周度预测,真实值数据未更新到数据表,从动态文件中读取
This commit is contained in:
parent
fa210fa6a8
commit
4b0b976d2a
@ -174,228 +174,228 @@ def predict_main():
|
|||||||
返回:
|
返回:
|
||||||
None
|
None
|
||||||
"""
|
"""
|
||||||
end_time = global_config['end_time']
|
# end_time = global_config['end_time']
|
||||||
|
|
||||||
signature = BinanceAPI(APPID, SECRET)
|
# signature = BinanceAPI(APPID, SECRET)
|
||||||
etadata = EtaReader(signature=signature,
|
# etadata = EtaReader(signature=signature,
|
||||||
classifylisturl=global_config['classifylisturl'],
|
# classifylisturl=global_config['classifylisturl'],
|
||||||
classifyidlisturl=global_config['classifyidlisturl'],
|
# classifyidlisturl=global_config['classifyidlisturl'],
|
||||||
edbcodedataurl=global_config['edbcodedataurl'],
|
# edbcodedataurl=global_config['edbcodedataurl'],
|
||||||
edbcodelist=global_config['edbcodelist'],
|
# edbcodelist=global_config['edbcodelist'],
|
||||||
edbdatapushurl=global_config['edbdatapushurl'],
|
# edbdatapushurl=global_config['edbdatapushurl'],
|
||||||
edbdeleteurl=global_config['edbdeleteurl'],
|
# edbdeleteurl=global_config['edbdeleteurl'],
|
||||||
edbbusinessurl=global_config['edbbusinessurl'],
|
# edbbusinessurl=global_config['edbbusinessurl'],
|
||||||
classifyId=global_config['ClassifyId'],
|
# classifyId=global_config['ClassifyId'],
|
||||||
)
|
# )
|
||||||
# 获取数据
|
# # 获取数据
|
||||||
if is_eta:
|
# if is_eta:
|
||||||
logger.info('从eta获取数据...')
|
# logger.info('从eta获取数据...')
|
||||||
|
|
||||||
df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(
|
# df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(
|
||||||
data_set=data_set, dataset=dataset) # 原始数据,未处理
|
# data_set=data_set, dataset=dataset) # 原始数据,未处理
|
||||||
|
|
||||||
if is_market:
|
# if is_market:
|
||||||
logger.info('从市场信息平台获取数据...')
|
# logger.info('从市场信息平台获取数据...')
|
||||||
try:
|
|
||||||
# 如果是测试环境,最高价最低价取excel文档
|
|
||||||
if server_host == '192.168.100.53':
|
|
||||||
logger.info('从excel文档获取最高价最低价')
|
|
||||||
df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
|
|
||||||
else:
|
|
||||||
logger.info('从市场信息平台获取数据')
|
|
||||||
df_zhibiaoshuju = get_market_data(
|
|
||||||
end_time, df_zhibiaoshuju)
|
|
||||||
|
|
||||||
except:
|
|
||||||
logger.info('最高最低价拼接失败')
|
|
||||||
|
|
||||||
# 保存到xlsx文件的sheet表
|
|
||||||
with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
|
|
||||||
df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
|
|
||||||
df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
|
|
||||||
|
|
||||||
# 数据处理
|
|
||||||
df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
|
|
||||||
end_time=end_time)
|
|
||||||
|
|
||||||
else:
|
|
||||||
# 读取数据
|
|
||||||
logger.info('读取本地数据:' + os.path.join(dataset, data_set))
|
|
||||||
df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
|
|
||||||
is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
|
|
||||||
|
|
||||||
# 更改预测列名称
|
|
||||||
df.rename(columns={y: 'y'}, inplace=True)
|
|
||||||
|
|
||||||
if is_edbnamelist:
|
|
||||||
df = df[edbnamelist]
|
|
||||||
df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False)
|
|
||||||
# 保存最新日期的y值到数据库
|
|
||||||
# 取第一行数据存储到数据库中
|
|
||||||
first_row = df[['ds', 'y']].tail(1)
|
|
||||||
# 判断y的类型是否为float
|
|
||||||
if not isinstance(first_row['y'].values[0], float):
|
|
||||||
logger.info(f'{end_time}预测目标数据为空,跳过')
|
|
||||||
return None
|
|
||||||
|
|
||||||
# 将最新真实值保存到数据库
|
|
||||||
