聚烯烃周度配置八大维度数据上传市场信息平台
This commit is contained in:
parent
7ed37c23cb
commit
4c5a1d1c6e
@ -1,3 +1,4 @@
|
|||||||
|
from decimal import Decimal
|
||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
import logging.handlers
|
import logging.handlers
|
||||||
@ -159,16 +160,157 @@ data = {
|
|||||||
ClassifyId = 1161
|
ClassifyId = 1161
|
||||||
|
|
||||||
|
|
||||||
# 变量定义--测试环境
|
# # 变量定义--线上环境
|
||||||
server_host = '192.168.100.53:8080' # 内网
|
# server_host = '10.200.32.39'
|
||||||
# server_host = '183.242.74.28' # 外网
|
# login_pushreport_url = "http://10.200.32.39/jingbo-api/api/server/login"
|
||||||
|
# upload_url = "http://10.200.32.39/jingbo-api/api/analysis/reportInfo/researchUploadReportSave"
|
||||||
|
# upload_warning_url = "http://10.200.32.39/jingbo-api/api/basicBuiness/crudeOilWarning/save"
|
||||||
|
# query_data_list_item_nos_url = f"http://{server_host}/jingbo-api/api/warehouse/dwDataItem/queryDataListItemNos"
|
||||||
|
# # 上传数据项值
|
||||||
|
# push_data_value_list_url = f"http://{server_host}/jingbo-api/api/dw/dataValue/pushDataValueList"
|
||||||
|
# # 上传停更数据到市场信息平台
|
||||||
|
# push_waring_data_value_list_url = f"http://{server_host}/jingbo-api/api/basicBuiness/crudeOilWarning/crudeSaveOrupdate"
|
||||||
|
# # 获取预警数据中取消订阅指标ID
|
||||||
|
# get_waring_data_value_list_url = f"http://{server_host}/jingbo-api/api/basicBuiness/crudeOilWarning/dataList"
|
||||||
|
|
||||||
login_pushreport_url = f"http://{server_host}/jingbo-dev/api/server/login"
|
|
||||||
upload_url = f"http://{server_host}/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
|
# login_data = {
|
||||||
upload_warning_url = f"http://{server_host}/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
|
# "data": {
|
||||||
query_data_list_item_nos_url = f"http://{server_host}/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos"
|
# "account": "api_dev",
|
||||||
|
# "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",
|
||||||
|
# "tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
|
||||||
|
# "terminal": "API"
|
||||||
|
# },
|
||||||
|
# "funcModule": "API",
|
||||||
|
# "funcOperation": "获取token"
|
||||||
|
# }
|
||||||
|
|
||||||
|
|
||||||
|
# upload_data = {
|
||||||
|
# "funcModule": '研究报告信息',
|
||||||
|
# "funcOperation": '上传聚烯烃PP价格预测报告',
|
||||||
|
# "data": {
|
||||||
|
# "groupNo": '000211', # 用户组编号
|
||||||
|
# "ownerAccount": '36541', # 报告所属用户账号 36541 - 贾青雪
|
||||||
|
# "reportType": 'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
||||||
|
# "fileName": '', # 文件名称
|
||||||
|
# "fileBase64": '', # 文件内容base64
|
||||||
|
# "categoryNo": 'jxtjgycbg', # 研究报告分类编码
|
||||||
|
# "smartBusinessClassCode": 'JXTJGYCBG', # 分析报告分类编码
|
||||||
|
# "reportEmployeeCode": "E40482", # 报告人 E40482 - 管理员 0000027663 - 刘小朋
|
||||||
|
# "reportDeptCode": "JXTJGYCBG", # 报告部门 - 002000621000 SH期货研究部
|
||||||
|
# "productGroupCode": "RAW_MATERIAL" # 商品分类
|
