聚烯烃周度配置八大维度数据上传市场信息平台
This commit is contained in:
		
							parent
							
								
									7ed37c23cb
								
							
						
					
					
						commit
						4c5a1d1c6e
					
				| @ -1,3 +1,4 @@ | ||||
| from decimal import Decimal | ||||
| import logging | ||||
| import os | ||||
| import logging.handlers | ||||
| @ -159,16 +160,157 @@ data = { | ||||
| ClassifyId = 1161 | ||||
| 
 | ||||
| 
 | ||||
| # 变量定义--测试环境 | ||||
| server_host = '192.168.100.53:8080'  # 内网 | ||||
| # server_host = '183.242.74.28'  # 外网 | ||||
| # # 变量定义--线上环境 | ||||
| # server_host = '10.200.32.39' | ||||
| # login_pushreport_url = "http://10.200.32.39/jingbo-api/api/server/login" | ||||
| # upload_url = "http://10.200.32.39/jingbo-api/api/analysis/reportInfo/researchUploadReportSave" | ||||
| # upload_warning_url = "http://10.200.32.39/jingbo-api/api/basicBuiness/crudeOilWarning/save" | ||||
| # query_data_list_item_nos_url = f"http://{server_host}/jingbo-api/api/warehouse/dwDataItem/queryDataListItemNos" | ||||
| # # 上传数据项值 | ||||
| # push_data_value_list_url = f"http://{server_host}/jingbo-api/api/dw/dataValue/pushDataValueList" | ||||
| # # 上传停更数据到市场信息平台 | ||||
| # push_waring_data_value_list_url = f"http://{server_host}/jingbo-api/api/basicBuiness/crudeOilWarning/crudeSaveOrupdate" | ||||
| # # 获取预警数据中取消订阅指标ID | ||||
| # get_waring_data_value_list_url = f"http://{server_host}/jingbo-api/api/basicBuiness/crudeOilWarning/dataList" | ||||
| 
 | ||||
| login_pushreport_url = f"http://{server_host}/jingbo-dev/api/server/login" | ||||
| upload_url = f"http://{server_host}/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave" | ||||
| upload_warning_url = f"http://{server_host}/jingbo-dev/api/basicBuiness/crudeOilWarning/save" | ||||
| query_data_list_item_nos_url = f"http://{server_host}/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos" | ||||
| 
 | ||||
| # login_data = { | ||||
| #     "data": { | ||||
| #         "account": "api_dev", | ||||
| #         "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", | ||||
| #         "tenantHashCode": "8a4577dbd919675758d57999a1e891fe", | ||||
| #         "terminal": "API" | ||||
| #     }, | ||||
| #     "funcModule": "API", | ||||
| #     "funcOperation": "获取token" | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # upload_data = { | ||||
| #     "funcModule": '研究报告信息', | ||||
| #     "funcOperation": '上传聚烯烃PP价格预测报告', | ||||
| #     "data": { | ||||
| #         "groupNo": '000211',  # 用户组编号 | ||||
| #         "ownerAccount": '36541',  # 报告所属用户账号  36541 - 贾青雪 | ||||
| #         "reportType": 'OIL_PRICE_FORECAST',  # 报告类型,固定为OIL_PRICE_FORECAST | ||||
| #         "fileName": '',  # 文件名称 | ||||
| #         "fileBase64": '',  # 文件内容base64 | ||||
| #         "categoryNo": 'jxtjgycbg',  # 研究报告分类编码 | ||||
| #         "smartBusinessClassCode": 'JXTJGYCBG',  # 分析报告分类编码 | ||||
| #         "reportEmployeeCode": "E40482",  # 报告人  E40482  - 管理员  0000027663 - 刘小朋   | ||||
| #         "reportDeptCode": "JXTJGYCBG",  # 报告部门 - 002000621000  SH期货研究部   | ||||
| #         "productGroupCode": "RAW_MATERIAL"   # 商品分类 | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| # warning_data = { | ||||
| #     "funcModule": '原油特征停更预警', | ||||
| #     "funcOperation": '原油特征停更预警', | ||||
| #     "data": { | ||||
| #         "groupNo": "000211", | ||||
| #         'WARNING_TYPE_NAME': '特征数据停更预警', | ||||
| #         'WARNING_CONTENT': '', | ||||
| #         'WARNING_DATE': '' | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| # query_data_list_item_nos_data = { | ||||
| #     "funcModule": "数据项", | ||||
| #     "funcOperation": "查询", | ||||
| #     "data": { | ||||
| #         "dateStart": "20200101", | ||||
| #         "dateEnd": "", | ||||
| #         # 数据项编码,代表 PP期货 价格 | ||||
| #         "dataItemNoList": ["MAIN_CONFT_SETTLE_PRICE"] | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # push_data_value_list_data = { | ||||
| #     "funcModule": "数据表信息列表", | ||||
| #     "funcOperation": "新增", | ||||
| #     "data": [ | ||||
| #         {"dataItemNo": "91230600716676129", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.11 | ||||
| #          }, | ||||
| #         {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.55 | ||||
| #          }, | ||||
| #         {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.55 | ||||
| #          } | ||||
| #     ] | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # push_waring_data_value_list_data = { | ||||
| #     "data": { | ||||
| #         "crudeOilWarningDtoList": [ | ||||
| #             { | ||||
| #                 "lastUpdateDate": "20240501", | ||||
| #                 "updateSuspensionCycle": 1, | ||||
| #                 "dataSource": "9", | ||||
| #                 "frequency": "1", | ||||
| #                 "indicatorName": "美元指数", | ||||
| #                 "indicatorId": "myzs001", | ||||
| #                 "warningDate": "2024-05-13" | ||||