if not sqlitedb.check_table_exists('trueandpredict'):
|
|
||||||
first_row.to_sql('trueandpredict', sqlitedb.connection, index=False)
|
|
||||||
else:
|
|
||||||
for row in first_row.itertuples(index=False):
|
|
||||||
row_dict = row._asdict()
|
|
||||||
config.logger.info(f'要保存的真实值:{row_dict}')
|
|
||||||
# 判断ds是否为字符串类型,如果不是则转换为字符串类型
|
|
||||||
if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)):
|
|
||||||
row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
|
|
||||||
elif not isinstance(row_dict['ds'], str):
|
|
||||||
try:
|
|
||||||
row_dict['ds'] = pd.to_datetime(
|
|
||||||
row_dict['ds']).strftime('%Y-%m-%d')
|
|
||||||
except:
|
|
||||||
logger.warning(f"无法解析的时间格式: {row_dict['ds']}")
|
|
||||||
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
|
|
||||||
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
|
|
||||||
check_query = sqlitedb.select_data(
|
|
||||||
'trueandpredict', where_condition=f"ds = '{row.ds}'")
|
|
||||||
if len(check_query) > 0:
|
|
||||||
set_clause = ", ".join(
|
|
||||||
[f"{key} = '{value}'" for key, value in row_dict.items()])
|
|
||||||
sqlitedb.update_data(
|
|
||||||
'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
|
|
||||||
continue
|
|
||||||
sqlitedb.insert_data('trueandpredict', tuple(
|
|
||||||
row_dict.values()), columns=row_dict.keys())
|
|
||||||
|
|
||||||
# 更新accuracy表的y值
|
|
||||||
if not sqlitedb.check_table_exists('accuracy'):
|
|
||||||
pass
|
|
||||||
else:
|
|
||||||
update_y = sqlitedb.select_data(
|
|
||||||
'accuracy', where_condition="y is null")
|
|
||||||
if len(update_y) > 0:
|
|
||||||
logger.info('更新accuracy表的y值')
|
|
||||||
# 找到update_y 中ds且df中的y的行
|
|
||||||
update_y = update_y[update_y['ds'] <= end_time]
|
|
||||||
logger.info(f'要更新y的信息:{update_y}')
|
|
||||||
# try:
|
# try:
|
||||||
for row in update_y.itertuples(index=False):
|
# # 如果是测试环境,最高价最低价取excel文档
|
||||||
try:
|
# if server_host == '192.168.100.53':
|
||||||
row_dict = row._asdict()
|
# logger.info('从excel文档获取最高价最低价')
|
||||||
yy = df[df['ds'] == row_dict['ds']]['y'].values[0]
|
# df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
|
||||||
LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0]
|
# else:
|
||||||
HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0]
|
# logger.info('从市场信息平台获取数据')
|
||||||
sqlitedb.update_data(
|
# df_zhibiaoshuju = get_market_data(
|
||||||
'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
|
# end_time, df_zhibiaoshuju)
|
||||||
except:
|
|
||||||
logger.info(f'更新accuracy表的y值失败:{row_dict}')
|
|
||||||
# except Exception as e:
|
|
||||||
# logger.info(f'更新accuracy表的y值失败:{e}')
|
|
||||||
|
|
||||||
# 判断当前日期是不是周一
|
# except:
|
||||||
is_weekday = datetime.datetime.now().weekday() == 0
|
# logger.info('最高最低价拼接失败')
|
||||||
if is_weekday:
|
|
||||||
logger.info('今天是周一,更新预测模型')
|
|
||||||
# 计算最近60天预测残差最低的模型名称
|
|
||||||
model_results = sqlitedb.select_data(
|
|
||||||
'trueandpredict', order_by="ds DESC", limit="60")
|
|
||||||
# 删除空值率为90%以上的列
|
|
||||||
if len(model_results) > 10:
|
|
||||||
model_results = model_results.dropna(
|
|
||||||
thresh=len(model_results)*0.1, axis=1)
|
|
||||||
# 删除空行
|
|
||||||
model_results = model_results.dropna()
|
|
||||||
modelnames = model_results.columns.to_list()[2:-2]
|
|
||||||
for col in model_results[modelnames].select_dtypes(include=['object']).columns:
|
|
||||||
model_results[col] = model_results[col].astype(np.float32)
|
