Merge branch 'main' of https://gitea.jayhgq.cn/liurui/PriceForecast
This commit is contained in:
commit
409cbb65e7
309
eta数据调试.py
309
eta数据调试.py
@ -128,138 +128,183 @@ modelsindex = {
|
||||
}
|
||||
|
||||
selfid = {
|
||||
"聚烯烃价格预测NHITS模型-次周": "SELF0000231",
|
||||
"聚烯烃价格预测Informer模型-次周": "SELF0000232",
|
||||
"聚烯烃价格预测LSTM模型-次周": "SELF0000233",
|
||||
"聚烯烃价格预测iTransformer模型-次周": "SELF0000234",
|
||||
"聚烯烃价格预测TSMixer模型-次周": "SELF0000235",
|
||||
"聚烯烃价格预测TSMixerx模型-次周": "SELF0000236",
|
||||
"聚烯烃价格预测PatchTST模型-次周": "SELF0000237",
|
||||
"聚烯烃价格预测RNN模型-次周": "SELF0000238",
|
||||
"聚烯烃价格预测GRU模型-次周": "SELF0000239",
|
||||
"聚烯烃价格预测TCN模型-次周": "SELF0000240",
|
||||
"聚烯烃价格预测BiTCN模型-次周": "SELF0000241",
|
||||
"聚烯烃价格预测DilatedRNN模型-次周": "SELF0000242",
|
||||
"聚烯烃价格预测MLP模型-次周": "SELF0000243",
|
||||
"聚烯烃价格预测DLinear模型-次周": "SELF0000244",
|
||||
"聚烯烃价格预测NLinear模型-次周": "SELF0000245",
|
||||
"聚烯烃价格预测TFT模型-次周": "SELF0000246",
|
||||
"聚烯烃价格预测FEDformer模型-次周": "SELF0000247",
|
||||
"聚烯烃价格预测StemGNN模型-次周": "SELF0000248",
|
||||
"聚烯烃价格预测MLPMultivariate模型-次周": "SELF0000249",
|
||||
"聚烯烃价格预测TiDE模型-次周": "SELF0000250",
|
||||
"聚烯烃价格预测DeepNPTS模型-次周": "SELF0000251",
|
||||
"聚烯烃价格预测NBEATS模型-次周": "SELF0000252",
|
||||
"聚烯烃价格预测NHITS模型-隔周": "SELF0000253",
|
||||
"聚烯烃价格预测Informer模型-隔周": "SELF0000254",
|
||||
"聚烯烃价格预测LSTM模型-隔周": "SELF0000255",
|
||||
"聚烯烃价格预测iTransformer模型-隔周": "SELF0000256",
|
||||
"聚烯烃价格预测TSMixer模型-隔周": "SELF0000257",
|
||||
"聚烯烃价格预测TSMixerx模型-隔周": "SELF0000258",
|
||||
"聚烯烃价格预测PatchTST模型-隔周": "SELF0000259",
|
||||
"聚烯烃价格预测RNN模型-隔周": "SELF0000260",
|
||||
"聚烯烃价格预测GRU模型-隔周": "SELF0000261",
|
||||
"聚烯烃价格预测TCN模型-隔周": "SELF0000262",
|
||||
"聚烯烃价格预测BiTCN模型-隔周": "SELF0000263",
|
||||
"聚烯烃价格预测DilatedRNN模型-隔周": "SELF0000264",
|
||||
"聚烯烃价格预测MLP模型-隔周": "SELF0000265",
|
||||
"聚烯烃价格预测DLinear模型-隔周": "SELF0000266",
|
||||
"聚烯烃价格预测NLinear模型-隔周": "SELF0000267",
|
||||
"聚烯烃价格预测TFT模型-隔周": "SELF0000268",
|
||||
"聚烯烃价格预测FEDformer模型-隔周": "SELF0000269",
|
||||
"聚烯烃价格预测StemGNN模型-隔周": "SELF0000270",
|
||||
"聚烯烃价格预测MLPMultivariate模型-隔周": "SELF0000271",
|
||||
"聚烯烃价格预测TiDE模型-隔周": "SELF0000272",
|
||||
"聚烯烃价格预测DeepNPTS模型-隔周": "SELF0000273",
|
||||
"聚烯烃价格预测NBEATS模型-隔周": "SELF0000274",
|
||||
"聚烯烃价格预测NHITS模型-次月": "SELF0000275",
|
||||
"聚烯烃价格预测Informer模型-次月": "SELF0000276",
|
||||
"聚烯烃价格预测LSTM模型-次月": "SELF0000277",
|
||||
"聚烯烃价格预测iTransformer模型-次月": "SELF0000278",
|
||||
"聚烯烃价格预测TSMixer模型-次月": "SELF0000279",
|
||||
"聚烯烃价格预测TSMixerx模型-次月": "SELF0000280",
|
||||
"聚烯烃价格预测PatchTST模型-次月": "SELF0000281",
|
||||