| #             } | ||||
| #         ], | ||||
| #         "dataSource": "9" | ||||
| #     }, | ||||
| #     "funcModule": "商品数据同步", | ||||
| #     "funcOperation": "同步" | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # get_waring_data_value_list_data = { | ||||
| #     "data": "9", "funcModule": "商品数据同步", "funcOperation": "同步"} | ||||
| 
 | ||||
| 
 | ||||
| # # 八大维度数据项编码 | ||||
| # bdwd_items = { | ||||
| #     'ciri': '91371600MAC3TYFN6M|LSBM00007|FORECAST_PRICE', | ||||
| #     'benzhou': '91371600MAC3TYFN6M|LSBM00007|FORECAST_PRICE01', | ||||
| #     'cizhou': '91371600MAC3TYFN6M|LSBM00007|FORECAST_PRICE02', | ||||
| #     'gezhou': '91371600MAC3TYFN6M|LSBM00007|FORECAST_PRICE03', | ||||
| #     'ciyue': '91371600MAC3TYFN6M|LSBM00007|FORECAST_PRICE04', | ||||
| #     'cieryue': '91371600MAC3TYFN6M|LSBM00007|FORECAST_PRICE05', | ||||
| #     'cisanyue': '91371600MAC3TYFN6M|LSBM00007|FORECAST_PRICE06', | ||||
| #     'cisiyue': '91371600MAC3TYFN6M|LSBM00007|FORECAST_PRICE07', | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # # 生产环境数据库 | ||||
| # host = 'rm-2zehj3r1n60ttz9x5.mysql.rds.aliyuncs.com' | ||||
| # port = 3306 | ||||
| # dbusername = 'jingbo' | ||||
| # password = 'shihua@123' | ||||
| # dbname = 'jingbo' | ||||
| # table_name = 'v_tbl_crude_oil_warning' | ||||
| 
 | ||||
| 
 | ||||
| # 变量定义--测试环境 | ||||
| server_host = '192.168.100.53'  # 内网 | ||||
| # server_host = '183.242.74.28'  # 外网 | ||||
| login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login" | ||||
| # 上传报告 | ||||
| upload_url = f"http://{server_host}:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave" | ||||
| # 停更预警 | ||||
| upload_warning_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save" | ||||
| # 查询数据项编码 | ||||
| query_data_list_item_nos_url = f"http://{server_host}:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos" | ||||
| # 上传数据项值 | ||||
| push_data_value_list_url = f"http://{server_host}/jingbo-dev/api/dw/dataValue/pushDataValueList" | ||||
| push_data_value_list_url = f"http://{server_host}:8080/jingbo-dev/api/dw/dataValue/pushDataValueList" | ||||
| # 上传停更数据到市场信息平台 | ||||
| push_waring_data_value_list_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/crudeSaveOrupdate" | ||||
| # 获取预警数据中取消订阅指标ID | ||||
| get_waring_data_value_list_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/dataList" | ||||
| 
 | ||||
| login_data = { | ||||
|     "data": { | ||||
| @ -186,6 +328,7 @@ upload_data = { | ||||
|     "funcModule": '研究报告信息', | ||||
|     "funcOperation": '上传聚烯烃PP价格预测报告', | ||||
|     "data": { | ||||
|         "groupNo": "000127", | ||||
|         "ownerAccount": 'arui',  # 报告所属用户账号 | ||||
|         "reportType": 'OIL_PRICE_FORECAST',  # 报告类型,固定为OIL_PRICE_FORECAST | ||||
|         "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf',  # 文件名称 | ||||
| @ -198,11 +341,12 @@ upload_data = { | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| # 已弃用 | ||||
| warning_data = { | ||||
|     "funcModule": '原油特征停更预警', | ||||
|     "funcOperation": '原油特征停更预警', | ||||
|     "data": { | ||||
|         "groupNo": "000127", | ||||
|         'WARNING_TYPE_NAME': '特征数据停更预警', | ||||
|         'WARNING_CONTENT': '', | ||||
|         'WARNING_DATE': '' | ||||
| @ -214,8 +358,9 @@ query_data_list_item_nos_data = { | ||||
|     "funcOperation": "查询", | ||||
|     "data": { | ||||
|         "dateStart": "20200101", | ||||
|         "dateEnd": "20241231", | ||||
|         "dataItemNoList": ["Brentzdj", "Brentzgj"]  # 数据项编码,代表 brent最低价和最高价 | ||||
|         "dateEnd": "", | ||||
|         # 数据项编码,代表 PP期货 价格 | ||||
|         "dataItemNoList": ["MAIN_CONFT_SETTLE_PRICE"] | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| @ -241,6 +386,31 @@ push_data_value_list_data = { | ||||
|     ] | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| push_waring_data_value_list_data = { | ||||
|     "data": { | ||||
|         "crudeOilWarningDtoList": [ | ||||
|             { | ||||
|                 "lastUpdateDate": "20240501", | ||||
|                 "updateSuspensionCycle": 1, | ||||
|                 "dataSource": "9", | ||||
|                 "frequency": "1", | ||||
|                 "indicatorName": "美元指数", | ||||
|                 "indicatorId": "myzs001", | ||||
|                 "warningDate": "2024-05-13" | ||||
|             } | ||||
|         ], | ||||
|         "dataSource": "9" | ||||
|     }, | ||||
|     "funcModule": "商品数据同步", | ||||
|     "funcOperation": "同步" | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| get_waring_data_value_list_data = { | ||||
|     "data": "9", "funcModule": "商品数据同步", "funcOperation": "同步"} | ||||
| 
 | ||||
| 
 | ||||
| # 八大维度数据项编码 | ||||
| bdwd_items = { | ||||
|     'ciri': 'jxtppbdwdcr', | ||||
| @ -262,22 +432,36 @@ password = '123456' | ||||
| dbname = 'jingbo_test' | ||||
| table_name = 'v_tbl_crude_oil_warning' | ||||
| 
 | ||||
| DEFAULT_CONFIG = { | ||||
