更改上传数据日期格式
This commit is contained in:
		
							parent
							
								
									9dee0f810c
								
							
						
					
					
						commit
						49a0998126
					
				@ -198,7 +198,7 @@ table_name = 'v_tbl_crude_oil_warning'
 | 
			
		||||
 | 
			
		||||
# 开关
 | 
			
		||||
is_train = True  # 是否训练
 | 
			
		||||
is_debug = True  # 是否调试
 | 
			
		||||
is_debug = False  # 是否调试
 | 
			
		||||
is_eta = True  # 是否使用eta接口
 | 
			
		||||
is_market = True  # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
 | 
			
		||||
is_timefurture = True  # 是否使用时间特征
 | 
			
		||||
@ -206,7 +206,7 @@ is_fivemodels = False  # 是否使用之前保存的最佳的5个模型
 | 
			
		||||
is_edbcode = False  # 特征使用edbcoding列表中的
 | 
			
		||||
is_edbnamelist = False  # 自定义特征,对应上面的edbnamelist
 | 
			
		||||
is_update_eta = False  # 预测结果上传到eta
 | 
			
		||||
is_update_report = False  # 是否上传报告
 | 
			
		||||
is_update_report = True  # 是否上传报告
 | 
			
		||||
is_update_warning_data = False  # 是否上传预警数据
 | 
			
		||||
is_update_predict_value = True  # 是否上传预测值到市场信息平台
 | 
			
		||||
is_del_corr = 0.6  # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
 | 
			
		||||
 | 
			
		||||
@ -194,7 +194,7 @@ table_name = 'v_tbl_crude_oil_warning'
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# 开关
 | 
			
		||||
is_train = False  # 是否训练
 | 
			
		||||
is_train = True  # 是否训练
 | 
			
		||||
is_debug = False  # 是否调试
 | 
			
		||||
is_eta = True  # 是否使用eta接口
 | 
			
		||||
is_market = True  # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
 | 
			
		||||
@ -203,7 +203,7 @@ is_fivemodels = False  # 是否使用之前保存的最佳的5个模型
 | 
			
		||||
is_edbcode = False  # 特征使用edbcoding列表中的
 | 
			
		||||
is_edbnamelist = False  # 自定义特征,对应上面的edbnamelist
 | 
			
		||||
is_update_eta = False  # 预测结果上传到eta
 | 
			
		||||
is_update_report = False  # 是否上传报告
 | 
			
		||||
is_update_report = True  # 是否上传报告
 | 
			
		||||
is_update_warning_data = False  # 是否上传预警数据
 | 
			
		||||
is_update_predict_value = True  # 是否上传预测值到市场信息平台
 | 
			
		||||
is_del_corr = 0.6  # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
 | 
			
		||||
 | 
			
		||||
@ -195,14 +195,14 @@ table_name = 'v_tbl_crude_oil_warning'
 | 
			
		||||
# 开关
 | 
			
		||||
is_train = True  # 是否训练
 | 
			
		||||
is_debug = False  # 是否调试
 | 
			
		||||
is_eta = False  # 是否使用eta接口
 | 
			
		||||
is_eta = True  # 是否使用eta接口
 | 
			
		||||
is_market = True  # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
 | 
			
		||||
is_timefurture = True  # 是否使用时间特征
 | 
			
		||||
is_fivemodels = False  # 是否使用之前保存的最佳的5个模型
 | 
			
		||||
is_edbcode = False  # 特征使用edbcoding列表中的
 | 
			
		||||
is_edbnamelist = False  # 自定义特征,对应上面的edbnamelist
 | 
			
		||||
is_update_eta = False  # 预测结果上传到eta
 | 
			
		||||
is_update_report = False  # 是否上传报告
 | 
			
		||||
is_update_report = True  # 是否上传报告
 | 
			
		||||
is_update_warning_data = False  # 是否上传预警数据
 | 
			
		||||
is_update_predict_value = True  # 是否上传预测值到市场信息平台
 | 
			
		||||
is_del_corr = 0.6  # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
 | 
			
		||||
 | 
			
		||||
@ -105,17 +105,20 @@ def push_market_value():
 | 
			
		||||
    # 准备要推送的数据
 | 
			
		||||
    first_mean = predictdata_df['top_models_mean'].iloc[0]
 | 
			
		||||
    last_mean = predictdata_df['top_models_mean'].iloc[-1]
 | 
			
		||||
    # 保留两位小数
 | 
			
		||||
    first_mean = round(first_mean, 2)
 | 
			
		||||
    last_mean = round(last_mean, 2)
 | 
			
		||||
 | 
			
		||||
    predictdata = [
 | 
			
		||||
        {
 | 
			
		||||
            "dataItemNo": global_config['bdwd_items']['ciri'],
 | 
			
		||||
            "dataDate": global_config['end_time'],
 | 
			
		||||
            "dataDate": global_config['end_time'].replace('-',''),
 | 
			
		||||
            "dataStatus": "add",
 | 
			
		||||
            "dataValue": first_mean
 | 
			
		||||
        },
 | 
			
		||||
        {
 | 
			
		||||
            "dataItemNo": global_config['bdwd_items']['benzhou'],
 | 
			
		||||
            "dataDate": global_config['end_time'],
 | 
			
		||||
            "dataDate": global_config['end_time'].replace('-',''),
 | 
			
		||||
            "dataStatus": "add",
 | 
			
		||||
            "dataValue": last_mean
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
@ -107,29 +107,34 @@ def push_market_value():
 | 
			
