雍安环境代码拆分
This commit is contained in:
parent
98e0178da0
commit
4c097c0bb8
234
config_jingbo.py
234
config_jingbo.py
@ -106,6 +106,8 @@ ClassifyId = 1214
|
|||||||
|
|
||||||
|
|
||||||
################################################################################################################ 变量定义--线上环境
|
################################################################################################################ 变量定义--线上环境
|
||||||
|
# server_host = '10.200.32.39'
|
||||||
|
|
||||||
# login_pushreport_url = "http://10.200.32.39/jingbo-api/api/server/login"
|
# login_pushreport_url = "http://10.200.32.39/jingbo-api/api/server/login"
|
||||||
# upload_url = "http://10.200.32.39/jingbo-api/api/analysis/reportInfo/researchUploadReportSave"
|
# upload_url = "http://10.200.32.39/jingbo-api/api/analysis/reportInfo/researchUploadReportSave"
|
||||||
# upload_warning_url = "http://10.200.32.39/jingbo-api/api/basicBuiness/crudeOilWarning/save"
|
# upload_warning_url = "http://10.200.32.39/jingbo-api/api/basicBuiness/crudeOilWarning/save"
|
||||||
@ -162,17 +164,17 @@ ClassifyId = 1214
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
# # 生产环境数据库
|
# ## 生产环境数据库
|
||||||
# host = 'rm-2zehj3r1n60ttz9x5.mysql.rds.aliyuncs.com'
|
# # host = 'rm-2zehj3r1n60ttz9x5.mysql.rds.aliyuncs.com'
|
||||||
# port = 3306
|
# # port = 3306
|
||||||
# dbusername ='jingbo'
|
# # dbusername ='jingbo'
|
||||||
# password = 'shihua@123'
|
# # password = 'shihua@123'
|
||||||
# dbname = 'jingbo'
|
# # dbname = 'jingbo'
|
||||||
# table_name = 'v_tbl_crude_oil_warning'
|
# # table_name = 'v_tbl_crude_oil_warning'
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# 预生产环境
|
# ## 预生产环境
|
||||||
# host = 'rm-2zehj3r1n60ttz9x5ko.mysql.rds.aliyuncs.com'
|
# host = 'rm-2zehj3r1n60ttz9x5ko.mysql.rds.aliyuncs.com'
|
||||||
# port = 3306
|
# port = 3306
|
||||||
# dbusername ='jingbo'
|
# dbusername ='jingbo'
|
||||||
@ -182,7 +184,7 @@ ClassifyId = 1214
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
# ## 线上开关
|
# # 线上开关备份
|
||||||
# is_train = True # 是否训练
|
# is_train = True # 是否训练
|
||||||
# is_debug = False # 是否调试
|
# is_debug = False # 是否调试
|
||||||
# is_eta = True # 是否使用eta接口
|
# is_eta = True # 是否使用eta接口
|
||||||
@ -196,125 +198,39 @@ ClassifyId = 1214
|
|||||||
# is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
# is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
################################################################################################################ 变量定义--测试环境
|
################################################################################################################ 变量定义--测试环境
|
||||||
login_pushreport_url = "http://192.168.100.53:8080/jingbo-dev/api/server/login"
|
# server_host = '192.168.100.53'
|
||||||
upload_url = "http://192.168.100.53:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
|
|
||||||
# upload_url = "http://192.168.100.109:8080/jingbo/api/analysis/reportInfo/researchUploadReportSave" # zhaoqiwei
|
|
||||||
upload_warning_url = "http://192.168.100.53:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
|
|
||||||
query_data_list_item_nos_url = "http://192.168.100.53:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos"
|
|
||||||
|
|
||||||
login_data = {
|
|
||||||
"data": {
|
|
||||||
"account": "api_test",
|
|
||||||
# "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
|
|
||||||
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
|
|
||||||
"tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
|
|
||||||
"terminal": "API"
|
|
||||||
},
|
|
||||||
"funcModule": "API",
|
|
||||||
"funcOperation": "获取token"
|
|
||||||
}
|
|
||||||
|
|
||||||
upload_data = {
|
|
||||||
"funcModule":'研究报告信息',
|
|
||||||
"funcOperation":'上传原油价格预测报告',
|
|
||||||
"data":{
|
|
||||||
"ownerAccount":'arui', #报告所属用户账号
|
|
||||||
"reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
|
||||||
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
|
|
||||||
"fileBase64": '' ,#文件内容base64
|
|
||||||
"categoryNo":'yyjgycbg', # 研究报告分类编码
|