"聚烯烃价格预测RNN模型-次月": "SELF0000282",
|
||||
"聚烯烃价格预测GRU模型-次月": "SELF0000283",
|
||||
"聚烯烃价格预测TCN模型-次月": "SELF0000284",
|
||||
"聚烯烃价格预测BiTCN模型-次月": "SELF0000285",
|
||||
"聚烯烃价格预测DilatedRNN模型-次月": "SELF0000286",
|
||||
"聚烯烃价格预测MLP模型-次月": "SELF0000287",
|
||||
"聚烯烃价格预测DLinear模型-次月": "SELF0000288",
|
||||
"聚烯烃价格预测NLinear模型-次月": "SELF0000289",
|
||||
"聚烯烃价格预测TFT模型-次月": "SELF0000290",
|
||||
"聚烯烃价格预测FEDformer模型-次月": "SELF0000291",
|
||||
"聚烯烃价格预测StemGNN模型-次月": "SELF0000292",
|
||||
"聚烯烃价格预测MLPMultivariate模型-次月": "SELF0000293",
|
||||
"聚烯烃价格预测TiDE模型-次月": "SELF0000294",
|
||||
"聚烯烃价格预测DeepNPTS模型-次月": "SELF0000295",
|
||||
"聚烯烃价格预测NBEATS模型-次月": "SELF0000296",
|
||||
"聚烯烃价格预测NHITS模型-次二月": "SELF0000297",
|
||||
"聚烯烃价格预测Informer模型-次二月": "SELF0000298",
|
||||
"聚烯烃价格预测LSTM模型-次二月": "SELF0000299",
|
||||
"聚烯烃价格预测iTransformer模型-次二月": "SELF0000300",
|
||||
"聚烯烃价格预测TSMixer模型-次二月": "SELF0000301",
|
||||
"聚烯烃价格预测TSMixerx模型-次二月": "SELF0000302",
|
||||
"聚烯烃价格预测PatchTST模型-次二月": "SELF0000303",
|
||||
"聚烯烃价格预测RNN模型-次二月": "SELF0000304",
|
||||
"聚烯烃价格预测GRU模型-次二月": "SELF0000305",
|
||||
"聚烯烃价格预测TCN模型-次二月": "SELF0000306",
|
||||
"聚烯烃价格预测BiTCN模型-次二月": "SELF0000307",
|
||||
"聚烯烃价格预测DilatedRNN模型-次二月": "SELF0000308",
|
||||
"聚烯烃价格预测MLP模型-次二月": "SELF0000309",
|
||||
"聚烯烃价格预测DLinear模型-次二月": "SELF0000310",
|
||||
"聚烯烃价格预测NLinear模型-次二月": "SELF0000311",
|
||||
"聚烯烃价格预测TFT模型-次二月": "SELF0000312",
|
||||
"聚烯烃价格预测FEDformer模型-次二月": "SELF0000313",
|
||||
"聚烯烃价格预测StemGNN模型-次二月": "SELF0000314",
|
||||
"聚烯烃价格预测MLPMultivariate模型-次二月": "SELF0000315",
|
||||
"聚烯烃价格预测TiDE模型-次二月": "SELF0000316",
|
||||
"聚烯烃价格预测DeepNPTS模型-次二月": "SELF0000317",
|
||||
"聚烯烃价格预测NBEATS模型-次二月": "SELF0000318",
|
||||
"聚烯烃价格预测NHITS模型-次三月": "SELF0000319",
|
||||
"聚烯烃价格预测Informer模型-次三月": "SELF0000320",
|
||||
"聚烯烃价格预测LSTM模型-次三月": "SELF0000321",
|
||||
"聚烯烃价格预测iTransformer模型-次三月": "SELF0000322",
|
||||
"聚烯烃价格预测TSMixer模型-次三月": "SELF0000323",
|
||||
"聚烯烃价格预测TSMixerx模型-次三月": "SELF0000324",
|
||||
"聚烯烃价格预测PatchTST模型-次三月": "SELF0000325",
|
||||
"聚烯烃价格预测RNN模型-次三月": "SELF0000326",
|
||||
"聚烯烃价格预测GRU模型-次三月": "SELF0000327",
|
||||
"聚烯烃价格预测TCN模型-次三月": "SELF0000328",
|
||||
"聚烯烃价格预测BiTCN模型-次三月": "SELF0000329",
|
||||
"聚烯烃价格预测DilatedRNN模型-次三月": "SELF0000330",
|
||||
"聚烯烃价格预测MLP模型-次三月": "SELF0000331",
|
||||
"聚烯烃价格预测DLinear模型-次三月": "SELF0000332",
|
||||
"聚烯烃价格预测NLinear模型-次三月": "SELF0000333",
|
||||
"聚烯烃价格预测TFT模型-次三月": "SELF0000334",
|
||||
"聚烯烃价格预测FEDformer模型-次三月": "SELF0000335",
|
||||
"聚烯烃价格预测StemGNN模型-次三月": "SELF0000336",
|
||||
"聚烯烃价格预测MLPMultivariate模型-次三月": "SELF0000337",