		||||
    cieryue_mean = predictdata_df['top_models_mean'].iloc[1]
 | 
			
		||||
    cisanyue_mean = predictdata_df['top_models_mean'].iloc[2]
 | 
			
		||||
    cisieryue_mean = predictdata_df['top_models_mean'].iloc[3]
 | 
			
		||||
    # 保留两位小数
 | 
			
		||||
    ciyue_mean = round(ciyue_mean, 2)
 | 
			
		||||
    cieryue_mean = round(cieryue_mean, 2)
 | 
			
		||||
    cisanyue_mean = round(cisanyue_mean, 2)
 | 
			
		||||
    cisieryue_mean = round(cisieryue_mean, 2)
 | 
			
		||||
 | 
			
		||||
    predictdata = [
 | 
			
		||||
        {
 | 
			
		||||
            "dataItemNo": global_config['bdwd_items']['ciyue'],
 | 
			
		||||
            "dataDate": global_config['end_time'],
 | 
			
		||||
            "dataDate": global_config['end_time'].replace('-',''),
 | 
			
		||||
            "dataStatus": "add",
 | 
			
		||||
            "dataValue": ciyue_mean
 | 
			
		||||
        },
 | 
			
		||||
        {
 | 
			
		||||
            "dataItemNo": global_config['bdwd_items']['cieryue'],
 | 
			
		||||
            "dataDate": global_config['end_time'],
 | 
			
		||||
            "dataDate": global_config['end_time'].replace('-',''),
 | 
			
		||||
            "dataStatus": "add",
 | 
			
		||||
            "dataValue": cieryue_mean
 | 
			
		||||
        },
 | 
			
		||||
        {
 | 
			
		||||
            "dataItemNo": global_config['bdwd_items']['cisanyue'],
 | 
			
		||||
            "dataDate": global_config['end_time'],
 | 
			
		||||
            "dataDate": global_config['end_time'].replace('-',''),
 | 
			
		||||
            "dataStatus": "add",
 | 
			
		||||
            "dataValue": cisanyue_mean
 | 
			
		||||
        },
 | 
			
		||||
        {
 | 
			
		||||
            "dataItemNo": global_config['bdwd_items']['cisiyue'],
 | 
			
		||||
            "dataDate": global_config['end_time'],
 | 
			
		||||
            "dataDate": global_config['end_time'].replace('-',''),
 | 
			
		||||
            "dataStatus": "add",
 | 
			
		||||
            "dataValue": cisieryue_mean
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
@ -105,17 +105,20 @@ def push_market_value():
 | 
			
		||||
    # 准备要推送的数据
 | 
			
		||||
    first_mean = predictdata_df['top_models_mean'].iloc[0]
 | 
			
		||||
    last_mean = predictdata_df['top_models_mean'].iloc[-1]
 | 
			
		||||
    # 保留两位小数
 | 
			
		||||
    first_mean = round(first_mean, 2)
 | 
			
		||||
    last_mean = round(last_mean, 2)
 | 
			
		||||
 | 
			
		||||
    predictdata = [
 | 
			
		||||
        {
 | 
			
		||||
            "dataItemNo": global_config['bdwd_items']['cizhou'],
 | 
			
		||||
            "dataDate": global_config['end_time'],
 | 
			
		||||
            "dataDate": global_config['end_time'].replace('-',''),
 | 
			
		||||
            "dataStatus": "add",
 | 
			
		||||
            "dataValue": first_mean
 | 
			
		||||
        },
 | 
			
		||||
        {
 | 
			
		||||
            "dataItemNo": global_config['bdwd_items']['gezhou'],
 | 
			
		||||
            "dataDate": global_config['end_time'],
 | 
			
		||||
            "dataDate": global_config['end_time'].replace('-',''),
 | 
			
		||||
            "dataStatus": "add",
 | 
			
		||||
            "dataValue": last_mean
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
@ -165,7 +165,7 @@ def ex_Model(df, horizon, input_size, train_steps, val_check_steps, early_stop_p
 | 
			
		||||
 | 
			
		||||
        # VanillaTransformer(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ),  //报错了
 | 
			
		||||
        # Autoformer(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ), //报错了
 | 
			
		||||
        NBEATS(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ),
 | 
			
		||||
        # NBEATS(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ),
 | 
			
		||||
        # NBEATSx (h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard',activation='ReLU', ),   //报错
 | 
			
		||||
        # HINT(h=horizon),
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user