|     'feature_factor_frequency': 'D', | ||||
|     'strategy_id': 2, | ||||
|     'model_evaluation_id': 1, | ||||
|     'tenant_code': '', | ||||
|     'version_num': Decimal(1), | ||||
|     'delete_flag': '0', | ||||
|     'create_user': 'admin', | ||||
|     'create_date': datetime.datetime.now(), | ||||
|     'update_user': 'admin', | ||||
|     'update_date': datetime.datetime.now(), | ||||
|     'oil_code': 'PP', | ||||
|     'oil_name': 'PP期货', | ||||
| } | ||||
| 
 | ||||
| # 开关 | ||||
| is_train = True  # 是否训练 | ||||
| is_debug = False  # 是否调试 | ||||
| is_eta = True  # 是否使用eta接口 | ||||
| is_market = False  # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效 | ||||
| is_eta = False  # 是否使用eta接口 | ||||
| is_market = True  # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效 | ||||
| is_timefurture = True  # 是否使用时间特征 | ||||
| is_fivemodels = False  # 是否使用之前保存的最佳的5个模型 | ||||
| is_edbcode = False  # 特征使用edbcoding列表中的 | ||||
| is_edbnamelist = False  # 自定义特征,对应上面的edbnamelist | ||||
| is_update_eta = True  # 预测结果上传到eta | ||||
| is_update_report = True  # 是否上传报告 | ||||
| is_update_warning_data = False  # 是否上传预警数据 | ||||
| is_update_report = False  # 是否上传报告 | ||||
| is_update_warning_data = True  # 是否上传预警数据 | ||||
| is_update_predict_value = True  # 是否上传预测值到市场信息平台 | ||||
| is_del_corr = 0.6  # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征 | ||||
| is_del_tow_month = False  # 是否删除两个月不更新的特征 | ||||
| is_del_tow_month = True  # 是否删除两个月不更新的特征 | ||||
| is_bdwd = False  # 是否使用八大维度 | ||||
| 
 | ||||
| 
 | ||||
| @ -299,15 +483,17 @@ if add_kdj and is_edbnamelist: | ||||
|     edbnamelist = edbnamelist+['K', 'D', 'J'] | ||||
| 
 | ||||
| # 模型参数 | ||||
| y = 'AVG-金能大唐久泰青州' | ||||
| avg_cols = [ | ||||
|     'PP:拉丝:1102K:出厂价:青州:国家能源宁煤(日)', | ||||
|     'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)', | ||||
|     'PP:拉丝:L5E89:出厂价:河北、鲁北:大唐内蒙多伦(日)', | ||||
|     'PP:拉丝:HP550J:市场价:青岛:金能化学(日)' | ||||
| ] | ||||
| offsite = 80 | ||||
| offsite_col = ['PP:拉丝:HP550J:市场价:青岛:金能化学(日)'] | ||||
| # y = 'AVG-金能大唐久泰青州' | ||||
| # avg_cols = [ | ||||
| #     'PP:拉丝:1102K:出厂价:青州:国家能源宁煤(日)', | ||||
| #     'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)', | ||||
| #     'PP:拉丝:L5E89:出厂价:河北、鲁北:大唐内蒙多伦(日)', | ||||
| #     'PP:拉丝:HP550J:市场价:青岛:金能化学(日)' | ||||
| # ] | ||||
| # offsite = 80 | ||||
| # offsite_col = ['PP:拉丝:HP550J:市场价:青岛:金能化学(日)'] | ||||
| 
 | ||||
| y = 'MAIN_CONFT_SETTLE_PRICE' | ||||
| horizon = 2  # 预测的步长 | ||||
| input_size = 14  # 输入序列长度 | ||||
| train_steps = 50 if is_debug else 1000  # 训练步数,用来限定epoch次数 | ||||
| @ -330,9 +516,6 @@ weight_dict = [0.4, 0.15, 0.1, 0.1, 0.25]  # 权重 | ||||
| data_set = 'PP指标数据.xlsx'  # 数据集文件 | ||||
| dataset = 'juxitingzhoududataset'  # 数据集文件夹 | ||||
| 
 | ||||
| print("当前工作目录:", os.getcwd()) | ||||
| print("数据库路径:", os.path.abspath('juxitingzhoududataset/jbsh_juxiting_zhoudu.db')) | ||||
| 
 | ||||
| # 数据库名称 | ||||
| db_name = os.path.join(dataset, 'jbsh_juxiting_zhoudu.db') | ||||
| sqlitedb = SQLiteHandler(db_name) | ||||
| @ -374,7 +557,7 @@ logger.setLevel(logging.INFO) | ||||
| file_handler = logging.handlers.RotatingFileHandler(os.path.join( | ||||
|     log_dir, 'pricepredict.log'), maxBytes=1024 * 1024, backupCount=5) | ||||
| file_handler.setFormatter(logging.Formatter( | ||||
|     '%(asctime)s - %(name)s - %(levelname)s - %(message)s')) | ||||
|     '%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S')) | ||||
| 
 | ||||
| # 配置控制台处理器,将日志打印到控制台 | ||||
| console_handler = logging.StreamHandler() | ||||
|  | ||||
| @ -2,8 +2,8 @@ | ||||
| 
 | ||||
| from lib.dataread import * | ||||
| from config_juxiting_zhoudu import * | ||||
| from lib.tools import SendMail, exception_logger | ||||
| from models.nerulforcastmodels import ex_Model, model_losss_juxiting, tansuanli_export_pdf, pp_export_pdf | ||||
| from lib.tools import SendMail, exception_logger, convert_df_to_pydantic, exception_logger, get_modelsname | ||||
| from models.nerulforcastmodels import ex_Model_Juxiting, model_losss_juxiting, pp_export_pdf | ||||
| import datetime | ||||
| import torch | ||||
| torch.set_float32_matmul_precision("high") | ||||
| @ -13,9 +13,9 @@ global_config.update({ | ||||
|     'logger': logger, | ||||
|     'dataset': dataset, | ||||
|     'y': y, | ||||
|     'offsite_col': offsite_col, | ||||
|     'avg_cols': avg_cols, | ||||
|     'offsite': offsite, | ||||
|     # 'offsite_col': offsite_col, | ||||
|     # 'avg_cols': avg_cols, | ||||
|     # 'offsite': offsite, | ||||
|     'edbcodenamedict': edbcodenamedict, | ||||
|     'is_debug': is_debug, | ||||
|     'is_train': is_train, | ||||
| @ -67,6 +67,14 @@ global_config.update({ | ||||
|     'push_data_value_list_url': push_data_value_list_url, | ||||
|     'push_data_value_list_data': push_data_value_list_data, | ||||
| 
 | ||||
|     # 上传预警数据 | ||||
|     'push_waring_data_value_list_url': push_waring_data_value_list_url, | ||||
