| is_edbnamelist = False # 自定义特征,对应上面的edbnamelist | ||||
| is_update_eta  = True  # 预测结果上传到eta | ||||
| is_update_eta  = False  # 预测结果上传到eta | ||||
| is_update_report = True # 是否上传报告 | ||||
| is_update_warning_data =  False # 是否上传预警数据 | ||||
| is_update_warning_data =  True # 是否上传预警数据 | ||||
| is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征 | ||||
| is_del_tow_month = True # 是否删除两个月不更新的特征 | ||||
| 
 | ||||
|  | ||||
							
								
								
									
										318
									
								
								config_juxiting_zhoudu.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										318
									
								
								config_juxiting_zhoudu.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,318 @@ | ||||
| import logging | ||||
| import os | ||||
| import logging.handlers | ||||
| import datetime | ||||
| from lib.tools import MySQLDB,SQLiteHandler | ||||
| 
 | ||||
| 
 | ||||
| # eta 接口token | ||||
| APPID = "XNLDvxZHHugj7wJ7" | ||||
| SECRET = "iSeU4s6cKKBVbt94htVY1p0sqUMqb2xa" | ||||
| 
 | ||||
| # eta 接口url | ||||
| sourcelisturl = 'http://10.189.2.78:8108/v1/edb/source/list'   | ||||
| classifylisturl = 'http://10.189.2.78:8108/v1/edb/classify/list?ClassifyType=' | ||||
| uniquecodedataurl = 'http://10.189.2.78:8108/v1/edb/data?UniqueCode=4991c37becba464609b409909fe4d992&StartDate=2024-02-01' | ||||
| classifyidlisturl = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId=' | ||||
| edbcodedataurl = 'http://10.189.2.78:8108/v1/edb/data?EdbCode=' | ||||
| edbdatapushurl = 'http://10.189.2.78:8108/v1/edb/push'  | ||||
| edbdeleteurl = 'http://10.189.2.78:8108/v1/edb/business/edb/del'   | ||||
| edbbusinessurl = 'http://10.189.2.78:8108/v1/edb/business/data/del'   | ||||
| edbcodelist = ['ID01385938','lmcads03 lme comdty', | ||||
| 'GC1 COMB Comdty', | ||||
| 'C2404171822', | ||||
| 'dxy curncy', | ||||
| 'S5443199 ', | ||||
| 'S5479800', | ||||
| 'S5443108', | ||||
| 'H7358586', | ||||
| 'LC3FM1 INDEX', | ||||
| 'CNY REGN Curncy', | ||||
| 's0105897', | ||||
| 'M0067419', | ||||
| 'M0066351', | ||||
| 'S0266372', | ||||
| 'S0266438', | ||||
| 'S0266506', | ||||
| 'ID01384463'] | ||||
| 
 | ||||
| # 临时写死用指定的列,与上面的edbcode对应,后面更改 | ||||
| edbnamelist = [ | ||||
|     'ds','y', | ||||
|     'LME铜价', | ||||
|     '黄金连1合约', | ||||
|     'Brent-WTI', | ||||
|     '美元指数', | ||||
|     '甲醇鲁南价格', | ||||
|     '甲醇太仓港口价格', | ||||
|     '山东丙烯主流价', | ||||
|     '丙烷(山东)', | ||||
|     'FEI丙烷 M1', | ||||
|     '在岸人民币汇率', | ||||
|     '南华工业品指数', | ||||
|     'PVC期货主力', | ||||
|     'PE期货收盘价', | ||||
| 'PP连续-1月', | ||||
| 'PP连续-5月', | ||||
| 'PP连续-9月', | ||||
| 'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)' | ||||
|     ] | ||||
| 
 | ||||
| edbcodenamedict = { | ||||
| 'ID01385938':'PP:拉丝:1102K:市场价:青州:国家能源宁煤(日)', | ||||
| 'ID01384463':'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)', | ||||
| 'lmcads03 lme comdty':'LME铜价', | ||||
| 'GC1 COMB Comdty':'黄金连1合约', | ||||
| 'C2404171822':'Brent-WTI', | ||||
| 'dxy curncy':'美元指数', | ||||
| 'S5443199 ':'甲醇鲁南价格', | ||||
| 'S5479800':'甲醇太仓港口价格', | ||||
| 'S5443108':'山东丙烯主流价', | ||||
| 'H7358586':'丙烷(山东)', | ||||
| 'LC3FM1 INDEX':'FEI丙烷 M1', | ||||
| 'CNY REGN Curncy':'在岸人民币汇率', | ||||
| 's0105897':'南华工业品指数', | ||||
| 'M0067419':'PVC期货主力', | ||||
| 'M0066351':'PE期货收盘价', | ||||
| 'S0266372':'PP连续-1月', | ||||
| 'S0266438':'PP连续-5月', | ||||
| 'S0266506':'PP连续-9月', | ||||
| 
 | ||||
| } | ||||
| 
 | ||||
| # eta自有数据指标编码 | ||||
| modelsindex = { | ||||
|         'NHITS': 'SELF0000077', | ||||
|         'Informer':'SELF0000078', | ||||
|         'LSTM':'SELF0000079', | ||||
|         'iTransformer':'SELF0000080', | ||||
|         'TSMixer':'SELF0000081', | ||||
|         'TSMixerx':'SELF0000082', | ||||
|         'PatchTST':'SELF0000083', | ||||
|         'RNN':'SELF0000084', | ||||
|         'GRU':'SELF0000085', | ||||
|         'TCN':'SELF0000086', | ||||
|         'BiTCN':'SELF0000087', | ||||
|         'DilatedRNN':'SELF0000088', | ||||
|         'MLP':'SELF0000089', | ||||
|         'DLinear':'SELF0000090', | ||||
|         'NLinear':'SELF0000091', | ||||
|         'TFT':'SELF0000092', | ||||
|         'FEDformer':'SELF0000093', | ||||
|         'StemGNN':'SELF0000094', | ||||
|         'MLPMultivariate':'SELF0000095', | ||||
|         'TiDE':'SELF0000096', | ||||
|         'DeepNPTS':'SELF0000097' | ||||
|     } | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| # eta 上传预测结果的请求体,后面发起请求的时候更改 model datalist  数据 | ||||
| data = { | ||||
|             "IndexCode": "", | ||||
|             "IndexName": "价格预测模型", | ||||
|             "Unit": "无", | ||||
|             "Frequency": "日度", | ||||
|             "SourceName": f"价格预测", | ||||
|             "Remark": 'ddd', | ||||
|             "DataList": [ | ||||
|                 { | ||||