|
||||
"聚烯烃价格预测TiDE模型-次三月": "SELF0000338",
|
||||
"聚烯烃价格预测DeepNPTS模型-次三月": "SELF0000339",
|
||||
"聚烯烃价格预测NBEATS模型-次三月": "SELF0000340",
|
||||
"聚烯烃价格预测NHITS模型-次四月": "SELF0000341",
|
||||
"聚烯烃价格预测Informer模型-次四月": "SELF0000342",
|
||||
"聚烯烃价格预测LSTM模型-次四月": "SELF0000343",
|
||||
"聚烯烃价格预测iTransformer模型-次四月": "SELF0000344",
|
||||
"聚烯烃价格预测TSMixer模型-次四月": "SELF0000345",
|
||||
"聚烯烃价格预测TSMixerx模型-次四月": "SELF0000346",
|
||||
"聚烯烃价格预测PatchTST模型-次四月": "SELF0000347",
|
||||
"聚烯烃价格预测RNN模型-次四月": "SELF0000348",
|
||||
"聚烯烃价格预测GRU模型-次四月": "SELF0000349",
|
||||
"聚烯烃价格预测TCN模型-次四月": "SELF0000350",
|
||||
"聚烯烃价格预测BiTCN模型-次四月": "SELF0000351",
|
||||
"聚烯烃价格预测DilatedRNN模型-次四月": "SELF0000352",
|
||||
"聚烯烃价格预测MLP模型-次四月": "SELF0000353",
|
||||
"聚烯烃价格预测DLinear模型-次四月": "SELF0000354",
|
||||
"聚烯烃价格预测NLinear模型-次四月": "SELF0000355",
|
||||
"聚烯烃价格预测TFT模型-次四月": "SELF0000356",
|
||||
"聚烯烃价格预测FEDformer模型-次四月": "SELF0000357",
|
||||
"聚烯烃价格预测StemGNN模型-次四月": "SELF0000358",
|
||||
"聚烯烃价格预测MLPMultivariate模型-次四月": "SELF0000359",
|
||||
"聚烯烃价格预测TiDE模型-次四月": "SELF0000360",
|
||||
"聚烯烃价格预测DeepNPTS模型-次四月": "SELF0000361",
|
||||
"聚烯烃价格预测NBEATS模型-次四月": "SELF0000362",
|
||||
"石油焦-铝用价格预测NHITS模型-次日": "SELF0000363",
|
||||
"石油焦-铝用价格预测Informer模型-次日": "SELF0000364",
|
||||
"石油焦-铝用价格预测LSTM模型-次日": "SELF0000365",
|
||||
"石油焦-铝用价格预测iTransformer模型-次日": "SELF0000366",
|
||||
"石油焦-铝用价格预测TSMixer模型-次日": "SELF0000367",
|
||||
"石油焦-铝用价格预测TSMixerx模型-次日": "SELF0000368",
|
||||
"石油焦-铝用价格预测PatchTST模型-次日": "SELF0000369",
|
||||
"石油焦-铝用价格预测RNN模型-次日": "SELF0000370",
|
||||
"石油焦-铝用价格预测GRU模型-次日": "SELF0000371",
|
||||
"石油焦-铝用价格预测TCN模型-次日": "SELF0000372",
|
||||
"石油焦-铝用价格预测BiTCN模型-次日": "SELF0000373",
|
||||
"石油焦-铝用价格预测DilatedRNN模型-次日": "SELF0000374",
|
||||
"石油焦-铝用价格预测MLP模型-次日": "SELF0000375",
|
||||
"石油焦-铝用价格预测DLinear模型-次日": "SELF0000376",
|
||||
"石油焦-铝用价格预测NLinear模型-次日": "SELF0000377",
|
||||
"石油焦-铝用价格预测TFT模型-次日": "SELF0000378",
|
||||
"石油焦-铝用价格预测FEDformer模型-次日": "SELF0000379",
|
||||
"石油焦-铝用价格预测StemGNN模型-次日": "SELF0000380",
|
||||
"石油焦-铝用价格预测MLPMultivariate模型-次日": "SELF0000381",
|
||||
"石油焦-铝用价格预测TiDE模型-次日": "SELF0000382",
|
||||
"石油焦-铝用价格预测DeepNPTS模型-次日": "SELF0000383",
|
||||
"石油焦-铝用价格预测NBEATS模型-次日": "SELF0000384",
|
||||
"石油焦-铝用价格预测NHITS模型-本周": "SELF0000385",
|
||||
"石油焦-铝用价格预测Informer模型-本周": "SELF0000386",
|
||||
"石油焦-铝用价格预测LSTM模型-本周": "SELF0000387",
|
||||
"石油焦-铝用价格预测iTransformer模型-本周": "SELF0000388",
|
||||
"石油焦-铝用价格预测TSMixer模型-本周": "SELF0000389",
|
||||
"石油焦-铝用价格预测TSMixerx模型-本周": "SELF0000390",
|
||||