|     'push_waring_data_value_list_data': push_waring_data_value_list_data, | ||||
| 
 | ||||
|     # 获取取消订阅的数据 | ||||
|     'get_waring_data_value_list_url': get_waring_data_value_list_url, | ||||
|     'get_waring_data_value_list_data': get_waring_data_value_list_data, | ||||
| 
 | ||||
|     # eta 配置 | ||||
|     'APPID': APPID, | ||||
|     'SECRET': SECRET, | ||||
| @ -83,12 +91,15 @@ global_config.update({ | ||||
| 
 | ||||
|     # 数据库配置 | ||||
|     'sqlitedb': sqlitedb, | ||||
|     'bdwd_items': bdwd_items, | ||||
|     'is_bdwd': is_bdwd, | ||||
|     'db_mysql': db_mysql, | ||||
|     'DEFAULT_CONFIG': DEFAULT_CONFIG, | ||||
| }) | ||||
| 
 | ||||
| 
 | ||||
| def push_market_value(): | ||||
|     logger.info('发送预测结果到市场信息平台') | ||||
|     config.logger.info('发送预测结果到市场信息平台') | ||||
|     # 读取预测数据和模型评估数据 | ||||
|     predict_file_path = os.path.join(config.dataset, 'predict.csv') | ||||
|     model_eval_file_path = os.path.join(config.dataset, 'model_evaluation.csv') | ||||
| @ -96,7 +107,7 @@ def push_market_value(): | ||||
|         predictdata_df = pd.read_csv(predict_file_path) | ||||
|         top_models_df = pd.read_csv(model_eval_file_path) | ||||
|     except FileNotFoundError as e: | ||||
|         logger.error(f"文件未找到: {e}") | ||||
|         config.logger.error(f"文件未找到: {e}") | ||||
|         return | ||||
| 
 | ||||
|     predictdata = predictdata_df.copy() | ||||
| @ -140,7 +151,92 @@ def push_market_value(): | ||||
|     try: | ||||
|         push_market_data(predictdata) | ||||
|     except Exception as e: | ||||
|         logger.error(f"推送数据失败: {e}") | ||||
|         config.logger.error(f"推送数据失败: {e}") | ||||
| 
 | ||||
| 
 | ||||
| def sql_inset_predict(global_config): | ||||
|     df = pd.read_csv(os.path.join(config.dataset, 'predict.csv')) | ||||
|     df['created_dt'] = pd.to_datetime(df['created_dt']) | ||||
|     df['ds'] = pd.to_datetime(df['ds']) | ||||
|     # 获取次日预测结果 | ||||
|     next_day_df = df[df['ds'] == df['ds'].min()] | ||||
|     # 获取本周预测结果 | ||||
|     this_week_df = df[df['ds'] == df['ds'].max()] | ||||
| 
 | ||||
|     wd = ['day_price', 'week_price'] | ||||
|     model_name_list, model_id_name_dict = get_modelsname(df, global_config) | ||||
| 
 | ||||
|     PRICE_COLUMNS = [ | ||||
|         'day_price', 'week_price', 'second_week_price', 'next_week_price', | ||||
|         'next_month_price', 'next_february_price', 'next_march_price', 'next_april_price' | ||||
|     ] | ||||
| 
 | ||||
|     params_list = [] | ||||
|     for df, price_type in zip([next_day_df, this_week_df], wd): | ||||
| 
 | ||||
|         update_columns = [ | ||||
|             "feature_factor_frequency = VALUES(feature_factor_frequency)", | ||||
|             "oil_code = VALUES(oil_code)", | ||||
|             "oil_name = VALUES(oil_name)", | ||||
|             "data_date = VALUES(data_date)", | ||||
|             "market_price = VALUES(market_price)", | ||||
|             f"{price_type} = VALUES({price_type})", | ||||
|             "model_evaluation_id = VALUES(model_evaluation_id)", | ||||
|             "tenant_code = VALUES(tenant_code)", | ||||
|             "version_num = VALUES(version_num)", | ||||
|             "delete_flag = VALUES(delete_flag)", | ||||
|             "update_user = VALUES(update_user)", | ||||
|             "update_date = VALUES(update_date)" | ||||
|         ] | ||||
| 
 | ||||
|         insert_query = f""" | ||||
|         INSERT INTO v_tbl_predict_prediction_results ( | ||||
|             feature_factor_frequency, strategy_id, oil_code, oil_name, data_date, | ||||
|             market_price, day_price, week_price, second_week_price, next_week_price, | ||||
|             next_month_price, next_february_price, next_march_price, next_april_price, | ||||
|             model_evaluation_id, model_id, tenant_code, version_num, delete_flag, | ||||
|             create_user, create_date, update_user, update_date | ||||
|         ) VALUES ( | ||||
|             %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s | ||||
|         ) | ||||
|         ON DUPLICATE KEY UPDATE | ||||
|             {', '.join(update_columns)} | ||||
|         """ | ||||
| 
 | ||||
|         next_day_df = df[['ds', 'created_dt'] + model_name_list] | ||||
| 
 | ||||
|         pydantic_results = convert_df_to_pydantic( | ||||
|             next_day_df, model_id_name_dict, global_config) | ||||
|         if pydantic_results: | ||||
| 
 | ||||
|             for result in pydantic_results: | ||||
|                 price_values = [None] * len(PRICE_COLUMNS) | ||||
|                 price_index = PRICE_COLUMNS.index(price_type) | ||||
|                 price_values[price_index] = next_day_df[model_id_name_dict[result.model_id]].values[0] | ||||
| 
 | ||||
|                 params = ( | ||||
|                     result.feature_factor_frequency, | ||||
|                     result.strategy_id, | ||||