|                     "Date": "2024-05-02", | ||||
|                     "Value": 333444 | ||||
|                 } | ||||
|             ] | ||||
|         } | ||||
| 
 | ||||
| # eta 分类 | ||||
| # level:3才可以获取到数据,所以需要人工把能源化工下所有的level3级都找到 | ||||
|         # url = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId=1214' | ||||
|         #ParentId ":1160, 能源化工 | ||||
|         # ClassifyId ":1214,原油 | ||||
|         #ParentId ":1214,",就是原油下所有的数据。 | ||||
| ClassifyId = 1161   | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| ###############################################################################################################  变量定义--测试环境 | ||||
| server_host = '192.168.100.53' | ||||
| 
 | ||||
| login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login" | ||||
| upload_url = f"http://{server_host}:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave" | ||||
| upload_warning_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save" | ||||
| query_data_list_item_nos_url = f"http://{server_host}:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos" | ||||
| 
 | ||||
| login_data = { | ||||
|     "data": { | ||||
|         "account": "api_test", | ||||
|         # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456 | ||||
|         "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456 | ||||
|         "tenantHashCode": "8a4577dbd919675758d57999a1e891fe", | ||||
|         "terminal": "API" | ||||
|     }, | ||||
|     "funcModule": "API", | ||||
|     "funcOperation": "获取token" | ||||
| } | ||||
| 
 | ||||
| upload_data = { | ||||
|     "funcModule":'研究报告信息', | ||||
|     "funcOperation":'上传聚烯烃PP价格预测报告', | ||||
|     "data":{ | ||||
|         "ownerAccount":'arui', #报告所属用户账号 | ||||
|         "reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST | ||||
|         "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称  | ||||
|         "fileBase64": '' ,#文件内容base64 | ||||
|         "categoryNo":'yyjgycbg', # 研究报告分类编码 | ||||
|         "smartBusinessClassCode":'JXTJGYCBG', #分析报告分类编码 | ||||
|         "reportEmployeeCode":"E40116", # 报告人 | ||||
|         "reportDeptCode" :"D0044" ,# 报告部门 | ||||
|         "productGroupCode":"RAW_MATERIAL"  # 商品分类 | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| warning_data = { | ||||
|     "funcModule":'原油特征停更预警', | ||||
|     "funcOperation":'原油特征停更预警', | ||||
|     "data":{ | ||||
|     'WARNING_TYPE_NAME':'特征数据停更预警', | ||||
|     'WARNING_CONTENT':'', | ||||
|     'WARNING_DATE':'' | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| query_data_list_item_nos_data = { | ||||
|    "funcModule": "数据项", | ||||
|    "funcOperation": "查询", | ||||
|     "data": { | ||||
|         "dateStart":"20200101", | ||||
|         "dateEnd":"20241231", | ||||
|         "dataItemNoList":["Brentzdj","Brentzgj"] # 数据项编码,代表 brent最低价和最高价 | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| # 北京环境数据库 | ||||
| host = '192.168.101.27' | ||||
| port = 3306 | ||||
| dbusername ='root'   | ||||
| password = '123456' | ||||
| dbname = 'jingbo_test' | ||||
| table_name = 'v_tbl_crude_oil_warning' | ||||
| 
 | ||||
| 
 | ||||
| ### 开关 | ||||
| is_train = False # 是否训练 | ||||
| is_debug = False # 是否调试 | ||||
| is_eta = False # 是否使用eta接口 | ||||
| is_market = False # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效 | ||||
| is_timefurture = True # 是否使用时间特征 | ||||
| is_fivemodels = False # 是否使用之前保存的最佳的5个模型 | ||||
| is_edbcode = False # 特征使用edbcoding列表中的 | ||||
| is_edbnamelist = False # 自定义特征,对应上面的edbnamelist | ||||
| is_update_eta  = True  # 预测结果上传到eta | ||||
| is_update_report = True # 是否上传报告 | ||||
| is_update_warning_data =  False # 是否上传预警数据 | ||||
| is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征 | ||||
| is_del_tow_month = True # 是否删除两个月不更新的特征 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| # 连接到数据库 | ||||
| db_mysql = MySQLDB(host=host, user=dbusername, password=password, database=dbname) | ||||
| db_mysql.connect() | ||||
| print("数据库连接成功",host,dbname,dbusername) | ||||
| 
 | ||||
| 
 | ||||
| # 数据截取日期 | ||||
| start_year = 2020 # 数据开始年份 | ||||
| end_time = '2025-01-27' # 数据截取日期 | ||||
| freq = 'W'  # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日 | ||||
| delweekenday = True if freq == 'B' else False # 是否删除周末数据 | ||||
| is_corr = False # 特征是否参与滞后领先提升相关系数 | ||||
| add_kdj = False # 是否添加kdj指标 | ||||
| if add_kdj and is_edbnamelist: | ||||
|     edbnamelist = edbnamelist+['K','D','J'] | ||||
| 
 | ||||
| ### 模型参数   | ||||
| y = 'AVG-金能大唐久泰青州'  | ||||
| avg_cols = [ | ||||
|     'PP:拉丝:1102K:出厂价:青州:国家能源宁煤(日)', | ||||
|     'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)',   | ||||
|     'PP:拉丝:L5E89:出厂价:河北、鲁北:大唐内蒙多伦(日)', | ||||
|     'PP:拉丝:HP550J:市场价:青岛:金能化学(日)' | ||||
| ] | ||||
| offsite = 80 | ||||
| offsite_col = ['PP:拉丝:HP550J:市场价:青岛:金能化学(日)'] | ||||