"石油焦-铝用价格预测PatchTST模型-本周": "SELF0000391",
|
||||
"石油焦-铝用价格预测RNN模型-本周": "SELF0000392",
|
||||
"石油焦-铝用价格预测GRU模型-本周": "SELF0000393",
|
||||
"石油焦-铝用价格预测TCN模型-本周": "SELF0000394",
|
||||
"石油焦-铝用价格预测BiTCN模型-本周": "SELF0000395",
|
||||
"石油焦-铝用价格预测DilatedRNN模型-本周": "SELF0000396",
|
||||
"石油焦-铝用价格预测MLP模型-本周": "SELF0000397",
|
||||
"石油焦-铝用价格预测DLinear模型-本周": "SELF0000398",
|
||||
"石油焦-铝用价格预测NLinear模型-本周": "SELF0000399",
|
||||
"石油焦-铝用价格预测TFT模型-本周": "SELF0000400",
|
||||
"石油焦-铝用价格预测FEDformer模型-本周": "SELF0000401",
|
||||
"石油焦-铝用价格预测StemGNN模型-本周": "SELF0000402",
|
||||
"石油焦-铝用价格预测MLPMultivariate模型-本周": "SELF0000403",
|
||||
"石油焦-铝用价格预测TiDE模型-本周": "SELF0000404",
|
||||
"石油焦-铝用价格预测DeepNPTS模型-本周": "SELF0000405",
|
||||
"石油焦-铝用价格预测NBEATS模型-本周": "SELF0000406",
|
||||
"石油焦-铝用价格预测NHITS模型-次周": "SELF0000407",
|
||||
"石油焦-铝用价格预测Informer模型-次周": "SELF0000408",
|
||||
"石油焦-铝用价格预测LSTM模型-次周": "SELF0000409",
|
||||
"石油焦-铝用价格预测iTransformer模型-次周": "SELF0000410",
|
||||
"石油焦-铝用价格预测TSMixer模型-次周": "SELF0000411",
|
||||
"石油焦-铝用价格预测TSMixerx模型-次周": "SELF0000412",
|
||||
"石油焦-铝用价格预测PatchTST模型-次周": "SELF0000413",
|
||||
"石油焦-铝用价格预测RNN模型-次周": "SELF0000414",
|
||||
"石油焦-铝用价格预测GRU模型-次周": "SELF0000415",
|
||||
"石油焦-铝用价格预测TCN模型-次周": "SELF0000416",
|
||||
"石油焦-铝用价格预测BiTCN模型-次周": "SELF0000417",
|
||||
"石油焦-铝用价格预测DilatedRNN模型-次周": "SELF0000418",
|
||||
"石油焦-铝用价格预测MLP模型-次周": "SELF0000419",
|
||||
"石油焦-铝用价格预测DLinear模型-次周": "SELF0000420",
|
||||
"石油焦-铝用价格预测NLinear模型-次周": "SELF0000421",
|
||||
"石油焦-铝用价格预测TFT模型-次周": "SELF0000422",
|
||||
"石油焦-铝用价格预测FEDformer模型-次周": "SELF0000423",
|
||||
"石油焦-铝用价格预测StemGNN模型-次周": "SELF0000424",
|
||||
"石油焦-铝用价格预测MLPMultivariate模型-次周": "SELF0000425",
|
||||
"石油焦-铝用价格预测TiDE模型-次周": "SELF0000426",
|
||||
"石油焦-铝用价格预测DeepNPTS模型-次周": "SELF0000427",
|
||||
"石油焦-铝用价格预测NBEATS模型-次周": "SELF0000428",
|
||||
"石油焦-铝用价格预测NHITS模型-隔周": "SELF0000429",
|
||||
"石油焦-铝用价格预测Informer模型-隔周": "SELF0000430",
|
||||
"石油焦-铝用价格预测LSTM模型-隔周": "SELF0000431",
|
||||
"石油焦-铝用价格预测iTransformer模型-隔周": "SELF0000432",
|
||||
"石油焦-铝用价格预测TSMixer模型-隔周": "SELF0000433",
|
||||
"石油焦-铝用价格预测TSMixerx模型-隔周": "SELF0000434",
|
||||
"石油焦-铝用价格预测PatchTST模型-隔周": "SELF0000435",
|
||||
"石油焦-铝用价格预测RNN模型-隔周": "SELF0000436",
|
||||
"石油焦-铝用价格预测GRU模型-隔周": "SELF0000437",
|
||||
"石油焦-铝用价格预测TCN模型-隔周": "SELF0000438",
|
||||
"石油焦-铝用价格预测BiTCN模型-隔周": "SELF0000439",
|
||||
"石油焦-铝用价格预测DilatedRNN模型-隔周": "SELF0000440",
|
||||
"石油焦-铝用价格预测MLP模型-隔周": "SELF0000441",
|
||||
"石油焦-铝用价格预测DLinear模型-隔周": "SELF0000442",
|
||||
"石油焦-铝用价格预测NLinear模型-隔周": "SELF0000443",