||||||
|
# }
|
||||||
|
# }
|
||||||
|
|
||||||
|
# warning_data = {
|
||||||
|
# "funcModule": '原油特征停更预警',
|
||||||
|
# "funcOperation": '原油特征停更预警',
|
||||||
|
# "data": {
|
||||||
|
# "groupNo": "000211",
|
||||||
|
# 'WARNING_TYPE_NAME': '特征数据停更预警',
|
||||||
|
# 'WARNING_CONTENT': '',
|
||||||
|
# 'WARNING_DATE': ''
|
||||||
|
# }
|
||||||
|
# }
|
||||||
|
|
||||||
|
# query_data_list_item_nos_data = {
|
||||||
|
# "funcModule": "数据项",
|
||||||
|
# "funcOperation": "查询",
|
||||||
|
# "data": {
|
||||||
|
# "dateStart": "20200101",
|
||||||
|
# "dateEnd": "",
|
||||||
|
# # 数据项编码,代表 PP期货 价格
|
||||||
|
# "dataItemNoList": ["MAIN_CONFT_SETTLE_PRICE"]
|
||||||
|
# }
|
||||||
|
# }
|
||||||
|
|
||||||
|
|
||||||
|
# push_data_value_list_data = {
|
||||||
|
# "funcModule": "数据表信息列表",
|
||||||
|
# "funcOperation": "新增",
|
||||||
|
# "data": [
|
||||||
|
# {"dataItemNo": "91230600716676129",
|
||||||
|
# "dataDate": "20230113",
|
||||||
|
# "dataStatus": "add",
|
||||||
|
# "dataValue": 100.11
|
||||||
|
# },
|
||||||
|
# {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY",
|
||||||
|
# "dataDate": "20230113",
|
||||||
|
# "dataStatus": "add",
|
||||||
|
# "dataValue": 100.55
|
||||||
|
# },
|
||||||
|
# {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY",
|
||||||
|
# "dataDate": "20230113",
|
||||||
|
# "dataStatus": "add",
|
||||||
|
# "dataValue": 100.55
|
||||||
|
# }
|
||||||
|
# ]
|
||||||
|
# }
|
||||||
|
|
||||||
|
|
||||||
|
# push_waring_data_value_list_data = {
|
||||||
|
# "data": {
|
||||||
|
# "crudeOilWarningDtoList": [
|
||||||
|
# {
|
||||||
|
# "lastUpdateDate": "20240501",
|
||||||
|
# "updateSuspensionCycle": 1,
|
||||||
|
# "dataSource": "9",
|
||||||
|
# "frequency": "1",
|
||||||
|
# "indicatorName": "美元指数",
|
||||||
|
# "indicatorId": "myzs001",
|
||||||
|
# "warningDate": "2024-05-13"
|
||||||
|
# }
|
||||||
|
# ],
|
||||||
|
# "dataSource": "9"
|
||||||
|
# },
|
||||||
|
# "funcModule": "商品数据同步",
|
||||||
|
# "funcOperation": "同步"
|
||||||
|
# }
|
||||||
|
|
||||||
|
|
||||||
|
# get_waring_data_value_list_data = {
|
||||||
|
# "data": "9", "funcModule": "商品数据同步", "funcOperation": "同步"}
|
||||||
|
|
||||||
|
|
||||||
|
# # 八大维度数据项编码
|
||||||
|
# bdwd_items = {
|
||||||
|
# 'ciri': '91371600MAC3TYFN6M|LSBM00007|FORECAST_PRICE',
|
||||||
|
# 'benzhou': '91371600MAC3TYFN6M|LSBM00007|FORECAST_PRICE01',
|
||||||
|
# 'cizhou': '91371600MAC3TYFN6M|LSBM00007|FORECAST_PRICE02',
|
||||||
|
# 'gezhou': '91371600MAC3TYFN6M|LSBM00007|FORECAST_PRICE03',
|
||||||
|
# 'ciyue': '91371600MAC3TYFN6M|LSBM00007|FORECAST_PRICE04',
|
||||||
|
# 'cieryue': '91371600MAC3TYFN6M|LSBM00007|FORECAST_PRICE05',
|
||||||
|
# 'cisanyue': '91371600MAC3TYFN6M|LSBM00007|FORECAST_PRICE06',
|
||||||
|
# 'cisiyue': '91371600MAC3TYFN6M|LSBM00007|FORECAST_PRICE07',
|
||||||
|
# }
|
||||||
|
|
||||||
|
|
||||||
|
# # 生产环境数据库
|