| horizon =1 # 预测的步长 | ||||
| input_size = 7  # 输入序列长度 | ||||
| train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数 | ||||
| val_check_steps = 30  # 评估频率 | ||||
| early_stop_patience_steps = 5 # 早停的耐心步数    | ||||
| # --- 交叉验证用的参数 | ||||
| test_size = 200  # 测试集大小,定义100,后面使用的时候重新赋值 | ||||
| val_size = test_size # 验证集大小,同测试集大小 | ||||
| 
 | ||||
| ### 特征筛选用到的参数 | ||||
| k = 100 # 特征筛选数量,如果是0或者值比特征数量大,代表全部特征 | ||||
| corr_threshold = 0.6 # 相关性大于0.6的特征 | ||||
| rote = 0.06 # 绘图上下界阈值 | ||||
| 
 | ||||
| ### 计算准确率 | ||||
| weight_dict = [0.4,0.15,0.1,0.1,0.25] # 权重 | ||||
| 
 | ||||
| 
 | ||||
| ### 文件 | ||||
| data_set = 'PP指标数据.xlsx'  # 数据集文件   | ||||
| dataset = 'juxitingzhududataset' # 数据集文件夹 | ||||
| 
 | ||||
| # 数据库名称 | ||||
| db_name = os.path.join(dataset,'jbsh_juxiting.db') | ||||
| sqlitedb = SQLiteHandler(db_name)  | ||||
| sqlitedb.connect() | ||||
| 
 | ||||
| settings = f'{input_size}-{horizon}-{train_steps}--{k}-{data_set}-{y}'  | ||||
| # 获取日期时间 | ||||
| # now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') # 获取当前日期时间 | ||||
| now = datetime.datetime.now().strftime('%Y-%m-%d') # 获取当前日期时间 | ||||
| reportname = f'PP大模型预测报告--{end_time}.pdf' # 报告文件名 | ||||
| reportname = reportname.replace(':', '-') # 替换冒号 | ||||
| if end_time == '': | ||||
|     end_time = now | ||||
| ### 邮件配置 | ||||
| username='1321340118@qq.com' | ||||
| passwd='wgczgyhtyyyyjghi' | ||||
| # recv=['liurui_test@163.com','52585119@qq.com'] | ||||
| recv=['liurui_test@163.com'] | ||||
| # recv=['liurui_test@163.com'] | ||||
| title='reportname' | ||||
| content=y+'预测报告请看附件' | ||||
| file=os.path.join(dataset,'reportname') | ||||
| # file=os.path.join(dataset,'14-7-50--100-原油指标数据.xlsx-Brent连1合约价格--20240731175936-预测报告.pdf') | ||||
| ssl=True | ||||
| 
 | ||||
| 
 | ||||
| ### 日志配置 | ||||
| 
 | ||||
| # 创建日志目录(如果不存在) | ||||
| log_dir = 'logs' | ||||
| if not os.path.exists(log_dir): | ||||
|     os.makedirs(log_dir) | ||||
| 
 | ||||
| # 配置日志记录器 | ||||
| logger = logging.getLogger('my_logger') | ||||
| logger.setLevel(logging.INFO) | ||||
| 
 | ||||
| # 配置文件处理器,将日志记录到文件 | ||||
| file_handler = logging.handlers.RotatingFileHandler(os.path.join(log_dir, 'pricepredict.log'), maxBytes=1024 * 1024, backupCount=5) | ||||
| file_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')) | ||||
| 
 | ||||
| # 配置控制台处理器,将日志打印到控制台 | ||||
| console_handler = logging.StreamHandler() | ||||
| console_handler.setFormatter(logging.Formatter('%(message)s')) | ||||
| 
 | ||||
| # 将处理器添加到日志记录器 | ||||
| logger.addHandler(file_handler) | ||||
| logger.addHandler(console_handler) | ||||
| 
 | ||||
| # logger.info('当前配置:'+settings) | ||||
| 
 | ||||
| @ -44,8 +44,9 @@ plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号 | ||||
| # from config_jingbo import * | ||||
| # from config_jingbo_zhoudu import * | ||||
| # from config_yongan import * | ||||
| # from config_juxiting import * | ||||
| from config_juxiting_pro import * | ||||
| from config_juxiting import * | ||||
| # from config_juxiting_zhoudu import * | ||||
| # from config_juxiting_pro import * | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| @ -259,12 +260,13 @@ def upload_warning_info(df_count): | ||||
|     try: | ||||
|         # 获取当前日期 | ||||
|         warning_date  = datetime.datetime.now().strftime('%Y-%m-%d') | ||||
|         warning_date2  = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') | ||||
|          | ||||
|         # 构建预警内容 | ||||
|         content = f'{warning_date}有{df_count}个停更' | ||||
|          | ||||
|         # 更新预警数据中的日期和内容 | ||||
|         warning_data['data']['WARNING_DATE'] = warning_date | ||||
|         warning_data['data']['WARNING_DATE'] = warning_date2 | ||||
|         warning_data['data']['WARNING_CONTENT'] =  content  | ||||
|          | ||||
|         # 调用 upload_warning_data 函数上传预警数据 | ||||
|  | ||||
| @ -188,33 +188,35 @@ def predict_main(): | ||||
|         sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) | ||||
| 
 | ||||
|     try: | ||||
|         if is_weekday: | ||||
|         # if True: | ||||
|             logger.info('今天是周一,发送特征预警') | ||||
|             # 上传预警信息到数据库 | ||||
|             warning_data_df = df_zhibiaoliebiao.copy() | ||||
|             warning_data_df = warning_data_df[warning_data_df['停更周期']> 3 ][['指标名称', '指标id', '频度','更新周期','指标来源','最后更新时间','停更周期']] | ||||
|             # 重命名列名 | ||||
|             warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY', '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'}) | ||||
|             from sqlalchemy import create_engine | ||||
|             import urllib | ||||
|             global password | ||||
|             if '@' in password: | ||||
|                 password = urllib.parse.quote_plus(password) | ||||