|                     global_config['DEFAULT_CONFIG']['oil_code'], | ||||
|                     global_config['DEFAULT_CONFIG']['oil_name'], | ||||
|                     next_day_df['created_dt'].values[0], | ||||
|                     result.market_price, | ||||
|                     *price_values, | ||||
|                     result.model_evaluation_id, | ||||
|                     result.model_id, | ||||
|                     result.tenant_code, | ||||
|                     1, | ||||
|                     '0', | ||||
|                     result.create_user, | ||||
|                     result.create_date, | ||||
|                     result.update_user, | ||||
|                     result.update_date | ||||
|                 ) | ||||
|                 params_list.append(params) | ||||
|         affected_rows = config.db_mysql.execute_batch_insert( | ||||
|             insert_query, params_list) | ||||
|         config.logger.info(f"成功插入或更新 {affected_rows} 条记录") | ||||
|     config.db_mysql.close() | ||||
| 
 | ||||
| 
 | ||||
| def predict_main(): | ||||
| @ -206,7 +302,7 @@ def predict_main(): | ||||
|             try: | ||||
|                 # 如果是测试环境,最高价最低价取excel文档 | ||||
|                 if server_host == '192.168.100.53': | ||||
|                     logger.info('从excel文档获取最高价最低价') | ||||
|                     logger.info('从excel文档获取市场信息平台指标') | ||||
|                     df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju) | ||||
|                 else: | ||||
|                     logger.info('从市场信息平台获取数据') | ||||
| @ -214,7 +310,7 @@ def predict_main(): | ||||
|                         end_time, df_zhibiaoshuju) | ||||
| 
 | ||||
|             except: | ||||
|                 logger.info('最高最低价拼接失败') | ||||
|                 logger.info('市场信息平台数据项-eta数据项 拼接失败') | ||||
| 
 | ||||
|         # 保存到xlsx文件的sheet表 | ||||
|         with pd.ExcelWriter(os.path.join(dataset, data_set)) as file: | ||||
| @ -346,26 +442,26 @@ def predict_main(): | ||||
|     row, col = df.shape | ||||
| 
 | ||||
|     now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') | ||||
|     ex_Model(df, | ||||
|              horizon=global_config['horizon'], | ||||
|              input_size=global_config['input_size'], | ||||
|              train_steps=global_config['train_steps'], | ||||
|              val_check_steps=global_config['val_check_steps'], | ||||
|              early_stop_patience_steps=global_config['early_stop_patience_steps'], | ||||
|              is_debug=global_config['is_debug'], | ||||
|              dataset=global_config['dataset'], | ||||
|              is_train=global_config['is_train'], | ||||
|              is_fivemodels=global_config['is_fivemodels'], | ||||
|              val_size=global_config['val_size'], | ||||
|              test_size=global_config['test_size'], | ||||
|              settings=global_config['settings'], | ||||
|              now=now, | ||||
|              etadata=etadata, | ||||
|              modelsindex=global_config['modelsindex'], | ||||
|              data=data, | ||||
|              is_eta=global_config['is_eta'], | ||||
|              end_time=global_config['end_time'], | ||||
|              ) | ||||
|     ex_Model_Juxiting(df, | ||||
|                       horizon=global_config['horizon'], | ||||
|                       input_size=global_config['input_size'], | ||||
|                       train_steps=global_config['train_steps'], | ||||
|                       val_check_steps=global_config['val_check_steps'], | ||||
|                       early_stop_patience_steps=global_config['early_stop_patience_steps'], | ||||
|                       is_debug=global_config['is_debug'], | ||||
|                       dataset=global_config['dataset'], | ||||
|                       is_train=global_config['is_train'], | ||||
|                       is_fivemodels=global_config['is_fivemodels'], | ||||
|                       val_size=global_config['val_size'], | ||||
|                       test_size=global_config['test_size'], | ||||
|                       settings=global_config['settings'], | ||||
|                       now=now, | ||||
|                       etadata=etadata, | ||||
|                       modelsindex=global_config['modelsindex'], | ||||
|                       data=data, | ||||
|                       is_eta=global_config['is_eta'], | ||||
|                       end_time=global_config['end_time'], | ||||
|                       ) | ||||
| 
 | ||||
|     logger.info('模型训练完成') | ||||
| 
 | ||||
| @ -375,17 +471,18 @@ def predict_main(): | ||||
|     logger.info('训练数据绘图end') | ||||
| 
 | ||||
|     # # 模型报告 | ||||
|     # logger.info('制作报告ing') | ||||
|     # title = f'{settings}--{end_time}-预测报告'  # 报告标题 | ||||
|     # reportname = f'聚烯烃PP大模型周度预测--{end_time}.pdf'  # 报告文件名 | ||||
|     # reportname = reportname.replace(':', '-')  # 替换冒号 | ||||
|     # pp_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time, | ||||