|
||||||
"smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
|
|
||||||
"reportEmployeeCode":"E40116", # 报告人
|
|
||||||
"reportDeptCode" :"D0044" ,# 报告部门
|
|
||||||
"productGroupCode":"RAW_MATERIAL" # 商品分类
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
warning_data = {
|
|
||||||
"funcModule":'原油特征停更预警',
|
|
||||||
"funcOperation":'原油特征停更预警',
|
|
||||||
"data":{
|
|
||||||
'WARNING_TYPE_NAME':'特征数据停更预警',
|
|
||||||
'WARNING_CONTENT':'',
|
|
||||||
'WARNING_DATE':''
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
query_data_list_item_nos_data = {
|
|
||||||
"funcModule": "数据项",
|
|
||||||
"funcOperation": "查询",
|
|
||||||
"data": {
|
|
||||||
"dateStart":"20200101",
|
|
||||||
"dateEnd":"20241231",
|
|
||||||
"dataItemNoList":["Brentzdj","Brentzgj"] # 数据项编码,代表 brent最低价和最高价
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
# 北京环境数据库
|
|
||||||
host = '192.168.101.27'
|
|
||||||
port = 3306
|
|
||||||
dbusername ='root'
|
|
||||||
password = '123456'
|
|
||||||
dbname = 'jingbo_test'
|
|
||||||
table_name = 'v_tbl_crude_oil_warning'
|
|
||||||
|
|
||||||
|
|
||||||
### 开关
|
|
||||||
is_train = False # 是否训练
|
|
||||||
is_debug = False # 是否调试
|
|
||||||
is_eta = True # 是否使用eta接口
|
|
||||||
is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
|
|
||||||
is_timefurture = True # 是否使用时间特征
|
|
||||||
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
|
||||||
is_edbcode = False # 特征使用edbcoding列表中的
|
|
||||||
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
|
||||||
is_update_eta = False # 预测结果上传到eta
|
|
||||||
is_update_report = True # 是否上传报告
|
|
||||||
is_update_warning_data = True # 是否上传预警数据
|
|
||||||
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
|
||||||
is_del_tow_month = True # 是否删除两个月不更新的特征
|
|
||||||
|
|
||||||
|
|
||||||
################################################################################################################ 变量定义--雍安测试环境
|
|
||||||
# login_pushreport_url = "http://192.168.100.115:9090/dom-api/api/server/login"
|
|
||||||
# upload_url = "http://192.168.100.115:9090/dom-api/api/analysis/reportInfo/researchUploadReportSave"
|
|
||||||
# # upload_url = "http://192.168.100.109:8080/jingbo/api/analysis/reportInfo/researchUploadReportSave" # zhaoqiwei
|
|
||||||
# upload_warning_url = "http://192.168.100.115:9090/dom-api/api/basicBuiness/crudeOilWarning/save"
|
|
||||||
# query_data_list_item_nos_url = "http://192.168.100.115:9090/dom-api/api/warehouse/dwDataItem/queryDataListItemNos"
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login"
|
||||||
|
# upload_url = f"http://{server_host}:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
|
||||||
|
# upload_warning_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
|
||||||
|
# query_data_list_item_nos_url = f"http://{server_host}:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos"
|
||||||
|
|
||||||
# login_data = {
|
# login_data = {
|
||||||
# "data": {
|
# "data": {
|
||||||
# "account": "api-dev",
|
# "account": "api_test",
|
||||||
# "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",
|
# # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
|
||||||
# "tenantHashCode": "1eb24ab5a6af12e30daf78af276664f1",
|
# "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
|
||||||
|
# "tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
|
||||||
# "terminal": "API"
|
# "terminal": "API"
|
||||||
# },
|
# },
|
||||||
# "funcModule": "API",
|
# "funcModule": "API",
|
||||||
# "funcOperation": "获取token"
|
# "funcOperation": "获取token"
|
||||||
# }
|
# }
|
||||||
|
|
||||||
|
|
||||||
# upload_data = {
|
# upload_data = {
|
||||||
# "funcModule":'研究报告信息',
|
# "funcModule":'研究报告信息',
|
||||||
# "funcOperation":'上传原油价格预测报告',
|
# "funcOperation":'上传原油价格预测报告',
|
||||||
# "data":{
|
# "data":{
|
||||||
# "ownerAccount":'rui.liu', #报告所属用户账号
|
# "ownerAccount":'arui', #报告所属用户账号
|
||||||
# "reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
# "reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
||||||
# "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
|