|         # if is_weekday: | ||||
|         if True: | ||||
|             # logger.info('今天是周一,发送特征预警') | ||||
|             # # 上传预警信息到数据库 | ||||
|             # warning_data_df = df_zhibiaoliebiao.copy() | ||||
|             # warning_data_df = warning_data_df[warning_data_df['停更周期']> 3 ][['指标名称', '指标id', '频度','更新周期','指标来源','最后更新时间','停更周期']] | ||||
|             # # 重命名列名 | ||||
|             # warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY', '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'}) | ||||
|             # from sqlalchemy import create_engine | ||||
|             # import urllib | ||||
|             # global password | ||||
|             # if '@' in password: | ||||
|             #     password = urllib.parse.quote_plus(password) | ||||
| 
 | ||||
|             engine = create_engine(f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}') | ||||
|             warning_data_df['WARNING_DATE'] =  datetime.date.today().strftime("%Y-%m-%d %H:%M:%S") | ||||
|             warning_data_df['TENANT_CODE'] =  'T0004' | ||||
|             # 插入数据之前查询表数据然后新增id列 | ||||
|             existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine) | ||||
|             if not existing_data.empty: | ||||
|                 max_id = existing_data['ID'].astype(int).max() | ||||
|                 warning_data_df['ID'] = range(max_id + 1, max_id + 1 + len(warning_data_df)) | ||||
|             else: | ||||
|                 warning_data_df['ID'] = range(1, 1 + len(warning_data_df)) | ||||
|             warning_data_df.to_sql(table_name,  con=engine, if_exists='append', index=False) | ||||
|             # engine = create_engine(f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}') | ||||
|             # warning_data_df['WARNING_DATE'] =  datetime.date.today().strftime("%Y-%m-%d %H:%M:%S") | ||||
|             # warning_data_df['TENANT_CODE'] =  'T0004' | ||||
|             # # 插入数据之前查询表数据然后新增id列 | ||||
|             # existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine) | ||||
|             # if not existing_data.empty: | ||||
|             #     max_id = existing_data['ID'].astype(int).max() | ||||
|             #     warning_data_df['ID'] = range(max_id + 1, max_id + 1 + len(warning_data_df)) | ||||
|             # else: | ||||
|             #     warning_data_df['ID'] = range(1, 1 + len(warning_data_df)) | ||||
|             # warning_data_df.to_sql(table_name,  con=engine, if_exists='append', index=False) | ||||
|             # if is_update_warning_data: | ||||
|             #     upload_warning_info(len(warning_data_df)) | ||||
|             if is_update_warning_data: | ||||
|                 upload_warning_info(len(warning_data_df)) | ||||
|                 upload_warning_info(10) | ||||
|     except: | ||||
|         logger.info('上传预警信息到数据库失败') | ||||
| 
 | ||||
| @ -226,26 +228,26 @@ def predict_main(): | ||||
|     row, col = df.shape | ||||
| 
 | ||||
|     now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') | ||||
|     ex_Model_Juxiting(df, | ||||
|              horizon=horizon, | ||||
|              input_size=input_size, | ||||
|              train_steps=train_steps, | ||||
|              val_check_steps=val_check_steps, | ||||
|              early_stop_patience_steps=early_stop_patience_steps, | ||||
|              is_debug=is_debug, | ||||
|              dataset=dataset, | ||||
|              is_train=is_train, | ||||
|              is_fivemodels=is_fivemodels, | ||||
|              val_size=val_size, | ||||
|              test_size=test_size, | ||||
|              settings=settings, | ||||
|              now=now, | ||||
|              etadata=etadata, | ||||
|              modelsindex=modelsindex, | ||||
|              data=data, | ||||
|              is_eta=is_eta, | ||||
|              end_time=end_time, | ||||
|              ) | ||||
|     # ex_Model_Juxiting(df, | ||||
|     #          horizon=horizon, | ||||
|     #          input_size=input_size, | ||||
|     #          train_steps=train_steps, | ||||
|     #          val_check_steps=val_check_steps, | ||||
|     #          early_stop_patience_steps=early_stop_patience_steps, | ||||
|     #          is_debug=is_debug, | ||||
|     #          dataset=dataset, | ||||
|     #          is_train=is_train, | ||||
|     #          is_fivemodels=is_fivemodels, | ||||
|     #          val_size=val_size, | ||||
|     #          test_size=test_size, | ||||
|     #          settings=settings, | ||||
|     #          now=now, | ||||
|     #          etadata=etadata, | ||||
|     #          modelsindex=modelsindex, | ||||
|     #          data=data, | ||||
|     #          is_eta=is_eta, | ||||
|     #          end_time=end_time, | ||||
|     #          ) | ||||
| 
 | ||||
| 
 | ||||
|     logger.info('模型训练完成') | ||||