|     #               reportname=reportname, sqlitedb=sqlitedb), | ||||
|     logger.info('制作报告ing') | ||||
|     title = f'{settings}--{end_time}-预测报告'  # 报告标题 | ||||
|     reportname = f'聚烯烃PP大模型周度预测--{end_time}.pdf'  # 报告文件名 | ||||
|     reportname = reportname.replace(':', '-')  # 替换冒号 | ||||
|     pp_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time, | ||||
|                   reportname=reportname, sqlitedb=sqlitedb), | ||||
| 
 | ||||
|     # logger.info('制作报告end') | ||||
|     # logger.info('模型训练完成') | ||||
|     logger.info('制作报告end') | ||||
|     logger.info('模型训练完成') | ||||
| 
 | ||||
|     # push_market_value() | ||||
|     push_market_value() | ||||
|     sql_inset_predict(global_config) | ||||
| 
 | ||||
|     # # LSTM 单变量模型 | ||||
|     # ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset) | ||||
| @ -412,11 +509,15 @@ def predict_main(): | ||||
| if __name__ == '__main__': | ||||
|     # global end_time | ||||
|     # 遍历2024-11-25 到 2024-12-3 之间的工作日日期 | ||||
|     for i_time in pd.date_range('2025-3-1', '2025-5-26', freq='W'): | ||||
|         try: | ||||
|             global_config['end_time'] = i_time.strftime('%Y-%m-%d') | ||||
|             predict_main() | ||||
|         except Exception as e: | ||||
|             logger.info(f'预测失败:{e}') | ||||
|             continue | ||||
|     # for i_time in pd.date_range('2025-4-14', '2025-4-15', freq='B'): | ||||
|     #     try: | ||||
|     #         global_config['end_time'] = i_time.strftime('%Y-%m-%d') | ||||
|     #         predict_main() | ||||
|     #     except Exception as e: | ||||
|     #         logger.info(f'预测失败:{e}') | ||||
|     #         continue | ||||
| 
 | ||||
|     # predict_main() | ||||
| 
 | ||||
|     # push_market_value() | ||||
|     sql_inset_predict(global_config) | ||||
|  | ||||
| @ -1,9 +1,9 @@ | ||||
| # 读取配置 | ||||
| 
 | ||||
| from lib.dataread import * | ||||
| from config_jingbo_zhoudu import * | ||||
| from lib.tools import SendMail, convert_df_to_pydantic, exception_logger, get_modelsname | ||||
| from models.nerulforcastmodels import ex_Model, model_losss, brent_export_pdf | ||||
| from config_juxiting_zhoudu import * | ||||
| from lib.tools import SendMail, exception_logger, convert_df_to_pydantic, exception_logger, get_modelsname | ||||
| from models.nerulforcastmodels import ex_Model_Juxiting, model_losss_juxiting, pp_export_pdf | ||||
| import datetime | ||||
| import torch | ||||
| torch.set_float32_matmul_precision("high") | ||||
| @ -13,6 +13,10 @@ global_config.update({ | ||||
|     'logger': logger, | ||||
|     'dataset': dataset, | ||||
|     'y': y, | ||||
|     # 'offsite_col': offsite_col, | ||||
|     # 'avg_cols': avg_cols, | ||||
|     # 'offsite': offsite, | ||||
|     'edbcodenamedict': edbcodenamedict, | ||||
|     'is_debug': is_debug, | ||||
|     'is_train': is_train, | ||||
|     'is_fivemodels': is_fivemodels, | ||||
| @ -63,6 +67,14 @@ global_config.update({ | ||||
|     'push_data_value_list_url': push_data_value_list_url, | ||||
|     'push_data_value_list_data': push_data_value_list_data, | ||||
| 
 | ||||
|     # 上传预警数据 | ||||
|     'push_waring_data_value_list_url': push_waring_data_value_list_url, | ||||
|     'push_waring_data_value_list_data': push_waring_data_value_list_data, | ||||
| 
 | ||||
|     # 获取取消订阅的数据 | ||||
|     'get_waring_data_value_list_url': get_waring_data_value_list_url, | ||||
|     'get_waring_data_value_list_data': get_waring_data_value_list_data, | ||||
| 
 | ||||
|     # eta 配置 | ||||
|     'APPID': APPID, | ||||
|     'SECRET': SECRET, | ||||
| @ -79,6 +91,7 @@ global_config.update({ | ||||
| 
 | ||||
|     # 数据库配置 | ||||
|     'sqlitedb': sqlitedb, | ||||
|     'bdwd_items': bdwd_items, | ||||
|     'is_bdwd': is_bdwd, | ||||
|     'db_mysql': db_mysql, | ||||
|     'DEFAULT_CONFIG': DEFAULT_CONFIG, | ||||
| @ -86,7 +99,7 @@ global_config.update({ | ||||
| 
 | ||||
| 
 | ||||
| def push_market_value(): | ||||
|     logger.info('发送预测结果到市场信息平台') | ||||
|     config.logger.info('发送预测结果到市场信息平台') | ||||
|     # 读取预测数据和模型评估数据 | ||||
|     predict_file_path = os.path.join(config.dataset, 'predict.csv') | ||||
|     model_eval_file_path = os.path.join(config.dataset, 'model_evaluation.csv') | ||||
| @ -94,7 +107,7 @@ def push_market_value(): | ||||
|         predictdata_df = pd.read_csv(predict_file_path) | ||||
|         top_models_df = pd.read_csv(model_eval_file_path) | ||||
|     except FileNotFoundError as e: | ||||
|         logger.error(f"文件未找到: {e}") | ||||
|         config.logger.error(f"文件未找到: {e}") | ||||
|         return | ||||
| 
 | ||||
|     predictdata = predictdata_df.copy() | ||||
| @ -138,7 +151,7 @@ def push_market_value(): | ||||
|     try: | ||||
|         push_market_data(predictdata) | ||||
|     except Exception as e: | ||||
|         logger.error(f"推送数据失败: {e}") | ||||
|         config.logger.error(f"推送数据失败: {e}") | ||||