||||||
|
# host = 'rm-2zehj3r1n60ttz9x5.mysql.rds.aliyuncs.com'
|
||||||
|
# port = 3306
|
||||||
|
# dbusername = 'jingbo'
|
||||||
|
# password = 'shihua@123'
|
||||||
|
# dbname = 'jingbo'
|
||||||
|
# table_name = 'v_tbl_crude_oil_warning'
|
||||||
|
|
||||||
|
|
||||||
|
# 变量定义--测试环境
|
||||||
|
server_host = '192.168.100.53' # 内网
|
||||||
|
# server_host = '183.242.74.28' # 外网
|
||||||
|
login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login"
|
||||||
|
# 上传报告
|
||||||
|
upload_url = f"http://{server_host}:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
|
||||||
|
# 停更预警
|
||||||
|
upload_warning_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
|
||||||
|
# 查询数据项编码
|
||||||
|
query_data_list_item_nos_url = f"http://{server_host}:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos"
|
||||||
# 上传数据项值
|
# 上传数据项值
|
||||||
push_data_value_list_url = f"http://{server_host}/jingbo-dev/api/dw/dataValue/pushDataValueList"
|
push_data_value_list_url = f"http://{server_host}:8080/jingbo-dev/api/dw/dataValue/pushDataValueList"
|
||||||
|
# 上传停更数据到市场信息平台
|
||||||
|
push_waring_data_value_list_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/crudeSaveOrupdate"
|
||||||
|
# 获取预警数据中取消订阅指标ID
|
||||||
|
get_waring_data_value_list_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/dataList"
|
||||||
|
|
||||||
login_data = {
|
login_data = {
|
||||||
"data": {
|
"data": {
|
||||||
@ -186,6 +328,7 @@ upload_data = {
|
|||||||
"funcModule": '研究报告信息',
|
"funcModule": '研究报告信息',
|
||||||
"funcOperation": '上传聚烯烃PP价格预测报告',
|
"funcOperation": '上传聚烯烃PP价格预测报告',
|
||||||
"data": {
|
"data": {
|
||||||
|
"groupNo": "000127",
|
||||||
"ownerAccount": 'arui', # 报告所属用户账号
|
"ownerAccount": 'arui', # 报告所属用户账号
|
||||||
"reportType": 'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
"reportType": 'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
||||||
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', # 文件名称
|
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', # 文件名称
|
||||||
@ -198,11 +341,12 @@ upload_data = {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
# 已弃用
|
||||||
warning_data = {
|
warning_data = {
|
||||||
"funcModule": '原油特征停更预警',
|
"funcModule": '原油特征停更预警',
|
||||||
"funcOperation": '原油特征停更预警',
|
"funcOperation": '原油特征停更预警',
|
||||||
"data": {
|
"data": {
|
||||||
|
"groupNo": "000127",
|
||||||
'WARNING_TYPE_NAME': '特征数据停更预警',
|
'WARNING_TYPE_NAME': '特征数据停更预警',
|
||||||
'WARNING_CONTENT': '',
|
'WARNING_CONTENT': '',
|
||||||
'WARNING_DATE': ''
|
'WARNING_DATE': ''
|
||||||
@ -214,8 +358,9 @@ query_data_list_item_nos_data = {
|
|||||||
"funcOperation": "查询",
|
"funcOperation": "查询",
|
||||||
"data": {
|
"data": {
|
||||||
"dateStart": "20200101",
|
"dateStart": "20200101",
|
||||||
"dateEnd": "20241231",
|
"dateEnd": "",
|
||||||
"dataItemNoList": ["Brentzdj", "Brentzgj"] # 数据项编码,代表 brent最低价和最高价