|  | ||||
							
								
								
									
										301
									
								
								main_juxiting_zhoudu.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										301
									
								
								main_juxiting_zhoudu.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,301 @@ | ||||
| # 读取配置 | ||||
| from lib.dataread import * | ||||
| from lib.tools import SendMail,exception_logger | ||||
| from models.nerulforcastmodels import ex_Model_Juxiting,model_losss,model_losss_juxiting,brent_export_pdf,tansuanli_export_pdf,pp_export_pdf,model_losss_juxiting | ||||
| 
 | ||||
| import glob | ||||
| import torch | ||||
| torch.set_float32_matmul_precision("high") | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| def predict_main(): | ||||
|     """ | ||||
|     主预测函数,用于从 ETA 获取数据、处理数据、训练模型并进行预测。 | ||||
| 
 | ||||
|     参数: | ||||
|         signature (BinanceAPI): Binance API 实例。 | ||||
|         etadata (EtaReader): ETA 数据读取器实例。 | ||||
|         is_eta (bool): 是否从 ETA 获取数据。 | ||||
|         data_set (str): 数据集名称。 | ||||
|         dataset (str): 数据集路径。 | ||||
|         add_kdj (bool): 是否添加 KDJ 指标。 | ||||
|         is_timefurture (bool): 是否添加时间衍生特征。 | ||||
|         end_time (str): 结束时间。 | ||||
|         is_edbnamelist (bool): 是否使用 EDB 名称列表。 | ||||
|         edbnamelist (list): EDB 名称列表。 | ||||
|         y (str): 预测目标列名。 | ||||
|         sqlitedb (SQLiteDB): SQLite 数据库实例。 | ||||
|         is_corr (bool): 是否进行相关性分析。 | ||||
|         horizon (int): 预测时域。 | ||||
|         input_size (int): 输入数据大小。 | ||||
|         train_steps (int): 训练步数。 | ||||
|         val_check_steps (int): 验证检查步数。 | ||||
|         early_stop_patience_steps (int): 早停耐心步数。 | ||||
|         is_debug (bool): 是否调试模式。 | ||||
|         dataset (str): 数据集名称。 | ||||
|         is_train (bool): 是否训练模型。 | ||||
|         is_fivemodels (bool): 是否使用五个模型。 | ||||
|         val_size (float): 验证集大小。 | ||||
|         test_size (float): 测试集大小。 | ||||
|         settings (dict): 模型设置。 | ||||
|         now (str): 当前时间。 | ||||
|         etadata (EtaReader): ETA 数据读取器实例。 | ||||
|         modelsindex (list): 模型索引列表。 | ||||
|         data (str): 数据类型。 | ||||
|         is_eta (bool): 是否从 ETA 获取数据。 | ||||
| 
 | ||||
|     返回: | ||||
|         None | ||||
|     """ | ||||
|     global end_time | ||||
|     signature = BinanceAPI(APPID, SECRET) | ||||
|     etadata = EtaReader(signature=signature, | ||||
|                         classifylisturl=classifylisturl, | ||||
|                         classifyidlisturl=classifyidlisturl, | ||||
|                         edbcodedataurl=edbcodedataurl, | ||||
|                         edbcodelist=edbcodelist, | ||||
|                         edbdatapushurl=edbdatapushurl, | ||||
|                         edbdeleteurl=edbdeleteurl, | ||||
|                         edbbusinessurl=edbbusinessurl | ||||
|                         ) | ||||
|     # 获取数据 | ||||
|     if is_eta: | ||||
|         logger.info('从eta获取数据...') | ||||
|         signature = BinanceAPI(APPID, SECRET) | ||||
|         etadata = EtaReader(signature=signature, | ||||
|                             classifylisturl=classifylisturl, | ||||
|                             classifyidlisturl=classifyidlisturl, | ||||
|                             edbcodedataurl=edbcodedataurl, | ||||
|                             edbcodelist=edbcodelist, | ||||
|                             edbdatapushurl=edbdatapushurl, | ||||
|                             edbdeleteurl=edbdeleteurl, | ||||
|                             edbbusinessurl=edbbusinessurl, | ||||
|                             ) | ||||
|         df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_pp_data(data_set=data_set, dataset=dataset)  # 原始数据,未处理 | ||||
| 
 | ||||
|         if is_market: | ||||
|             logger.info('从市场信息平台获取数据...') | ||||
|             try: | ||||
|                 # 如果是测试环境,最高价最低价取excel文档 | ||||
|                 if server_host == '192.168.100.53': | ||||
|                     logger.info('从excel文档获取最高价最低价') | ||||
|                     df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju) | ||||
|                 else: | ||||
|                     logger.info('从市场信息平台获取数据') | ||||
|                     df_zhibiaoshuju = get_market_data(end_time,df_zhibiaoshuju) | ||||
|                      | ||||
|             except : | ||||
|                 logger.info('最高最低价拼接失败') | ||||
|          | ||||
|         # 保存到xlsx文件的sheet表 | ||||
|         with pd.ExcelWriter(os.path.join(dataset,data_set)) as file: | ||||
|             df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False) | ||||
|             df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False) | ||||
|          | ||||
|          | ||||
|         # 数据处理 | ||||
|         df = datachuli_juxiting(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture, | ||||