| 
 | ||||
| 
 | ||||
| def sql_inset_predict(global_config): | ||||
| @ -154,7 +167,7 @@ def sql_inset_predict(global_config): | ||||
|     model_name_list, model_id_name_dict = get_modelsname(df, global_config) | ||||
| 
 | ||||
|     PRICE_COLUMNS = [ | ||||
|         'day_price', 'week_price',  'second_week_price', 'next_week_price', | ||||
|         'day_price', 'week_price', 'second_week_price', 'next_week_price', | ||||
|         'next_month_price', 'next_february_price', 'next_march_price', 'next_april_price' | ||||
|     ] | ||||
| 
 | ||||
| @ -204,8 +217,8 @@ def sql_inset_predict(global_config): | ||||
|                 params = ( | ||||
|                     result.feature_factor_frequency, | ||||
|                     result.strategy_id, | ||||
|                     result.oil_code, | ||||
|                     result.oil_name, | ||||
|                     global_config['DEFAULT_CONFIG']['oil_code'], | ||||
|                     global_config['DEFAULT_CONFIG']['oil_name'], | ||||
|                     next_day_df['created_dt'].values[0], | ||||
|                     result.market_price, | ||||
|                     *price_values, | ||||
| @ -266,7 +279,6 @@ def predict_main(): | ||||
|         None | ||||
|     """ | ||||
|     end_time = global_config['end_time'] | ||||
| 
 | ||||
|     signature = BinanceAPI(APPID, SECRET) | ||||
|     etadata = EtaReader(signature=signature, | ||||
|                         classifylisturl=global_config['classifylisturl'], | ||||
| @ -282,7 +294,7 @@ def predict_main(): | ||||
|     if is_eta: | ||||
|         logger.info('从eta获取数据...') | ||||
| 
 | ||||
|         df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data( | ||||
|         df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_pp_data( | ||||
|             data_set=data_set, dataset=dataset)  # 原始数据,未处理 | ||||
| 
 | ||||
|         if is_market: | ||||
| @ -290,7 +302,7 @@ def predict_main(): | ||||
|             try: | ||||
|                 # 如果是测试环境,最高价最低价取excel文档 | ||||
|                 if server_host == '192.168.100.53': | ||||
|                     logger.info('从excel文档获取最高价最低价') | ||||
|                     logger.info('从excel文档获取市场信息平台指标') | ||||
|                     df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju) | ||||
|                 else: | ||||
|                     logger.info('从市场信息平台获取数据') | ||||
| @ -298,7 +310,7 @@ def predict_main(): | ||||
|                         end_time, df_zhibiaoshuju) | ||||
| 
 | ||||
|             except: | ||||
|                 logger.info('最高最低价拼接失败') | ||||
|                 logger.info('市场信息平台数据项-eta数据项 拼接失败') | ||||
| 
 | ||||
|         # 保存到xlsx文件的sheet表 | ||||
|         with pd.ExcelWriter(os.path.join(dataset, data_set)) as file: | ||||
| @ -306,14 +318,14 @@ def predict_main(): | ||||
|             df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False) | ||||
| 
 | ||||
|         # 数据处理 | ||||
|         df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture, | ||||
|                        end_time=end_time) | ||||
|         df = datachuli_juxiting(df_zhibiaoshuju, df_zhibiaoliebiao, y=global_config['y'], dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture, | ||||
|                                 end_time=end_time) | ||||
| 
 | ||||
|     else: | ||||
|         # 读取数据 | ||||
|         logger.info('读取本地数据:' + os.path.join(dataset, data_set)) | ||||
|         df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj, | ||||
|                                         is_timefurture=is_timefurture, end_time=end_time)  # 原始数据,未处理 | ||||
|         df, df_zhibiaoliebiao = getdata_zhoudu_juxiting(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj, | ||||
|                                                         is_timefurture=is_timefurture, end_time=end_time)  # 原始数据,未处理 | ||||
| 
 | ||||
|     # 更改预测列名称 | ||||
|     df.rename(columns={y: 'y'}, inplace=True) | ||||
| @ -383,8 +395,8 @@ def predict_main(): | ||||
|             # except Exception as e: | ||||
|             #     logger.info(f'更新accuracy表的y值失败:{e}') | ||||
| 
 | ||||
|     # 判断当前日期是不是周一   预测目标周度许转换,暂注释 | ||||
|     # is_weekday = datetime.datetime.strptime(global_config['end_time'], "%Y-%m-%d").weekday() == 0 | ||||
|     # 判断当前日期是不是周一 | ||||
|     is_weekday = datetime.datetime.now().weekday() == 0 | ||||
|     # if is_weekday: | ||||
|     #     logger.info('今天是周一,更新预测模型') | ||||
|     #     # 计算最近60天预测残差最低的模型名称 | ||||
| @ -430,45 +442,41 @@ def predict_main(): | ||||
|     row, col = df.shape | ||||
| 
 | ||||
|     now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') | ||||
|     ex_Model(df, | ||||
|              horizon=global_config['horizon'], | ||||
|              input_size=global_config['input_size'], | ||||
|              train_steps=global_config['train_steps'], | ||||
|              val_check_steps=global_config['val_check_steps'], | ||||