# "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
|
||||||
# "fileBase64": '' ,#文件内容base64
|
# "fileBase64": '' ,#文件内容base64
|
||||||
# "categoryNo":'yyjgycbg', # 研究报告分类编码
|
# "categoryNo":'yyjgycbg', # 研究报告分类编码
|
||||||
# "smartBusinessClassCode":'1', #分析报告分类编码
|
# "smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
|
||||||
# "reportEmployeeCode":"U270018", # 报告人
|
# "reportEmployeeCode":"E40116", # 报告人
|
||||||
# "reportDeptCode" :"D270001" ,# 报告部门
|
# "reportDeptCode" :"D0044" ,# 报告部门
|
||||||
# # "reportDeptCode" :"000001" ,# 报告部门
|
|
||||||
# "productGroupCode":"RAW_MATERIAL" # 商品分类
|
# "productGroupCode":"RAW_MATERIAL" # 商品分类
|
||||||
# }
|
# }
|
||||||
# }
|
# }
|
||||||
@ -361,11 +277,99 @@ is_del_tow_month = True # 是否删除两个月不更新的特征
|
|||||||
# is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
# is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
||||||
# is_update_eta = False # 预测结果上传到eta
|
# is_update_eta = False # 预测结果上传到eta
|
||||||
# is_update_report = True # 是否上传报告
|
# is_update_report = True # 是否上传报告
|
||||||
# is_update_warning_data = False # 是否上传预警数据
|
# is_update_warning_data = True # 是否上传预警数据
|
||||||
# is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
# is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
||||||
# is_del_tow_month = True # 是否删除两个月不更新的特征
|
# is_del_tow_month = True # 是否删除两个月不更新的特征
|
||||||
|
|
||||||
|
|
||||||
|
################################################################################################################ 变量定义--雍安测试环境
|
||||||
|
login_pushreport_url = "http://192.168.100.115:9090/dom-api/api/server/login"
|
||||||
|
upload_url = "http://192.168.100.115:9090/dom-api/api/analysis/reportInfo/researchUploadReportSave"
|
||||||
|
# upload_url = "http://192.168.100.109:8080/jingbo/api/analysis/reportInfo/researchUploadReportSave" # zhaoqiwei
|
||||||
|
upload_warning_url = "http://192.168.100.115:9090/dom-api/api/basicBuiness/crudeOilWarning/save"
|
||||||
|
query_data_list_item_nos_url = "http://192.168.100.115:9090/dom-api/api/warehouse/dwDataItem/queryDataListItemNos"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
login_data = {
|
||||||
|
"data": {
|
||||||
|
"account": "api-dev",
|
||||||
|
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",
|
||||||
|
"tenantHashCode": "1eb24ab5a6af12e30daf78af276664f1",
|
||||||
|
"terminal": "API"
|
||||||
|
},
|
||||||
|
"funcModule": "API",
|
||||||
|
"funcOperation": "获取token"
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
upload_data = {
|
||||||
|
"funcModule":'研究报告信息',
|
||||||
|
"funcOperation":'上传原油价格预测报告',
|
||||||
|
"data":{
|
||||||
|
"ownerAccount":'rui.liu', #报告所属用户账号
|
||||||
|
"reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
||||||
|
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
|
||||||
|
"fileBase64": '' ,#文件内容base64
|
||||||
|
"categoryNo":'yyjgycbg', # 研究报告分类编码
|
||||||
|
"smartBusinessClassCode":'1', #分析报告分类编码
|
||||||
|
"reportEmployeeCode":"U270018", # 报告人
|
||||||
|
"reportDeptCode" :"D270001" ,# 报告部门
|
||||||
|
# "reportDeptCode" :"000001" ,# 报告部门
|
||||||
|
"productGroupCode":"RAW_MATERIAL" # 商品分类
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
warning_data = {
|
||||||
|
"funcModule":'原油特征停更预警',
|
||||||
|
"funcOperation":'原油特征停更预警',
|
||||||
|
"data":{
|
||||||
|
'WARNING_TYPE_NAME':'特征数据停更预警',
|
||||||
|
'WARNING_CONTENT':'',
|
||||||
|
'WARNING_DATE':''
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
query_data_list_item_nos_data = {
|
||||||
|
"funcModule": "数据项",
|
||||||
|
"funcOperation": "查询",
|
||||||
|
"data": {
|
||||||
|
"dateStart":"20200101",
|
||||||
|
"dateEnd":"20241231",
|
||||||
|
"dataItemNoList":["Brentzdj","Brentzgj"] # 数据项编码,代表 brent最低价和最高价
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
# 北京环境数据库
|
||||||
|
host = '192.168.101.27'
|
||||||
|
port = 3306
|
||||||
|
dbusername ='root'
|
||||||
|
password = '123456'
|
||||||
|
dbname = 'jingbo_test'
|
||||||
|
table_name = 'v_tbl_crude_oil_warning'
|
||||||
|
|
||||||
|
|
||||||
|
### 开关
|
||||||