|                         end_time=end_time) | ||||
| 
 | ||||
|     else: | ||||
|         # 读取数据 | ||||
|         logger.info('读取本地数据:' + os.path.join(dataset, data_set)) | ||||
|         df,df_zhibiaoliebiao = getdata_juxiting(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj, | ||||
|                      is_timefurture=is_timefurture, end_time=end_time)  # 原始数据,未处理 | ||||
| 
 | ||||
|     # 更改预测列名称 | ||||
|     df.rename(columns={y: 'y'}, inplace=True) | ||||
| 
 | ||||
|     if is_edbnamelist: | ||||
|         df = df[edbnamelist] | ||||
|     df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False) | ||||
|     # 保存最新日期的y值到数据库 | ||||
|     # 取第一行数据存储到数据库中 | ||||
|     first_row = df[['ds', 'y']].tail(1) | ||||
|     # 判断y的类型是否为float | ||||
|     if not isinstance(first_row['y'].values[0], float): | ||||
|         logger.info(f'{end_time}预测目标数据为空,跳过') | ||||
|         return None | ||||
| 
 | ||||
|     # 将最新真实值保存到数据库 | ||||
|     if not sqlitedb.check_table_exists('trueandpredict'): | ||||
|         first_row.to_sql('trueandpredict', sqlitedb.connection, index=False) | ||||
|     else: | ||||
|         for row in first_row.itertuples(index=False): | ||||
|             row_dict = row._asdict() | ||||
|             row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S') | ||||
|             check_query = sqlitedb.select_data('trueandpredict', where_condition=f"ds = '{row.ds}'") | ||||
|             if len(check_query) > 0: | ||||
|                 set_clause = ", ".join([f"{key} = '{value}'" for key, value in row_dict.items()]) | ||||
|                 sqlitedb.update_data('trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'") | ||||
|                 continue | ||||
|             sqlitedb.insert_data('trueandpredict', tuple(row_dict.values()), columns=row_dict.keys()) | ||||
| 
 | ||||
|     # 更新accuracy表的y值 | ||||
|     if not sqlitedb.check_table_exists('accuracy'): | ||||
|         pass | ||||
|     else: | ||||
|         update_y = sqlitedb.select_data('accuracy',where_condition="y is null") | ||||
|         if len(update_y) > 0: | ||||
|             logger.info('更新accuracy表的y值') | ||||
|             # 找到update_y 中ds且df中的y的行 | ||||
|             update_y = update_y[update_y['ds']<=end_time] | ||||
|             logger.info(f'要更新y的信息:{update_y}') | ||||
|             # try: | ||||
|             for row in update_y.itertuples(index=False): | ||||
|                 try: | ||||
|                     row_dict = row._asdict()  	 | ||||
|                     yy = df[df['ds']==row_dict['ds']]['y'].values[0] | ||||
|                     LOW = df[df['ds']==row_dict['ds']]['Brentzdj'].values[0] | ||||
|                     HIGH = df[df['ds']==row_dict['ds']]['Brentzgj'].values[0] | ||||
|                     sqlitedb.update_data('accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'") | ||||
|                 except: | ||||
|                     logger.info(f'更新accuracy表的y值失败:{row_dict}') | ||||
|             # except Exception as e: | ||||
|             #     logger.info(f'更新accuracy表的y值失败:{e}') | ||||
| 
 | ||||
|     import datetime | ||||
|     # 判断当前日期是不是周一 | ||||
|     is_weekday = datetime.datetime.now().weekday() == 0 | ||||
|     if is_weekday: | ||||
|         logger.info('今天是周一,更新预测模型') | ||||
|         # 计算最近60天预测残差最低的模型名称 | ||||
|         model_results = sqlitedb.select_data('trueandpredict', order_by="ds DESC", limit="60") | ||||
|         # 删除空值率为90%以上的列 | ||||
|         if len(model_results) > 10: | ||||
|             model_results = model_results.dropna(thresh=len(model_results)*0.1,axis=1) | ||||
|         # 删除空行 | ||||
|         model_results = model_results.dropna() | ||||
|         modelnames = model_results.columns.to_list()[2:-1] | ||||
|         for col in model_results[modelnames].select_dtypes(include=['object']).columns: | ||||
|             model_results[col] = model_results[col].astype(np.float32) | ||||
|         # 计算每个预测值与真实值之间的偏差率 | ||||
|         for model in modelnames: | ||||
|             model_results[f'{model}_abs_error_rate'] = abs(model_results['y'] - model_results[model]) / model_results['y'] | ||||
|         # 获取每行对应的最小偏差率值 | ||||
|         min_abs_error_rate_values = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1) | ||||
|         # 获取每行对应的最小偏差率值对应的列名 | ||||
|         min_abs_error_rate_column_name = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1) | ||||
|         # 将列名索引转换为列名 | ||||
|         min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(lambda x: x.split('_')[0]) | ||||
|         # 取出现次数最多的模型名称 | ||||
|         most_common_model = min_abs_error_rate_column_name.value_counts().idxmax() | ||||
|         logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}") | ||||
