更改上传数据日期格式
This commit is contained in:
parent
9dee0f810c
commit
49a0998126
@ -198,7 +198,7 @@ table_name = 'v_tbl_crude_oil_warning'
|
|||||||
|
|
||||||
# 开关
|
# 开关
|
||||||
is_train = True # 是否训练
|
is_train = True # 是否训练
|
||||||
is_debug = True # 是否调试
|
is_debug = False # 是否调试
|
||||||
is_eta = True # 是否使用eta接口
|
is_eta = True # 是否使用eta接口
|
||||||
is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
|
is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
|
||||||
is_timefurture = True # 是否使用时间特征
|
is_timefurture = True # 是否使用时间特征
|
||||||
@ -206,7 +206,7 @@ is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
|||||||
is_edbcode = False # 特征使用edbcoding列表中的
|
is_edbcode = False # 特征使用edbcoding列表中的
|
||||||
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
||||||
is_update_eta = False # 预测结果上传到eta
|
is_update_eta = False # 预测结果上传到eta
|
||||||
is_update_report = False # 是否上传报告
|
is_update_report = True # 是否上传报告
|
||||||
is_update_warning_data = False # 是否上传预警数据
|
is_update_warning_data = False # 是否上传预警数据
|
||||||
is_update_predict_value = True # 是否上传预测值到市场信息平台
|
is_update_predict_value = True # 是否上传预测值到市场信息平台
|
||||||
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
||||||
|
@ -194,7 +194,7 @@ table_name = 'v_tbl_crude_oil_warning'
|
|||||||
|
|
||||||
|
|
||||||
# 开关
|
# 开关
|
||||||
is_train = False # 是否训练
|
is_train = True # 是否训练
|
||||||
is_debug = False # 是否调试
|
is_debug = False # 是否调试
|
||||||
is_eta = True # 是否使用eta接口
|
is_eta = True # 是否使用eta接口
|
||||||
is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
|
is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
|
||||||
@ -203,7 +203,7 @@ is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
|||||||
is_edbcode = False # 特征使用edbcoding列表中的
|
is_edbcode = False # 特征使用edbcoding列表中的
|
||||||
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
||||||
is_update_eta = False # 预测结果上传到eta
|
is_update_eta = False # 预测结果上传到eta
|
||||||
is_update_report = False # 是否上传报告
|
is_update_report = True # 是否上传报告
|
||||||
is_update_warning_data = False # 是否上传预警数据
|
is_update_warning_data = False # 是否上传预警数据
|
||||||
is_update_predict_value = True # 是否上传预测值到市场信息平台
|
is_update_predict_value = True # 是否上传预测值到市场信息平台
|
||||||
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
||||||
|
@ -195,14 +195,14 @@ table_name = 'v_tbl_crude_oil_warning'
|
|||||||
# 开关
|
# 开关
|
||||||
is_train = True # 是否训练
|
is_train = True # 是否训练
|
||||||
is_debug = False # 是否调试
|
is_debug = False # 是否调试
|
||||||
is_eta = False # 是否使用eta接口
|
is_eta = True # 是否使用eta接口
|
||||||
is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
|
is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
|
||||||
is_timefurture = True # 是否使用时间特征
|
is_timefurture = True # 是否使用时间特征
|
||||||
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
||||||
is_edbcode = False # 特征使用edbcoding列表中的
|
is_edbcode = False # 特征使用edbcoding列表中的
|
||||||
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
||||||
is_update_eta = False # 预测结果上传到eta
|
is_update_eta = False # 预测结果上传到eta
|
||||||
is_update_report = False # 是否上传报告
|
is_update_report = True # 是否上传报告
|
||||||
is_update_warning_data = False # 是否上传预警数据
|
is_update_warning_data = False # 是否上传预警数据
|
||||||
is_update_predict_value = True # 是否上传预测值到市场信息平台
|
is_update_predict_value = True # 是否上传预测值到市场信息平台
|
||||||
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
||||||
|
@ -105,17 +105,20 @@ def push_market_value():
|
|||||||
# 准备要推送的数据
|
# 准备要推送的数据
|
||||||
first_mean = predictdata_df['top_models_mean'].iloc[0]
|
first_mean = predictdata_df['top_models_mean'].iloc[0]
|
||||||
last_mean = predictdata_df['top_models_mean'].iloc[-1]
|
last_mean = predictdata_df['top_models_mean'].iloc[-1]
|
||||||
|
# 保留两位小数
|
||||||
|
first_mean = round(first_mean, 2)
|
||||||
|
last_mean = round(last_mean, 2)
|
||||||
|
|
||||||
predictdata = [
|
predictdata = [
|
||||||
{
|
{
|
||||||
"dataItemNo": global_config['bdwd_items']['ciri'],
|
"dataItemNo": global_config['bdwd_items']['ciri'],
|
||||||
"dataDate": global_config['end_time'],
|
"dataDate": global_config['end_time'].replace('-',''),
|
||||||
"dataStatus": "add",
|
"dataStatus": "add",
|
||||||
"dataValue": first_mean
|
"dataValue": first_mean
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"dataItemNo": global_config['bdwd_items']['benzhou'],
|
"dataItemNo": global_config['bdwd_items']['benzhou'],
|
||||||
"dataDate": global_config['end_time'],
|
"dataDate": global_config['end_time'].replace('-',''),
|
||||||