|
||||||
# 计算每个预测值与真实值之间的偏差率
|
|
||||||
for model in modelnames:
|
|
||||||
model_results[f'{model}_abs_error_rate'] = abs(
|
|
||||||
model_results['y'] - model_results[model]) / model_results['y']
|
|
||||||
# 获取每行对应的最小偏差率值
|
|
||||||
min_abs_error_rate_values = model_results.apply(
|
|
||||||
lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
|
|
||||||
# 获取每行对应的最小偏差率值对应的列名
|
|
||||||
min_abs_error_rate_column_name = model_results.apply(
|
|
||||||
lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
|
|
||||||
# 将列名索引转换为列名
|
|
||||||
min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(
|
|
||||||
lambda x: x.split('_')[0])
|
|
||||||
# 取出现次数最多的模型名称
|
|
||||||
most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
|
|
||||||
logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}")
|
|
||||||
# 保存结果到数据库
|
|
||||||
if not sqlitedb.check_table_exists('most_model'):
|
|
||||||
sqlitedb.create_table(
|
|
||||||
'most_model', columns="ds datetime, most_common_model TEXT")
|
|
||||||
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime(
|
|
||||||
'%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
|
|
||||||
|
|
||||||
try:
|
# # 保存到xlsx文件的sheet表
|
||||||
if is_weekday:
|
# with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
|
||||||
# if True:
|
# df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
|
||||||
logger.info('今天是周一,发送特征预警')
|
# df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
|
||||||
# 上传预警信息到数据库
|
|
||||||
warning_data_df = df_zhibiaoliebiao.copy()
|
|
||||||
warning_data_df = warning_data_df[warning_data_df['停更周期'] > 3][[
|
|
||||||
'指标名称', '指标id', '频度', '更新周期', '指标来源', '最后更新时间', '停更周期']]
|
|
||||||
# 重命名列名
|
|
||||||
warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY',
|
|
||||||
'更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
|
|
||||||
from sqlalchemy import create_engine
|
|
||||||
import urllib
|
|
||||||
global password
|
|
||||||
if '@' in password:
|
|
||||||
password = urllib.parse.quote_plus(password)
|
|
||||||
|
|
||||||
engine = create_engine(
|
# # 数据处理
|
||||||
f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
|
# df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
|
||||||
warning_data_df['WARNING_DATE'] = datetime.date.today().strftime(
|
# end_time=end_time)
|
||||||
"%Y-%m-%d %H:%M:%S")
|
|
||||||
warning_data_df['TENANT_CODE'] = 'T0004'
|
|
||||||
# 插入数据之前查询表数据然后新增id列
|
|
||||||
existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
|
|
||||||
if not existing_data.empty:
|
|
||||||
max_id = existing_data['ID'].astype(int).max()
|
|
||||||
warning_data_df['ID'] = range(
|
|
||||||
max_id + 1, max_id + 1 + len(warning_data_df))
|
|
||||||
else:
|
|
||||||
warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
|
|
||||||
warning_data_df.to_sql(
|
|
||||||
table_name, con=engine, if_exists='append', index=False)
|
|
||||||
if is_update_warning_data:
|
|
||||||
upload_warning_info(len(warning_data_df))
|
|
||||||
except:
|
|
||||||
logger.info('上传预警信息到数据库失败')
|
|
||||||
|
|
||||||
if is_corr:
|
# else:
|
||||||
df = corr_feature(df=df)
|
# # 读取数据
|
||||||
|
# logger.info('读取本地数据:' + os.path.join(dataset, data_set))
|
||||||
|
# df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
|
||||||
|
# is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
|
||||||
|
|
||||||
df1 = df.copy() # 备份一下,后面特征筛选完之后加入ds y 列用
|
# # 更改预测列名称
|
||||||
logger.info(f"开始训练模型...")