|
||||
"石油焦-铝用价格预测TFT模型-隔周": "SELF0000444",
|
||||
"石油焦-铝用价格预测FEDformer模型-隔周": "SELF0000445",
|
||||
"石油焦-铝用价格预测StemGNN模型-隔周": "SELF0000446",
|
||||
"石油焦-铝用价格预测MLPMultivariate模型-隔周": "SELF0000447",
|
||||
"石油焦-铝用价格预测TiDE模型-隔周": "SELF0000448",
|
||||
"石油焦-铝用价格预测DeepNPTS模型-隔周": "SELF0000449",
|
||||
"石油焦-铝用价格预测NBEATS模型-隔周": "SELF0000450",
|
||||
"石油焦-铝用价格预测NHITS模型-次月": "SELF0000451",
|
||||
"石油焦-铝用价格预测Informer模型-次月": "SELF0000452",
|
||||
"石油焦-铝用价格预测LSTM模型-次月": "SELF0000453",
|
||||
"石油焦-铝用价格预测iTransformer模型-次月": "SELF0000454",
|
||||
"石油焦-铝用价格预测TSMixer模型-次月": "SELF0000455",
|
||||
"石油焦-铝用价格预测TSMixerx模型-次月": "SELF0000456",
|
||||
"石油焦-铝用价格预测PatchTST模型-次月": "SELF0000457",
|
||||
"石油焦-铝用价格预测RNN模型-次月": "SELF0000458",
|
||||
"石油焦-铝用价格预测GRU模型-次月": "SELF0000459",
|
||||
"石油焦-铝用价格预测TCN模型-次月": "SELF0000460",
|
||||
"石油焦-铝用价格预测BiTCN模型-次月": "SELF0000461",
|
||||
"石油焦-铝用价格预测DilatedRNN模型-次月": "SELF0000462",
|
||||
"石油焦-铝用价格预测MLP模型-次月": "SELF0000463",
|
||||
"石油焦-铝用价格预测DLinear模型-次月": "SELF0000464",
|
||||
"石油焦-铝用价格预测NLinear模型-次月": "SELF0000465",
|
||||
"石油焦-铝用价格预测TFT模型-次月": "SELF0000466",
|
||||
"石油焦-铝用价格预测FEDformer模型-次月": "SELF0000467",
|
||||
"石油焦-铝用价格预测StemGNN模型-次月": "SELF0000468",
|
||||
"石油焦-铝用价格预测MLPMultivariate模型-次月": "SELF0000469",
|
||||
"石油焦-铝用价格预测TiDE模型-次月": "SELF0000470",
|
||||
"石油焦-铝用价格预测DeepNPTS模型-次月": "SELF0000471",
|
||||
"石油焦-铝用价格预测NBEATS模型-次月": "SELF0000472",
|
||||
"石油焦-铝用价格预测NHITS模型-次二月": "SELF0000473",
|
||||
"石油焦-铝用价格预测Informer模型-次二月": "SELF0000474",
|
||||
"石油焦-铝用价格预测LSTM模型-次二月": "SELF0000475",
|
||||
"石油焦-铝用价格预测iTransformer模型-次二月": "SELF0000476",
|
||||
"石油焦-铝用价格预测TSMixer模型-次二月": "SELF0000477",
|
||||
"石油焦-铝用价格预测TSMixerx模型-次二月": "SELF0000478",
|
||||
"石油焦-铝用价格预测PatchTST模型-次二月": "SELF0000479",
|
||||
"石油焦-铝用价格预测RNN模型-次二月": "SELF0000480",
|
||||
"石油焦-铝用价格预测GRU模型-次二月": "SELF0000481",
|
||||
"石油焦-铝用价格预测TCN模型-次二月": "SELF0000482",
|
||||
"石油焦-铝用价格预测BiTCN模型-次二月": "SELF0000483",
|
||||
"石油焦-铝用价格预测DilatedRNN模型-次二月": "SELF0000484",
|
||||
"石油焦-铝用价格预测MLP模型-次二月": "SELF0000485",
|
||||
"石油焦-铝用价格预测DLinear模型-次二月": "SELF0000486",
|
||||
"石油焦-铝用价格预测NLinear模型-次二月": "SELF0000487",
|
||||
"石油焦-铝用价格预测TFT模型-次二月": "SELF0000488",
|
||||
"石油焦-铝用价格预测FEDformer模型-次二月": "SELF0000489",
|
||||
"石油焦-铝用价格预测StemGNN模型-次二月": "SELF0000490",
|
||||
"石油焦-铝用价格预测MLPMultivariate模型-次二月": "SELF0000491",
|
||||
"石油焦-铝用价格预测TiDE模型-次二月": "SELF0000492",
|
||||
"石油焦-铝用价格预测DeepNPTS模型-次二月": "SELF0000493",
|
||||
"石油焦-铝用价格预测NBEATS模型-次二月": "SELF0000494",
|
||||
"石油焦-铝用价格预测NHITS模型-次三月": "SELF0000495",
|