|         # 保存结果到数据库 | ||||
|         if not sqlitedb.check_table_exists('most_model'): | ||||
|             sqlitedb.create_table('most_model', columns="ds datetime, most_common_model TEXT") | ||||
|         sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) | ||||
| 
 | ||||
|     try: | ||||
|         if is_weekday: | ||||
|         # if True: | ||||
|             logger.info('今天是周一,发送特征预警') | ||||
|             # 上传预警信息到数据库 | ||||
|             warning_data_df = df_zhibiaoliebiao.copy() | ||||
|             warning_data_df = warning_data_df[warning_data_df['停更周期']> 3 ][['指标名称', '指标id', '频度','更新周期','指标来源','最后更新时间','停更周期']] | ||||
|             # 重命名列名 | ||||
|             warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY', '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'}) | ||||
|             from sqlalchemy import create_engine | ||||
|             import urllib | ||||
|             global password | ||||
|             if '@' in password: | ||||
|                 password = urllib.parse.quote_plus(password) | ||||
| 
 | ||||
|             engine = create_engine(f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}') | ||||
|             warning_data_df['WARNING_DATE'] =  datetime.date.today().strftime("%Y-%m-%d %H:%M:%S") | ||||
|             warning_data_df['TENANT_CODE'] =  'T0004' | ||||
|             # 插入数据之前查询表数据然后新增id列 | ||||
|             existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine) | ||||
|             if not existing_data.empty: | ||||
|                 max_id = existing_data['ID'].astype(int).max() | ||||
|                 warning_data_df['ID'] = range(max_id + 1, max_id + 1 + len(warning_data_df)) | ||||
|             else: | ||||
|                 warning_data_df['ID'] = range(1, 1 + len(warning_data_df)) | ||||
|             warning_data_df.to_sql(table_name,  con=engine, if_exists='append', index=False) | ||||
|             if is_update_warning_data: | ||||
|                 upload_warning_info(len(warning_data_df)) | ||||
|     except: | ||||
|         logger.info('上传预警信息到数据库失败') | ||||
| 
 | ||||
|     if is_corr: | ||||
|         df = corr_feature(df=df) | ||||
| 
 | ||||
|     df1 = df.copy()  # 备份一下,后面特征筛选完之后加入ds y 列用 | ||||
|     logger.info(f"开始训练模型...") | ||||
|     row, col = df.shape | ||||
| 
 | ||||
|     now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') | ||||
|     ex_Model_Juxiting(df, | ||||
|              horizon=horizon, | ||||
|              input_size=input_size, | ||||
|              train_steps=train_steps, | ||||
|              val_check_steps=val_check_steps, | ||||
|              early_stop_patience_steps=early_stop_patience_steps, | ||||
|              is_debug=is_debug, | ||||
|              dataset=dataset, | ||||
|              is_train=is_train, | ||||
|              is_fivemodels=is_fivemodels, | ||||
|              val_size=val_size, | ||||
|              test_size=test_size, | ||||
|              settings=settings, | ||||
|              now=now, | ||||
|              etadata=etadata, | ||||
|              modelsindex=modelsindex, | ||||
|              data=data, | ||||
|              is_eta=is_eta, | ||||
|              end_time=end_time, | ||||
|              ) | ||||
| 
 | ||||
| 
 | ||||
|     logger.info('模型训练完成') | ||||
|   | ||||
|     logger.info('训练数据绘图ing') | ||||
|     model_results3 = model_losss_juxiting(sqlitedb) | ||||
|     logger.info('训练数据绘图end') | ||||
|      | ||||
|     # 模型报告 | ||||
|     logger.info('制作报告ing') | ||||
|     title = f'{settings}--{end_time}-预测报告' # 报告标题 | ||||
|     reportname = f'PP大模型预测报告--{end_time}.pdf' # 报告文件名 | ||||
|     reportname = reportname.replace(':', '-') # 替换冒号 | ||||
|     pp_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time, | ||||
|                 reportname=reportname,sqlitedb=sqlitedb), | ||||
| 
 | ||||
|     logger.info('制作报告end') | ||||
|     logger.info('模型训练完成') | ||||
| 
 | ||||
|     # # LSTM 单变量模型 | ||||
|     # ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset) | ||||
|      | ||||
|     # # lstm 多变量模型 | ||||
|     # ex_Lstm_M(df,n_days=input_size,out_days=horizon,is_debug=is_debug,datasetpath=dataset) | ||||
|      | ||||
|     # # GRU 模型 | ||||
|     # # ex_GRU(df) | ||||
| 
 | ||||
|     # 发送邮件 | ||||
|     m = SendMail( | ||||
|         username=username, | ||||
|         passwd=passwd, | ||||
|         recv=recv, | ||||
|         title=title, | ||||
|         content=content, | ||||
|         file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime), | ||||
|         ssl=ssl, | ||||
|     ) | ||||
|     # m.send_mail()    | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == '__main__': | ||||
|     # global end_time | ||||
|     # is_on = True | ||||
|     # # 遍历2024-11-25 到 2024-12-3 之间的工作日日期 | ||||