|
# df.rename(columns={y: 'y'}, inplace=True)
|
||||||
row, col = df.shape
|
|
||||||
|
|
||||||
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
# if is_edbnamelist:
|
||||||
ex_Model(df,
|
# df = df[edbnamelist]
|
||||||
horizon=global_config['horizon'],
|
# df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False)
|
||||||
input_size=global_config['input_size'],
|
# # 保存最新日期的y值到数据库
|
||||||
train_steps=global_config['train_steps'],
|
# # 取第一行数据存储到数据库中
|
||||||
val_check_steps=global_config['val_check_steps'],
|
# first_row = df[['ds', 'y']].tail(1)
|
||||||
early_stop_patience_steps=global_config['early_stop_patience_steps'],
|
# # 判断y的类型是否为float
|
||||||
is_debug=global_config['is_debug'],
|
# if not isinstance(first_row['y'].values[0], float):
|
||||||
dataset=global_config['dataset'],
|
# logger.info(f'{end_time}预测目标数据为空,跳过')
|
||||||
is_train=global_config['is_train'],
|
# return None
|
||||||
is_fivemodels=global_config['is_fivemodels'],
|
|
||||||
val_size=global_config['val_size'],
|
# # 将最新真实值保存到数据库
|
||||||
test_size=global_config['test_size'],
|
# if not sqlitedb.check_table_exists('trueandpredict'):
|
||||||
settings=global_config['settings'],
|
# first_row.to_sql('trueandpredict', sqlitedb.connection, index=False)
|
||||||
now=now,
|
# else:
|
||||||
etadata=etadata,
|
# for row in first_row.itertuples(index=False):
|
||||||
modelsindex=global_config['modelsindex'],
|
# row_dict = row._asdict()
|
||||||
data=data,
|
# config.logger.info(f'要保存的真实值:{row_dict}')
|
||||||
is_eta=global_config['is_eta'],
|
# # 判断ds是否为字符串类型,如果不是则转换为字符串类型
|
||||||
end_time=global_config['end_time'],
|
# if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)):
|
||||||
)
|
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
|
||||||
|
# elif not isinstance(row_dict['ds'], str):
|
||||||
|
# try:
|
||||||
|
# row_dict['ds'] = pd.to_datetime(
|
||||||
|
# row_dict['ds']).strftime('%Y-%m-%d')
|
||||||
|
# except:
|
||||||
|
# logger.warning(f"无法解析的时间格式: {row_dict['ds']}")
|
||||||
|
# # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
|
||||||
|
# # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
|
||||||
|
# check_query = sqlitedb.select_data(
|
||||||
|
# 'trueandpredict', where_condition=f"ds = '{row.ds}'")
|
||||||
|
# if len(check_query) > 0:
|
||||||
|
# set_clause = ", ".join(
|
||||||
|
# [f"{key} = '{value}'" for key, value in row_dict.items()])
|
||||||
|
# sqlitedb.update_data(
|
||||||
|
# 'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
|
||||||
|
# continue
|
||||||
|
# sqlitedb.insert_data('trueandpredict', tuple(
|
||||||
|
# row_dict.values()), columns=row_dict.keys())
|
||||||
|
|
||||||
|
# # 更新accuracy表的y值
|
||||||
|
# if not sqlitedb.check_table_exists('accuracy'):
|
||||||
|
# pass
|
||||||
|
# else:
|
||||||
|
# update_y = sqlitedb.select_data(
|
||||||
|
# 'accuracy', where_condition="y is null")
|
||||||
|
# if len(update_y) > 0:
|
||||||
|
# logger.info('更新accuracy表的y值')
|
||||||
|
# # 找到update_y 中ds且df中的y的行
|
||||||
|
# update_y = update_y[update_y['ds'] <= end_time]
|
||||||
|
# logger.info(f'要更新y的信息:{update_y}')
|