||||
"石油焦-铝用价格预测Informer模型-次三月": "SELF0000496",
|
||||
"石油焦-铝用价格预测LSTM模型-次三月": "SELF0000497",
|
||||
"石油焦-铝用价格预测iTransformer模型-次三月": "SELF0000498",
|
||||
"石油焦-铝用价格预测TSMixer模型-次三月": "SELF0000499",
|
||||
"石油焦-铝用价格预测TSMixerx模型-次三月": "SELF0000500",
|
||||
"石油焦-铝用价格预测PatchTST模型-次三月": "SELF0000501",
|
||||
"石油焦-铝用价格预测RNN模型-次三月": "SELF0000502",
|
||||
"石油焦-铝用价格预测GRU模型-次三月": "SELF0000503",
|
||||
"石油焦-铝用价格预测TCN模型-次三月": "SELF0000504",
|
||||
"石油焦-铝用价格预测BiTCN模型-次三月": "SELF0000505",
|
||||
"石油焦-铝用价格预测DilatedRNN模型-次三月": "SELF0000506",
|
||||
"石油焦-铝用价格预测MLP模型-次三月": "SELF0000507",
|
||||
"石油焦-铝用价格预测DLinear模型-次三月": "SELF0000508",
|
||||
"石油焦-铝用价格预测NLinear模型-次三月": "SELF0000509",
|
||||
"石油焦-铝用价格预测TFT模型-次三月": "SELF0000510",
|
||||
"石油焦-铝用价格预测FEDformer模型-次三月": "SELF0000511",
|
||||
"石油焦-铝用价格预测StemGNN模型-次三月": "SELF0000512",
|
||||
"石油焦-铝用价格预测MLPMultivariate模型-次三月": "SELF0000513",
|
||||
"石油焦-铝用价格预测TiDE模型-次三月": "SELF0000514",
|
||||
"石油焦-铝用价格预测DeepNPTS模型-次三月": "SELF0000515",
|
||||
"石油焦-铝用价格预测NBEATS模型-次三月": "SELF0000516",
|
||||
"石油焦-铝用价格预测NHITS模型-次四月": "SELF0000517",
|
||||
"石油焦-铝用价格预测Informer模型-次四月": "SELF0000518",
|
||||
"石油焦-铝用价格预测LSTM模型-次四月": "SELF0000519",
|
||||
"石油焦-铝用价格预测iTransformer模型-次四月": "SELF0000520",
|
||||
"石油焦-铝用价格预测TSMixer模型-次四月": "SELF0000521",
|
||||
"石油焦-铝用价格预测TSMixerx模型-次四月": "SELF0000522",
|
||||
"石油焦-铝用价格预测PatchTST模型-次四月": "SELF0000523",
|
||||
"石油焦-铝用价格预测RNN模型-次四月": "SELF0000524",
|
||||
"石油焦-铝用价格预测GRU模型-次四月": "SELF0000525",
|
||||
"石油焦-铝用价格预测TCN模型-次四月": "SELF0000526",
|
||||
"石油焦-铝用价格预测BiTCN模型-次四月": "SELF0000527",
|
||||
"石油焦-铝用价格预测DilatedRNN模型-次四月": "SELF0000528",
|
||||
"石油焦-铝用价格预测MLP模型-次四月": "SELF0000529",
|
||||
"石油焦-铝用价格预测DLinear模型-次四月": "SELF0000530",
|
||||
"石油焦-铝用价格预测NLinear模型-次四月": "SELF0000531",
|
||||
"石油焦-铝用价格预测TFT模型-次四月": "SELF0000532",
|
||||
"石油焦-铝用价格预测FEDformer模型-次四月": "SELF0000533",
|
||||
"石油焦-铝用价格预测StemGNN模型-次四月": "SELF0000534",
|
||||
"石油焦-铝用价格预测MLPMultivariate模型-次四月": "SELF0000535",
|
||||
"石油焦-铝用价格预测TiDE模型-次四月": "SELF0000536",
|
||||
"石油焦-铝用价格预测DeepNPTS模型-次四月": "SELF0000537",
|
||||
"石油焦-铝用价格预测NBEATS模型-次四月": "SELF0000538",
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -301,42 +301,42 @@ def predict_main():
|
||||
|
||||
# 判断当前日期是不是周一
|
||||
is_weekday = datetime.datetime.now().weekday() == 0
|
||||
if is_weekday:
|
||||
logger.info('今天是周一,更新预测模型')
|
||||
# 计算最近60天预测残差最低的模型名称
|
||||
model_results = sqlitedb.select_data(
|
||||
'trueandpredict', order_by="ds DESC", limit="60")
|
||||
# 删除空值率为90%以上的列
|
||||
if len(model_results) > 10:
|
||||
model_results = model_results.dropna(
|
||||
thresh=len(model_results)*0.1, axis=1)
|
||||
# 删除空行
|
||||
model_results = model_results.dropna()
|
||||
modelnames = model_results.columns.to_list()[2:-2]
|
||||
for col in model_results[modelnames].select_dtypes(include=['object']).columns:
|
||||
model_results[col] = model_results[col].astype(np.float32)
|
||||
# 计算每个预测值与真实值之间的偏差率
|
||||
for model in modelnames:
|
||||
model_results[f'{model}_abs_error_rate'] = abs(
|
||||
model_results['y'] - model_results[model]) / model_results['y']
|
||||
# 获取每行对应的最小偏差率值
|
||||
min_abs_error_rate_values = model_results.apply(
|
||||
lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
|
||||
# 获取每行对应的最小偏差率值对应的列名
|
||||
min_abs_error_rate_column_name = model_results.apply(
|
||||
lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
|
||||
# 将列名索引转换为列名
|
||||
min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(
|
||||
lambda x: x.split('_')[0])
|
||||
# 取出现次数最多的模型名称
|
||||
most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
|
||||
logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}")
|
||||
# 保存结果到数据库
|
||||
if not sqlitedb.check_table_exists('most_model'):
|
||||
sqlitedb.create_table(
|
||||
'most_model', columns="ds datetime, most_common_model TEXT")
|
||||
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime(
|
||||
'%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
|
||||
# if is_weekday:
|
||||
# logger.info('今天是周一,更新预测模型')
|
||||
# # 计算最近60天预测残差最低的模型名称
|
||||
# model_results = sqlitedb.select_data(
|
||||
# 'trueandpredict', order_by="ds DESC", limit="60")
|
||||
# # 删除空值率为90%以上的列
|
||||
# if len(model_results) > 10:
|
||||
# model_results = model_results.dropna(
|
||||
# thresh=len(model_results)*0.1, axis=1)
|
||||
# # 删除空行
|
||||
# model_results = model_results.dropna()
|
||||
# modelnames = model_results.columns.to_list()[2:-2]
|
||||
# for col in model_results[modelnames].select_dtypes(include=['object']).columns:
|
||||
# model_results[col] = model_results[col].astype(np.float32)
|
||||
# # 计算每个预测值与真实值之间的偏差率
|
||||
# for model in modelnames:
|
||||
# model_results[f'{model}_abs_error_rate'] = abs(
|
||||
# model_results['y'] - model_results[model]) / model_results['y']
|
||||
# # 获取每行对应的最小偏差率值
|
||||
# min_abs_error_rate_values = model_results.apply(
|
||||
# lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
|
||||
# # 获取每行对应的最小偏差率值对应的列名
|
||||
# min_abs_error_rate_column_name = model_results.apply(
|
||||
# lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
|
||||
# # 将列名索引转换为列名
|
||||
# min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(
|
||||
# lambda x: x.split('_')[0])
|
||||
# # 取出现次数最多的模型名称
|
||||
# most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
|
||||
# logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}")
|
||||
# # 保存结果到数据库
|
||||
# if not sqlitedb.check_table_exists('most_model'):
|
||||
# sqlitedb.create_table(
|
||||
# 'most_model', columns="ds datetime, most_common_model TEXT")
|
||||
# sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime(
|
||||
# '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
|
||||
|
||||
if is_corr:
|
||||
df = corr_feature(df=df)
|
||||
@ -375,17 +375,17 @@ def predict_main():
|
||||
logger.info('训练数据绘图end')
|
||||
|
||||
# # 模型报告
|
||||
logger.info('制作报告ing')
|
||||
title = f'{settings}--{end_time}-预测报告' # 报告标题
|
||||
reportname = f'聚烯烃PP大模型周度预测--{end_time}.pdf' # 报告文件名
|
||||
reportname = reportname.replace(':', '-') # 替换冒号
|
||||
pp_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time,
|
||||
reportname=reportname, sqlitedb=sqlitedb),
|
||||
# logger.info('制作报告ing')
|
||||
# title = f'{settings}--{end_time}-预测报告' # 报告标题
|
||||
# reportname = f'聚烯烃PP大模型周度预测--{end_time}.pdf' # 报告文件名
|
||||
# reportname = reportname.replace(':', '-') # 替换冒号
|
||||
# pp_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time,
|
||||
# reportname=reportname, sqlitedb=sqlitedb),
|
||||
|
||||
logger.info('制作报告end')
|
||||
logger.info('模型训练完成')
|
||||
# logger.info('制作报告end')
|
||||
# logger.info('模型训练完成')
|
||||
|
||||
push_market_value()
|
||||
# push_market_value()
|
||||
|
||||
# # LSTM 单变量模型
|
||||
# ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset)
|
||||
@ -412,12 +412,11 @@ def predict_main():
|
||||
if __name__ == '__main__':
|
||||
# global end_time
|
||||
# 遍历2024-11-25 到 2024-12-3 之间的工作日日期
|
||||
# for i_time in pd.date_range('2022-1-1', '2025-3-26', freq='M'):
|
||||
# try:
|
||||
# global_config['end_time'] = i_time.strftime('%Y-%m-%d')
|
||||
# predict_main()
|
||||
# except Exception as e:
|
||||
# logger.info(f'预测失败:{e}')
|
||||
# continue
|
||||
|
||||
predict_main()
|
||||
for i_time in pd.date_range('2025-3-1', '2025-5-26', freq='W'):
|
||||
try:
|
||||
global_config['end_time'] = i_time.strftime('%Y-%m-%d')
|
||||
predict_main()
|
||||
except Exception as e:
|
||||
logger.info(f'预测失败:{e}')
|
||||
continue
|
||||
# predict_main()
|
||||
|
Loading…
Reference in New Issue
Block a user