|
is_train = False # 是否训练
|
||||||
|
is_debug = False # 是否调试
|
||||||
|
is_eta = False # 是否使用eta接口
|
||||||
|
is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
|
||||||
|
is_timefurture = True # 是否使用时间特征
|
||||||
|
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
||||||
|
is_edbcode = False # 特征使用edbcoding列表中的
|
||||||
|
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
||||||
|
is_update_eta = False # 预测结果上传到eta
|
||||||
|
is_update_report = True # 是否上传报告
|
||||||
|
is_update_warning_data = False # 是否上传预警数据
|
||||||
|
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
||||||
|
is_del_tow_month = True # 是否删除两个月不更新的特征
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# 连接到数据库
|
# 连接到数据库
|
||||||
db_mysql = MySQLDB(host=host, user=dbusername, password=password, database=dbname)
|
db_mysql = MySQLDB(host=host, user=dbusername, password=password, database=dbname)
|
||||||
@ -424,8 +428,8 @@ if end_time == '':
|
|||||||
username='1321340118@qq.com'
|
username='1321340118@qq.com'
|
||||||
passwd='wgczgyhtyyyyjghi'
|
passwd='wgczgyhtyyyyjghi'
|
||||||
# recv=['liurui_test@163.com','52585119@qq.com']
|
# recv=['liurui_test@163.com','52585119@qq.com']
|
||||||
recv=['liurui_test@163.com','jin.wang@chambroad.com']
|
# recv=['liurui_test@163.com','jin.wang@chambroad.com']
|
||||||
# recv=['liurui_test@163.com']
|
recv=['liurui_test@163.com']
|
||||||
title='reportname'
|
title='reportname'
|
||||||
content='brent价格预测报告请看附件'
|
content='brent价格预测报告请看附件'
|
||||||
file=os.path.join(dataset,'reportname')
|
file=os.path.join(dataset,'reportname')
|
||||||
@ -457,3 +461,9 @@ logger.addHandler(file_handler)
|
|||||||
logger.addHandler(console_handler)
|
logger.addHandler(console_handler)
|
||||||
|
|
||||||
# logger.info('当前配置:'+settings)
|
# logger.info('当前配置:'+settings)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
import pandas as pd
|
||||||
|
df1 = pd.read_excel(os.path.join(dataset,'数据项下载.xls'),header=5, names=['numid','date', 'Brentzdj', 'Brentzgj'])
|
||||||
|
print(df1)
|
287
config_yongan.py
Normal file
287
config_yongan.py
Normal file
@ -0,0 +1,287 @@
|
|||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import logging.handlers
|
||||||
|
import datetime
|
||||||
|
from lib.tools import MySQLDB,SQLiteHandler
|
||||||
|
|
||||||
|
|
||||||
|
# eta 接口token
|
||||||
|
APPID = "XNLDvxZHHugj7wJ7"
|
||||||
|
SECRET = "iSeU4s6cKKBVbt94htVY1p0sqUMqb2xa"
|
||||||
|
|
||||||
|
# eta 接口url
|
||||||
|
sourcelisturl = 'http://10.189.2.78:8108/v1/edb/source/list'
|
||||||
|
classifylisturl = 'http://10.189.2.78:8108/v1/edb/classify/list?ClassifyType='
|
||||||
|
uniquecodedataurl = 'http://10.189.2.78:8108/v1/edb/data?UniqueCode=4991c37becba464609b409909fe4d992&StartDate=2024-02-01'
|
||||||
|
classifyidlisturl = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId='
|
||||||
|
edbcodedataurl = 'http://10.189.2.78:8108/v1/edb/data?EdbCode='
|
||||||
|
edbdatapushurl = 'http://10.189.2.78:8108/v1/edb/push'
|
||||||
|
edbdeleteurl = 'http://10.189.2.78:8108/v1/edb/business/edb/del'
|
||||||
|
edbbusinessurl = 'http://10.189.2.78:8108/v1/edb/business/data/del'
|
||||||
|
edbcodelist = ['CO1 Comdty', 'ovx index', 'C2404194834', 'C2404199738', 'dxy curncy', 'C2403128043', 'C2403150124',
|
||||||
|
'DOESCRUD Index', 'WTRBM1 EEGC Index', 'FVHCM1 INDEX', 'doedtprd index', 'CFFDQMMN INDEX',
|
||||||
|
'C2403083739', 'C2404167878', 'C2403250571', 'lmcads03 lme comdty', 'GC1 COMB Comdty',
|
||||||
|
'C2404171822','C2404167855',
|
||||||
|
# 'W000825','W000826','G.IPE', # 美国汽柴油
|
||||||
|
# 'S5131019','ID00135604','FSGAM1 Index','S5120408','ID00136724', # 新加坡汽柴油
|
||||||
|
]
|
||||||
|
|
||||||
|
# 临时写死用指定的列,与上面的edbcode对应,后面更改
|
||||||
|
edbnamelist = [
|
||||||
|
'ds','y',
|
||||||
|
'Brent c1-c6','Brent c1-c3','Brent-WTI','美国商业原油库存',
|
||||||
|
'DFL','美国汽油裂解价差','ovx index','dxy curncy','lmcads03 lme comdty',
|
||||||
|
'C2403128043','C2403150124','FVHCM1 INDEX','doedtprd index','CFFDQMMN INDEX',
|
||||||
|
'C2403083739','C2404167878',
|
||||||
|
'GC1 COMB Comdty','C2404167855',