||||||
|
# # try:
|
||||||
|
# for row in update_y.itertuples(index=False):
|
||||||
|
# try:
|
||||||
|
# row_dict = row._asdict()
|
||||||
|
# yy = df[df['ds'] == row_dict['ds']]['y'].values[0]
|
||||||
|
# LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0]
|
||||||
|
# HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0]
|
||||||
|
# sqlitedb.update_data(
|
||||||
|
# 'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
|
||||||
|
# except:
|
||||||
|
# logger.info(f'更新accuracy表的y值失败:{row_dict}')
|
||||||
|
# # except Exception as e:
|
||||||
|
# # logger.info(f'更新accuracy表的y值失败:{e}')
|
||||||
|
|
||||||
|
# # 判断当前日期是不是周一
|
||||||
|
# is_weekday = datetime.datetime.now().weekday() == 0
|
||||||
|
# if is_weekday:
|
||||||
|
# logger.info('今天是周一,更新预测模型')
|
||||||
|
# # 计算最近60天预测残差最低的模型名称
|
||||||
|
# model_results = sqlitedb.select_data(
|
||||||
|
# 'trueandpredict', order_by="ds DESC", limit="60")
|
||||||
|
# # 删除空值率为90%以上的列
|
||||||
|
# if len(model_results) > 10:
|
||||||
|
# model_results = model_results.dropna(
|
||||||
|
# thresh=len(model_results)*0.1, axis=1)
|
||||||
|
# # 删除空行
|
||||||
|
# model_results = model_results.dropna()
|
||||||
|
# modelnames = model_results.columns.to_list()[2:-2]
|
||||||
|
# for col in model_results[modelnames].select_dtypes(include=['object']).columns:
|
||||||
|
# model_results[col] = model_results[col].astype(np.float32)
|
||||||
|
# # 计算每个预测值与真实值之间的偏差率
|
||||||
|
# for model in modelnames:
|
||||||
|
# model_results[f'{model}_abs_error_rate'] = abs(
|
||||||
|
# model_results['y'] - model_results[model]) / model_results['y']
|
||||||
|
# # 获取每行对应的最小偏差率值
|
||||||
|
# min_abs_error_rate_values = model_results.apply(
|
||||||
|
# lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
|
||||||
|
# # 获取每行对应的最小偏差率值对应的列名
|
||||||
|
# min_abs_error_rate_column_name = model_results.apply(
|
||||||
|
# lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
|
||||||
|
# # 将列名索引转换为列名
|
||||||
|
# min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(
|
||||||
|
# lambda x: x.split('_')[0])
|
||||||
|
# # 取出现次数最多的模型名称
|
||||||
|
# most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
|
||||||
|
# logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}")
|
||||||
|
# # 保存结果到数据库
|
||||||
|
# if not sqlitedb.check_table_exists('most_model'):
|
||||||
|
# sqlitedb.create_table(
|
||||||
|
# 'most_model', columns="ds datetime, most_common_model TEXT")
|
||||||
|
# sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime(
|
||||||
|
# '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
|
||||||
|
|
||||||
|
# try:
|
||||||
|
# if is_weekday:
|
||||||
|
# # if True:
|
||||||
|
# logger.info('今天是周一,发送特征预警')
|
||||||
|
# # 上传预警信息到数据库
|
||||||
|
# warning_data_df = df_zhibiaoliebiao.copy()
|
||||||
|
# warning_data_df = warning_data_df[warning_data_df['停更周期'] > 3][[
|
||||||
|
# '指标名称', '指标id', '频度', '更新周期', '指标来源', '最后更新时间', '停更周期']]
|
||||||
|
# # 重命名列名
|
||||||
|
# warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY',
|
||||||
|
# '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
|
||||||