|     # for i_time in pd.date_range('2025-1-20', '2025-2-6', freq='B'): | ||||
|     #     end_time = i_time.strftime('%Y-%m-%d') | ||||
|     #     try: | ||||
|     #         predict_main() | ||||
|     #     except: | ||||
|     #         pass | ||||
| 
 | ||||
|     predict_main() | ||||
| @ -186,6 +186,8 @@ def predict_main(): | ||||
|         if not sqlitedb.check_table_exists('most_model'): | ||||
|             sqlitedb.create_table('most_model', columns="ds datetime, most_common_model TEXT") | ||||
|         sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) | ||||
|         if is_update_warning_data: | ||||
|                 upload_warning_info(len(warning_data_df)) | ||||
| 
 | ||||
|     try: | ||||
|         if is_weekday: | ||||
| @ -229,32 +231,32 @@ def predict_main(): | ||||
|     row, col = df.shape | ||||
| 
 | ||||
|     now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') | ||||
|     # ex_Model(df, | ||||
|     #          horizon=horizon, | ||||
|     #          input_size=input_size, | ||||
|     #          train_steps=train_steps, | ||||
|     #          val_check_steps=val_check_steps, | ||||
|     #          early_stop_patience_steps=early_stop_patience_steps, | ||||
|     #          is_debug=is_debug, | ||||
|     #          dataset=dataset, | ||||
|     #          is_train=is_train, | ||||
|     #          is_fivemodels=is_fivemodels, | ||||
|     #          val_size=val_size, | ||||
|     #          test_size=test_size, | ||||
|     #          settings=settings, | ||||
|     #          now=now, | ||||
|     #          etadata=etadata, | ||||
|     #          modelsindex=modelsindex, | ||||
|     #          data=data, | ||||
|     #          is_eta=is_eta, | ||||
|     #          end_time=end_time, | ||||
|     #          ) | ||||
|     ex_Model(df, | ||||
|              horizon=horizon, | ||||
|              input_size=input_size, | ||||
|              train_steps=train_steps, | ||||
|              val_check_steps=val_check_steps, | ||||
|              early_stop_patience_steps=early_stop_patience_steps, | ||||
|              is_debug=is_debug, | ||||
|              dataset=dataset, | ||||
|              is_train=is_train, | ||||
|              is_fivemodels=is_fivemodels, | ||||
|              val_size=val_size, | ||||
|              test_size=test_size, | ||||
|              settings=settings, | ||||
|              now=now, | ||||
|              etadata=etadata, | ||||
|              modelsindex=modelsindex, | ||||
|              data=data, | ||||
|              is_eta=is_eta, | ||||
|              end_time=end_time, | ||||
|              ) | ||||
| 
 | ||||
| 
 | ||||
|     logger.info('模型训练完成') | ||||
|   | ||||
|     logger.info('训练数据绘图ing') | ||||
|     # model_results3 = model_losss(sqlitedb,end_time=end_time) | ||||
|     model_results3 = model_losss(sqlitedb,end_time=end_time) | ||||
|     logger.info('训练数据绘图end') | ||||
|      | ||||
|     # 模型报告 | ||||
| @ -262,8 +264,8 @@ def predict_main(): | ||||
|     title = f'{settings}--{end_time}-预测报告' # 报告标题 | ||||
|     reportname = f'Brent原油大模型预测--{end_time}.pdf' # 报告文件名 | ||||
|     reportname = reportname.replace(':', '-') # 替换冒号 | ||||
|     # brent_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time, | ||||
|     #             reportname=reportname,sqlitedb=sqlitedb), | ||||
|     brent_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time, | ||||
|                 reportname=reportname,sqlitedb=sqlitedb), | ||||
| 
 | ||||
|     logger.info('制作报告end') | ||||
|     logger.info('模型训练完成') | ||||
|  | ||||
| @ -379,15 +379,16 @@ def ex_Model_Juxiting(df,horizon,input_size,train_steps,val_check_steps,early_st | ||||
|         logger.info('读取模型:'+ filename) | ||||
|         nf = load(filename) | ||||
|     # 测试集预测 | ||||
|     # nf_test_preds = nf.cross_validation(df=df_test, val_size=val_size, test_size=test_size, n_windows=None) | ||||
|     # # 测试集预测结果保存 | ||||
|     # nf_test_preds.to_csv(os.path.join(dataset,"cross_validation.csv"),index=False) | ||||
|     nf_test_preds = nf.cross_validation(df=df_test, val_size=val_size, test_size=test_size, n_windows=None) | ||||
|     # 测试集预测结果保存 | ||||
|     nf_test_preds.to_csv(os.path.join(dataset,"cross_validation.csv"),index=False) | ||||
| 
 | ||||
|     # df_test['ds'] = pd.to_datetime(df_test['ds'], errors='coerce') | ||||
|     df_test['ds'] = pd.to_datetime(df_test['ds'], errors='coerce') | ||||
| 
 | ||||
|     #进行未来时间预测 | ||||
|     df_predict=nf.predict(df_test).reset_index() | ||||
|     # 去掉index列 | ||||
|     if 'index' in df_predict.columns: | ||||
|         df_predict.drop(columns=['index'], inplace=True) | ||||
|     # 处理非有限值(NA 或 inf),将其替换为 0 | ||||
|     df_predict = df_predict.fillna(0) | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user