|              early_stop_patience_steps=global_config['early_stop_patience_steps'], | ||||
|              is_debug=global_config['is_debug'], | ||||
|              dataset=global_config['dataset'], | ||||
|              is_train=global_config['is_train'], | ||||
|              is_fivemodels=global_config['is_fivemodels'], | ||||
|              val_size=global_config['val_size'], | ||||
|              test_size=global_config['test_size'], | ||||
|              settings=global_config['settings'], | ||||
|              now=now, | ||||
|              etadata=etadata, | ||||
|              modelsindex=global_config['modelsindex'], | ||||
|              data=data, | ||||
|              is_eta=global_config['is_eta'], | ||||
|              end_time=global_config['end_time'], | ||||
|              ) | ||||
|     ex_Model_Juxiting(df, | ||||
|                       horizon=global_config['horizon'], | ||||
|                       input_size=global_config['input_size'], | ||||
|                       train_steps=global_config['train_steps'], | ||||
|                       val_check_steps=global_config['val_check_steps'], | ||||
|                       early_stop_patience_steps=global_config['early_stop_patience_steps'], | ||||
|                       is_debug=global_config['is_debug'], | ||||
|                       dataset=global_config['dataset'], | ||||
|                       is_train=global_config['is_train'], | ||||
|                       is_fivemodels=global_config['is_fivemodels'], | ||||
|                       val_size=global_config['val_size'], | ||||
|                       test_size=global_config['test_size'], | ||||
|                       settings=global_config['settings'], | ||||
|                       now=now, | ||||
|                       etadata=etadata, | ||||
|                       modelsindex=global_config['modelsindex'], | ||||
|                       data=data, | ||||
|                       is_eta=global_config['is_eta'], | ||||
|                       end_time=global_config['end_time'], | ||||
|                       ) | ||||
| 
 | ||||
|     logger.info('模型训练完成') | ||||
| 
 | ||||
|     logger.info('训练数据绘图ing') | ||||
|     model_results3 = model_losss(sqlitedb, end_time=end_time) | ||||
|     model_results3 = model_losss_juxiting( | ||||
|         sqlitedb, end_time=global_config['end_time'], is_fivemodels=global_config['is_fivemodels']) | ||||
|     logger.info('训练数据绘图end') | ||||
| 
 | ||||
|     # # 模型报告 | ||||
|     logger.info('制作报告ing') | ||||
|     title = f'{settings}--{end_time}-预测报告'  # 报告标题 | ||||
|     reportname = f'Brent原油大模型周度预测--{end_time}.pdf'  # 报告文件名 | ||||
|     reportname = f'聚烯烃PP大模型周度预测--{end_time}.pdf'  # 报告文件名 | ||||
|     reportname = reportname.replace(':', '-')  # 替换冒号 | ||||
|     brent_export_pdf(dataset=dataset, | ||||
|                      num_models=5 if is_fivemodels else 22, | ||||
|                      time=end_time, | ||||
|                      reportname=reportname, | ||||
|                      inputsize=global_config['horizon'], | ||||
|                      sqlitedb=sqlitedb | ||||
|                      ), | ||||
|     pp_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time, | ||||
|                   reportname=reportname, sqlitedb=sqlitedb), | ||||
| 
 | ||||
|     logger.info('制作报告end') | ||||
|     logger.info('模型训练完成') | ||||
| @ -476,6 +484,15 @@ def predict_main(): | ||||
|     push_market_value() | ||||
|     sql_inset_predict(global_config) | ||||
| 
 | ||||
|     # # LSTM 单变量模型 | ||||
|     # ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset) | ||||
| 
 | ||||
|     # # lstm 多变量模型 | ||||
|     # ex_Lstm_M(df,n_days=input_size,out_days=horizon,is_debug=is_debug,datasetpath=dataset) | ||||
| 
 | ||||
|     # # GRU 模型 | ||||
|     # # ex_GRU(df) | ||||
| 
 | ||||
|     # 发送邮件 | ||||
|     # m = SendMail( | ||||
|     #     username=username, | ||||
| @ -492,10 +509,15 @@ def predict_main(): | ||||
| if __name__ == '__main__': | ||||
|     # global end_time | ||||
|     # 遍历2024-11-25 到 2024-12-3 之间的工作日日期 | ||||
|     for i_time in pd.date_range('2025-6-23', '2025-6-30', freq='B'): | ||||
|         global_config['end_time'] = i_time.strftime('%Y-%m-%d') | ||||
|         global_config['db_mysql'].connect() | ||||
|         predict_main() | ||||
|     # for i_time in pd.date_range('2025-4-14', '2025-4-15', freq='B'): | ||||
|     #     try: | ||||
|     #         global_config['end_time'] = i_time.strftime('%Y-%m-%d') | ||||
|     #         predict_main() | ||||
|     #     except Exception as e: | ||||
|     #         logger.info(f'预测失败:{e}') | ||||
|     #         continue | ||||
| 
 | ||||
|     # predict_main() | ||||
|     # sql_inset_predict(global_config=global_config) | ||||
|     predict_main() | ||||
| 
 | ||||
|     # push_market_value() | ||||
|     # sql_inset_predict(global_config) | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user