|
# from sqlalchemy import create_engine
|
||||||
|
# import urllib
|
||||||
|
# global password
|
||||||
|
# if '@' in password:
|
||||||
|
# password = urllib.parse.quote_plus(password)
|
||||||
|
|
||||||
|
# engine = create_engine(
|
||||||
|
# f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
|
||||||
|
# warning_data_df['WARNING_DATE'] = datetime.date.today().strftime(
|
||||||
|
# "%Y-%m-%d %H:%M:%S")
|
||||||
|
# warning_data_df['TENANT_CODE'] = 'T0004'
|
||||||
|
# # 插入数据之前查询表数据然后新增id列
|
||||||
|
# existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
|
||||||
|
# if not existing_data.empty:
|
||||||
|
# max_id = existing_data['ID'].astype(int).max()
|
||||||
|
# warning_data_df['ID'] = range(
|
||||||
|
# max_id + 1, max_id + 1 + len(warning_data_df))
|
||||||
|
# else:
|
||||||
|
# warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
|
||||||
|
# warning_data_df.to_sql(
|
||||||
|
# table_name, con=engine, if_exists='append', index=False)
|
||||||
|
# if is_update_warning_data:
|
||||||
|
# upload_warning_info(len(warning_data_df))
|
||||||
|
# except:
|
||||||
|
# logger.info('上传预警信息到数据库失败')
|
||||||
|
|
||||||
|
# if is_corr:
|
||||||
|
# df = corr_feature(df=df)
|
||||||
|
|
||||||
|
# df1 = df.copy() # 备份一下,后面特征筛选完之后加入ds y 列用
|
||||||
|
# logger.info(f"开始训练模型...")
|
||||||
|
# row, col = df.shape
|
||||||
|
|
||||||
|
# now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
||||||
|
# ex_Model(df,
|
||||||
|
# horizon=global_config['horizon'],
|
||||||
|
# input_size=global_config['input_size'],
|
||||||
|
# train_steps=global_config['train_steps'],
|
||||||
|
# val_check_steps=global_config['val_check_steps'],
|
||||||
|
# early_stop_patience_steps=global_config['early_stop_patience_steps'],
|
||||||
|
# is_debug=global_config['is_debug'],
|
||||||
|
# dataset=global_config['dataset'],
|
||||||
|
# is_train=global_config['is_train'],
|
||||||
|
# is_fivemodels=global_config['is_fivemodels'],
|
||||||
|
# val_size=global_config['val_size'],
|
||||||
|
# test_size=global_config['test_size'],
|
||||||
|
# settings=global_config['settings'],
|
||||||
|
# now=now,
|
||||||
|
# etadata=etadata,
|
||||||
|
# modelsindex=global_config['modelsindex'],
|
||||||
|
# data=data,
|
||||||
|
# is_eta=global_config['is_eta'],
|
||||||
|
# end_time=global_config['end_time'],
|
||||||
|
# )
|
||||||
|
|
||||||
# logger.info('模型训练完成')
|
# logger.info('模型训练完成')
|
||||||
|
|
||||||
|
@ -948,6 +948,8 @@ def model_losss(sqlitedb, end_time):
|
|||||||
'accuracy', where_condition=f"created_dt <= '{end_time}'")
|
'accuracy', where_condition=f"created_dt <= '{end_time}'")
|
||||||
if len(df_combined) < 100:
|
if len(df_combined) < 100:
|
||||||
len(df_combined) + ''
|
len(df_combined) + ''
|
||||||
|
if df_combined['y'].isnull().sum() / len(df_combined) > 0.8:
|
||||||
|
len(df_combined) + ''
|
||||||
except:
|
except:
|
||||||
df_combined = loadcsv(os.path.join(
|
df_combined = loadcsv(os.path.join(
|
||||||
config.dataset, "cross_validation.csv"))
|
config.dataset, "cross_validation.csv"))
|
||||||
|
Loading…
Reference in New Issue
Block a user