|
||||||
|
# 'A汽油价格','W000826','ICE柴油价格',
|
||||||
|
# '新加坡(含硫0.05%) 柴油现货价','柴油:10ppm:国际市场:FOB中间价:新加坡(日)','Bloomberg Commodity Fair Value Singapore Mogas 92 Swap Month 1','97#汽油FOB新加坡现货价','无铅汽油:97#:国际市场:FOB中间价:新加坡(日)'
|
||||||
|
]
|
||||||
|
|
||||||
|
edbcodenamedict = {'ovx index': '原油波动率',
|
||||||
|
'dxy curncy': '美元指数',
|
||||||
|
'C2403128043': 'Brent连1合约价格拟合残差/美元指数',
|
||||||
|
'C2403150124': 'Brent连1合约价格拟合残差/Brent 连2-连3',
|
||||||
|
'DOESCRUD Index': '美国商业原油库存',
|
||||||
|
'FVHCM1 INDEX': '美国取暖油裂解C1',
|
||||||
|
'doedtprd index': '美国成品油表需',
|
||||||
|
'CFFDQMMN INDEX': 'WTI管理资金净多持仓',
|
||||||
|
'C2403083739': 'WTI基金多空持仓比',
|
||||||
|
'C2404167878': 'WTI基金净持仓COT指标(代码运算)',
|
||||||
|
'lmcads03 lme comdty': 'LME铜价',
|
||||||
|
'GC1 COMB Comdty': '黄金连1合约',
|
||||||
|
'C2404167855': '金油比'}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# eta自有数据指标编码
|
||||||
|
modelsindex = {
|
||||||
|
'NHITS': 'SELF0000001',
|
||||||
|
'Informer':'SELF0000057',
|
||||||
|
'LSTM':'SELF0000058',
|
||||||
|
'iTransformer':'SELF0000059',
|
||||||
|
'TSMixer':'SELF0000060',
|
||||||
|
'TSMixerx':'SELF0000061',
|
||||||
|
'PatchTST':'SELF0000062',
|
||||||
|
'RNN':'SELF0000063',
|
||||||
|
'GRU':'SELF0000064',
|
||||||
|
'TCN':'SELF0000065',
|
||||||
|
'BiTCN':'SELF0000066',
|
||||||
|
'DilatedRNN':'SELF0000067',
|
||||||
|
'MLP':'SELF0000068',
|
||||||
|
'DLinear':'SELF0000069',
|
||||||
|
'NLinear':'SELF0000070',
|
||||||
|
'TFT':'SELF0000071',
|
||||||
|
'FEDformer':'SELF0000072',
|
||||||
|
'StemGNN':'SELF0000073',
|
||||||
|
'MLPMultivariate':'SELF0000074',
|
||||||
|
'TiDE':'SELF0000075',
|
||||||
|
'DeepNPTS':'SELF0000076'
|
||||||
|
}
|
||||||
|
|
||||||
|
# eta 上传预测结果的请求体,后面发起请求的时候更改 model datalist 数据
|
||||||
|
data = {
|
||||||
|
"IndexCode": "",
|
||||||
|
"IndexName": "价格预测模型",
|
||||||
|
"Unit": "无",
|
||||||
|
"Frequency": "日度",
|
||||||
|
"SourceName": f"价格预测",
|
||||||
|
"Remark": 'ddd',
|
||||||
|
"DataList": [
|
||||||
|
{
|
||||||
|
"Date": "2024-05-02",
|
||||||
|
"Value": 333444
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
|
||||||
|
# eta 分类
|
||||||
|
# level:3才可以获取到数据,所以需要人工把能源化工下所有的level3级都找到
|
||||||
|
# url = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId=1214'
|
||||||
|
#ParentId ":1160, 能源化工
|
||||||
|
# ClassifyId ":1214,原油
|
||||||
|
#ParentId ":1214,",就是原油下所有的数据。
|
||||||
|
ClassifyId = 1214
|
||||||
|
|
||||||
|
################################################################################################################ 变量定义--雍安测试环境
|
||||||
|
login_pushreport_url = "http://192.168.100.115:9090/dom-api/api/server/login"
|
||||||
|
upload_url = "http://192.168.100.115:9090/dom-api/api/analysis/reportInfo/researchUploadReportSave"
|
||||||
|
# upload_url = "http://192.168.100.109:8080/jingbo/api/analysis/reportInfo/researchUploadReportSave" # zhaoqiwei
|
||||||
|
upload_warning_url = "http://192.168.100.115:9090/dom-api/api/basicBuiness/crudeOilWarning/save"
|
||||||
|
query_data_list_item_nos_url = "http://192.168.100.115:9090/dom-api/api/warehouse/dwDataItem/queryDataListItemNos"
|
||||||
|
|
||||||
|
|
||||||
|
login_data = {
|
||||||
|
"data": {
|
||||||
|
"account": "api-dev",
|
||||||
|
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",
|
||||||
|
"tenantHashCode": "1eb24ab5a6af12e30daf78af276664f1",
|
||||||
|
"terminal": "API"
|
||||||
|
},
|
||||||
|
"funcModule": "API",
|
||||||
|
"funcOperation": "获取token"
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
upload_data = {
|
||||||
|
"funcModule":'研究报告信息',
|
||||||
|
"funcOperation":'上传原油价格预测报告',
|
||||||
|
"data":{
|
||||||
|
"ownerAccount":'rui.liu', #报告所属用户账号
|
||||||
|
"reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
||||||
|
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
|
||||||
|
"fileBase64": '' ,#文件内容base64
|
||||||
|
"categoryNo":'yyjgycbg', # 研究报告分类编码
|
||||||
|
"smartBusinessClassCode":'1', #分析报告分类编码
|
||||||
|
"reportEmployeeCode":"U270018", # 报告人
|
||||||
|
"reportDeptCode" :"D270001" ,# 报告部门
|
||||||
|
# "reportDeptCode" :"000001" ,# 报告部门
|