"dataStatus": "add",
|
"dataStatus": "add",
|
||||||
"dataValue": last_mean
|
"dataValue": last_mean
|
||||||
}
|
}
|
||||||
|
@ -107,29 +107,34 @@ def push_market_value():
|
|||||||
cieryue_mean = predictdata_df['top_models_mean'].iloc[1]
|
cieryue_mean = predictdata_df['top_models_mean'].iloc[1]
|
||||||
cisanyue_mean = predictdata_df['top_models_mean'].iloc[2]
|
cisanyue_mean = predictdata_df['top_models_mean'].iloc[2]
|
||||||
cisieryue_mean = predictdata_df['top_models_mean'].iloc[3]
|
cisieryue_mean = predictdata_df['top_models_mean'].iloc[3]
|
||||||
|
# 保留两位小数
|
||||||
|
ciyue_mean = round(ciyue_mean, 2)
|
||||||
|
cieryue_mean = round(cieryue_mean, 2)
|
||||||
|
cisanyue_mean = round(cisanyue_mean, 2)
|
||||||
|
cisieryue_mean = round(cisieryue_mean, 2)
|
||||||
|
|
||||||
predictdata = [
|
predictdata = [
|
||||||
{
|
{
|
||||||
"dataItemNo": global_config['bdwd_items']['ciyue'],
|
"dataItemNo": global_config['bdwd_items']['ciyue'],
|
||||||
"dataDate": global_config['end_time'],
|
"dataDate": global_config['end_time'].replace('-',''),
|
||||||
"dataStatus": "add",
|
"dataStatus": "add",
|
||||||
"dataValue": ciyue_mean
|
"dataValue": ciyue_mean
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"dataItemNo": global_config['bdwd_items']['cieryue'],
|
"dataItemNo": global_config['bdwd_items']['cieryue'],
|
||||||
"dataDate": global_config['end_time'],
|
"dataDate": global_config['end_time'].replace('-',''),
|
||||||
"dataStatus": "add",
|
"dataStatus": "add",
|
||||||
"dataValue": cieryue_mean
|
"dataValue": cieryue_mean
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"dataItemNo": global_config['bdwd_items']['cisanyue'],
|
"dataItemNo": global_config['bdwd_items']['cisanyue'],
|
||||||
"dataDate": global_config['end_time'],
|
"dataDate": global_config['end_time'].replace('-',''),
|
||||||
"dataStatus": "add",
|
"dataStatus": "add",
|
||||||
"dataValue": cisanyue_mean
|
"dataValue": cisanyue_mean
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"dataItemNo": global_config['bdwd_items']['cisiyue'],
|
"dataItemNo": global_config['bdwd_items']['cisiyue'],
|
||||||
"dataDate": global_config['end_time'],
|
"dataDate": global_config['end_time'].replace('-',''),
|
||||||
"dataStatus": "add",
|
"dataStatus": "add",
|
||||||
"dataValue": cisieryue_mean
|
"dataValue": cisieryue_mean
|
||||||
}
|
}
|
||||||
|
@ -105,17 +105,20 @@ def push_market_value():
|
|||||||
# 准备要推送的数据
|
# 准备要推送的数据
|
||||||
first_mean = predictdata_df['top_models_mean'].iloc[0]
|
first_mean = predictdata_df['top_models_mean'].iloc[0]
|
||||||
last_mean = predictdata_df['top_models_mean'].iloc[-1]
|
last_mean = predictdata_df['top_models_mean'].iloc[-1]
|
||||||
|
# 保留两位小数
|
||||||
|
first_mean = round(first_mean, 2)
|
||||||
|
last_mean = round(last_mean, 2)
|
||||||
|
|
||||||
predictdata = [
|
predictdata = [
|
||||||
{
|
{
|
||||||
"dataItemNo": global_config['bdwd_items']['cizhou'],
|
"dataItemNo": global_config['bdwd_items']['cizhou'],
|
||||||
"dataDate": global_config['end_time'],
|
"dataDate": global_config['end_time'].replace('-',''),
|
||||||
"dataStatus": "add",
|
"dataStatus": "add",
|
||||||
"dataValue": first_mean
|
"dataValue": first_mean
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"dataItemNo": global_config['bdwd_items']['gezhou'],
|
"dataItemNo": global_config['bdwd_items']['gezhou'],
|
||||||
"dataDate": global_config['end_time'],
|
"dataDate": global_config['end_time'].replace('-',''),
|
||||||
"dataStatus": "add",
|
"dataStatus": "add",
|
||||||
"dataValue": last_mean
|
"dataValue": last_mean
|
||||||
}
|
}
|
||||||
|
@ -165,7 +165,7 @@ def ex_Model(df, horizon, input_size, train_steps, val_check_steps, early_stop_p
|
|||||||
|
|
||||||
# VanillaTransformer(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ), //报错了
|
# VanillaTransformer(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ), //报错了
|
||||||
# Autoformer(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ), //报错了
|
# Autoformer(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ), //报错了
|
||||||
NBEATS(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ),
|
# NBEATS(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ),
|
||||||
# NBEATSx (h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard',activation='ReLU', ), //报错
|
# NBEATSx (h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard',activation='ReLU', ), //报错
|
||||||
# HINT(h=horizon),
|
# HINT(h=horizon),
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user