||||||
|
"productGroupCode":"RAW_MATERIAL" # 商品分类
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
warning_data = {
|
||||||
|
"funcModule":'原油特征停更预警',
|
||||||
|
"funcOperation":'原油特征停更预警',
|
||||||
|
"data":{
|
||||||
|
'WARNING_TYPE_NAME':'特征数据停更预警',
|
||||||
|
'WARNING_CONTENT':'',
|
||||||
|
'WARNING_DATE':''
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
query_data_list_item_nos_data = {
|
||||||
|
"funcModule": "数据项",
|
||||||
|
"funcOperation": "查询",
|
||||||
|
"data": {
|
||||||
|
"dateStart":"20200101",
|
||||||
|
"dateEnd":"20241231",
|
||||||
|
"dataItemNoList":["Brentzdj","Brentzgj"] # 数据项编码,代表 brent最低价和最高价
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
# 北京环境数据库
|
||||||
|
host = '192.168.101.27'
|
||||||
|
port = 3306
|
||||||
|
dbusername ='root'
|
||||||
|
password = '123456'
|
||||||
|
dbname = 'jingbo_test'
|
||||||
|
table_name = 'v_tbl_crude_oil_warning'
|
||||||
|
|
||||||
|
|
||||||
|
### 开关
|
||||||
|
is_train = False # 是否训练
|
||||||
|
is_debug = False # 是否调试
|
||||||
|
is_eta = False # 是否使用eta接口
|
||||||
|
is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
|
||||||
|
is_timefurture = True # 是否使用时间特征
|
||||||
|
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
||||||
|
is_edbcode = False # 特征使用edbcoding列表中的
|
||||||
|
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
||||||
|
is_update_eta = False # 预测结果上传到eta
|
||||||
|
is_update_report = True # 是否上传报告
|
||||||
|
is_update_warning_data = False # 是否上传预警数据
|
||||||
|
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
||||||
|
is_del_tow_month = True # 是否删除两个月不更新的特征
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# 连接到数据库
|
||||||
|
db_mysql = MySQLDB(host=host, user=dbusername, password=password, database=dbname)
|
||||||
|
db_mysql.connect()
|
||||||
|
print("数据库连接成功",host,dbname,dbusername)
|
||||||
|
|
||||||
|
|
||||||
|
# 数据截取日期
|
||||||
|
start_year = 2020 # 数据开始年份
|
||||||
|
end_time = '' # 数据截取日期
|
||||||
|
freq = 'B' # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日
|
||||||
|
delweekenday = True if freq == 'B' else False # 是否删除周末数据
|
||||||
|
is_corr = False # 特征是否参与滞后领先提升相关系数
|
||||||
|
add_kdj = False # 是否添加kdj指标
|
||||||
|
if add_kdj and is_edbnamelist:
|
||||||
|
edbnamelist = edbnamelist+['K','D','J']
|
||||||
|
|
||||||
|
### 模型参数
|
||||||
|
y = 'Brent连1合约价格' # 原油指标数据的目标变量 Brent连1合约价格 Brent活跃合约
|
||||||
|
horizon =5 # 预测的步长
|
||||||
|
input_size = 40 # 输入序列长度
|
||||||
|
train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数
|
||||||
|
val_check_steps = 30 # 评估频率
|
||||||
|
early_stop_patience_steps = 5 # 早停的耐心步数
|
||||||
|
# --- 交叉验证用的参数
|
||||||
|
test_size = 100 # 测试集大小,定义100,后面使用的时候重新赋值
|
||||||
|
val_size = test_size # 验证集大小,同测试集大小
|
||||||
|
|
||||||
|
### 特征筛选用到的参数
|
||||||
|
k = 100 # 特征筛选数量,如果是0或者值比特征数量大,代表全部特征
|
||||||
|
corr_threshold = 0.6 # 相关性大于0.6的特征
|
||||||
|
rote = 0.06 # 绘图上下界阈值
|
||||||
|
|
||||||
|
### 计算准确率
|
||||||
|
weight_dict = [0.4,0.15,0.1,0.1,0.25] # 权重
|
||||||
|
|
||||||
|
|
||||||
|
### 文件
|
||||||
|
data_set = '原油指标数据.xlsx' # 数据集文件
|
||||||
|
dataset = 'yuanyoudataset' # 数据集文件夹
|
||||||
|
|
||||||
|
# 数据库名称
|
||||||
|
db_name = os.path.join(dataset,'jbsh_yuanyou.db')
|
||||||
|
sqlitedb = SQLiteHandler(db_name)
|
||||||
|
sqlitedb.connect()
|
||||||
|
|
||||||
|
settings = f'{input_size}-{horizon}-{train_steps}--{k}-{data_set}-{y}'
|
||||||
|
# 获取日期时间
|
||||||
|
# now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') # 获取当前日期时间
|
||||||
|
now = datetime.datetime.now().strftime('%Y-%m-%d') # 获取当前日期时间
|
||||||
|
reportname = f'Brent原油大模型预测--{now}.pdf' # 报告文件名
|
||||||
|
reportname = reportname.replace(':', '-') # 替换冒号
|
||||||
|
if end_time == '':
|
||||||
|
end_time = now
|
||||||
|
### 邮件配置
|
||||||
|
username='1321340118@qq.com'
|
||||||
|
passwd='wgczgyhtyyyyjghi'
|
||||||
|
# recv=['liurui_test@163.com','52585119@qq.com']
|
||||||
|
# recv=['liurui_test@163.com','jin.wang@chambroad.com']
|
||||||
|
recv=['liurui_test@163.com']
|
||||||
|
title='reportname'
|
||||||
|
content='brent价格预测报告请看附件'
|
||||||
|
file=os.path.join(dataset,'reportname')
|
||||||
|
# file=os.path.join(dataset,'14-7-50--100-原油指标数据.xlsx-Brent连1合约价格--20240731175936-预测报告.pdf')
|
||||||
|
ssl=True
|
||||||
|
|
||||||
|
|
||||||
|
### 日志配置
|
||||||
|
|
||||||
|
# 创建日志目录(如果不存在)
|
||||||
|
log_dir = 'logs'
|
||||||
|
if not os.path.exists(log_dir):
|
||||||
|
os.makedirs(log_dir)
|
||||||
|
|
||||||
|
# 配置日志记录器
|
||||||
|
logger = logging.getLogger('my_logger')
|
||||||
|
logger.setLevel(logging.INFO)
|
||||||
|
|
||||||
|
# 配置文件处理器,将日志记录到文件
|
||||||
|
file_handler = logging.handlers.RotatingFileHandler(os.path.join(log_dir, 'pricepredict.log'), maxBytes=1024 * 1024, backupCount=5)
|
||||||
|
file_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
|
||||||
|
|
||||||
|
# 配置控制台处理器,将日志打印到控制台
|
||||||
|
console_handler = logging.StreamHandler()
|
||||||
|
console_handler.setFormatter(logging.Formatter('%(message)s'))
|
||||||
|
|
||||||
|
# 将处理器添加到日志记录器
|
||||||
|
logger.addHandler(file_handler)
|
||||||
|
logger.addHandler(console_handler)
|
||||||
|
|
||||||
|
# logger.info('当前配置:'+settings)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
import pandas as pd
|
||||||
|
df1 = pd.read_excel(os.path.join(dataset,'数据项下载.xls'),header=5, names=['numid','date', 'Brentzdj', 'Brentzgj'])
|
||||||
|
print(df1)
|
@ -41,7 +41,8 @@ plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
|
|||||||
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
|
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
|
||||||
|
|
||||||
# from config_jingbo_pro import *
|
# from config_jingbo_pro import *
|
||||||
from config_jingbo import *
|
# from config_jingbo import *
|
||||||
|
from config_yongan import *
|
||||||
# from config_juxiting import *
|
# from config_juxiting import *
|
||||||
|
|
||||||
|
|
||||||
@ -1682,6 +1683,15 @@ def get_market_data(end_time,df):
|
|||||||
df = pd.merge(df, df2, how='left',on='date')
|
df = pd.merge(df, df2, how='left',on='date')
|
||||||
return df
|
return df
|
||||||
|
|
||||||
|
|
||||||
|
def get_high_low_data(df):
|
||||||
|
# 读取excel 从第五行开始
|
||||||
|
df1 = pd.read_excel(os.path.join(dataset,'数据项下载.xls'),header=5, names=['numid','date', 'Brentzdj', 'Brentzgj'])
|
||||||
|
# 合并数据
|
||||||
|
df = pd.merge(df, df1, how='left',on='date')
|
||||||
|
return df
|
||||||
|
|
||||||
|
|
||||||
# 时间特征,年,月,一年的多少天,周几,第几周,第几季度,每月的第几天, 每季度的第几天,是否每月的第一天,是否每月的最后一天,是否每季度的第一天,是否每季度的最后一天,是否每年的第一天,是否每年的最后一天
|
# 时间特征,年,月,一年的多少天,周几,第几周,第几季度,每月的第几天, 每季度的第几天,是否每月的第一天,是否每月的最后一天,是否每季度的第一天,是否每季度的最后一天,是否每年的第一天,是否每年的最后一天
|
||||||
def addtimecharacteristics(df,dataset):
|
def addtimecharacteristics(df,dataset):
|
||||||
"""
|
"""
|
||||||
|
1733
lib/dataread_yongan.py
Normal file
1733
lib/dataread_yongan.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,5 +1,5 @@
|
|||||||
# 读取配置
|
# 读取配置
|
||||||
from lib.dataread import *
|
from lib.dataread_yongan import *
|
||||||
from lib.tools import SendMail,exception_logger
|
from lib.tools import SendMail,exception_logger
|
||||||
from models.nerulforcastmodels import ex_Model,model_losss,model_losss_juxiting,brent_export_pdf,tansuanli_export_pdf,pp_export_pdf,model_losss_juxiting
|
from models.nerulforcastmodels import ex_Model,model_losss,model_losss_juxiting,brent_export_pdf,tansuanli_export_pdf,pp_export_pdf,model_losss_juxiting
|
||||||
|
|
||||||
@ -280,9 +280,11 @@ def predict_main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
global end_time
|
# global end_time
|
||||||
is_on = True
|
# is_on = True
|
||||||
# 遍历2024-11-25 到 2024-12-3 之间的工作日日期
|
# # 遍历2024-11-25 到 2024-12-3 之间的工作日日期
|
||||||
for i_time in pd.date_range('2024-12-27', '2024-12-28', freq='B'):
|
# for i_time in pd.date_range('2024-12-27', '2024-12-28', freq='B'):
|
||||||
end_time = i_time.strftime('%Y-%m-%d')
|
# end_time = i_time.strftime('%Y-%m-%d')
|
||||||
|
# predict_main()
|
||||||
|
|
||||||
predict_main()
|
predict_main()
|
||||||
|
@ -77,9 +77,16 @@ def predict_main():
|
|||||||
if is_market:
|
if is_market:
|
||||||
logger.info('从市场信息平台获取数据...')
|
logger.info('从市场信息平台获取数据...')
|
||||||
try:
|
try:
|
||||||
|
# 如果是测试环境,最高价最低价取excel文档
|
||||||
|
if server_host == '192.168.100.53':
|
||||||
|
logger.info('从excel文档获取最高价最低价')
|
||||||
|
df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
|
||||||
|
else:
|
||||||
|
logger.info('从市场信息平台获取数据')
|
||||||
df_zhibiaoshuju = get_market_data(end_time,df_zhibiaoshuju)
|
df_zhibiaoshuju = get_market_data(end_time,df_zhibiaoshuju)
|
||||||
|
|
||||||
except :
|
except :
|
||||||
logger.info('从市场信息平台获取数据失败')
|
logger.info('最高最低价拼接失败')
|
||||||
|
|
||||||
# 保存到xlsx文件的sheet表
|
# 保存到xlsx文件的sheet表
|
||||||
with pd.ExcelWriter(os.path.join(dataset,data_set)) as file:
|
with pd.ExcelWriter(os.path.join(dataset,data_set)) as file:
|
||||||
@ -106,8 +113,6 @@ def predict_main():
|
|||||||
# 保存最新日期的y值到数据库
|
# 保存最新日期的y值到数据库
|
||||||
# 取第一行数据存储到数据库中
|
# 取第一行数据存储到数据库中
|
||||||
first_row = df[['ds', 'y']].tail(1)
|
first_row = df[['ds', 'y']].tail(1)
|
||||||
print(first_row['ds'].values[0])
|
|
||||||
print(first_row['y'].values[0])
|
|
||||||
# 判断y的类型是否为float
|
# 判断y的类型是否为float
|
||||||
if not isinstance(first_row['y'].values[0], float):
|
if not isinstance(first_row['y'].values[0], float):
|
||||||
logger.info(f'{end_time}预测目标数据为空,跳过')
|
logger.info(f'{end_time}预测目标数据为空,跳过')
|
||||||
@ -137,15 +142,15 @@ def predict_main():
|
|||||||
# 找到update_y 中ds且df中的y的行
|
# 找到update_y 中ds且df中的y的行
|
||||||
update_y = update_y[update_y['ds']<=end_time]
|
update_y = update_y[update_y['ds']<=end_time]
|
||||||
logger.info(f'要更新y的信息:{update_y}')
|
logger.info(f'要更新y的信息:{update_y}')
|
||||||
try:
|
# try:
|
||||||
for row in update_y.itertuples(index=False):
|
for row in update_y.itertuples(index=False):
|
||||||
row_dict = row._asdict()
|
row_dict = row._asdict()
|
||||||
yy = df[df['ds']==row_dict['ds']]['y'].values[0]
|
yy = df[df['ds']==row_dict['ds']]['y'].values[0]
|
||||||
LOW = df[df['ds']==row_dict['ds']]['Brentzdj'].values[0]
|
LOW = df[df['ds']==row_dict['ds']]['Brentzdj'].values[0]
|
||||||
HIGH = df[df['ds']==row_dict['ds']]['Brentzgj'].values[0]
|
HIGH = df[df['ds']==row_dict['ds']]['Brentzgj'].values[0]
|
||||||
sqlitedb.update_data('accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
|
sqlitedb.update_data('accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
|
||||||
except Exception as e:
|
# except Exception as e:
|
||||||
logger.info(f'更新accuracy表的y值失败:{e}')
|
# logger.info(f'更新accuracy表的y值失败:{e}')
|
||||||
|
|
||||||
import datetime
|
import datetime
|
||||||
# 判断当前日期是不是周一
|
# 判断当前日期是不是周一
|
||||||
@ -276,7 +281,7 @@ def predict_main():
|
|||||||
file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
|
file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
|
||||||
ssl=ssl,
|
ssl=ssl,
|
||||||
)
|
)
|
||||||
m.send_mail()
|
# m.send_mail()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
Loading…
Reference in New Issue
Block a user