|
# 数据项编码,代表 PP期货 价格
|
||||||
|
"dataItemNoList": ["MAIN_CONFT_SETTLE_PRICE"]
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -241,6 +386,31 @@ push_data_value_list_data = {
|
|||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
push_waring_data_value_list_data = {
|
||||||
|
"data": {
|
||||||
|
"crudeOilWarningDtoList": [
|
||||||
|
{
|
||||||
|
"lastUpdateDate": "20240501",
|
||||||
|
"updateSuspensionCycle": 1,
|
||||||
|
"dataSource": "9",
|
||||||
|
"frequency": "1",
|
||||||
|
"indicatorName": "美元指数",
|
||||||
|
"indicatorId": "myzs001",
|
||||||
|
"warningDate": "2024-05-13"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"dataSource": "9"
|
||||||
|
},
|
||||||
|
"funcModule": "商品数据同步",
|
||||||
|
"funcOperation": "同步"
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
get_waring_data_value_list_data = {
|
||||||
|
"data": "9", "funcModule": "商品数据同步", "funcOperation": "同步"}
|
||||||
|
|
||||||
|
|
||||||
# 八大维度数据项编码
|
# 八大维度数据项编码
|
||||||
bdwd_items = {
|
bdwd_items = {
|
||||||
'ciri': 'jxtppbdwdcr',
|
'ciri': 'jxtppbdwdcr',
|
||||||
@ -262,22 +432,36 @@ password = '123456'
|
|||||||
dbname = 'jingbo_test'
|
dbname = 'jingbo_test'
|
||||||
table_name = 'v_tbl_crude_oil_warning'
|
table_name = 'v_tbl_crude_oil_warning'
|
||||||
|
|
||||||
|
DEFAULT_CONFIG = {
|
||||||
|
'feature_factor_frequency': 'D',
|
||||||
|
'strategy_id': 2,
|
||||||
|
'model_evaluation_id': 1,
|
||||||
|
'tenant_code': '',
|
||||||
|
'version_num': Decimal(1),
|
||||||
|
'delete_flag': '0',
|
||||||
|
'create_user': 'admin',
|
||||||
|
'create_date': datetime.datetime.now(),
|
||||||
|
'update_user': 'admin',
|
||||||
|
'update_date': datetime.datetime.now(),
|
||||||
|
'oil_code': 'PP',
|
||||||
|
'oil_name': 'PP期货',
|
||||||
|
}
|
||||||
|
|
||||||
# 开关
|
# 开关
|
||||||
is_train = True # 是否训练
|
is_train = True # 是否训练
|
||||||
is_debug = False # 是否调试
|
is_debug = False # 是否调试
|
||||||
is_eta = True # 是否使用eta接口
|
is_eta = False # 是否使用eta接口
|
||||||
is_market = False # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
|
is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
|
||||||
is_timefurture = True # 是否使用时间特征
|
is_timefurture = True # 是否使用时间特征
|
||||||
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
||||||
is_edbcode = False # 特征使用edbcoding列表中的
|
is_edbcode = False # 特征使用edbcoding列表中的
|
||||||
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
||||||
is_update_eta = True # 预测结果上传到eta
|
is_update_eta = True # 预测结果上传到eta
|
||||||
is_update_report = True # 是否上传报告
|
is_update_report = False # 是否上传报告
|
||||||
is_update_warning_data = False # 是否上传预警数据
|
is_update_warning_data = True # 是否上传预警数据
|
||||||
is_update_predict_value = True # 是否上传预测值到市场信息平台
|
is_update_predict_value = True # 是否上传预测值到市场信息平台
|
||||||
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
||||||
is_del_tow_month = False # 是否删除两个月不更新的特征
|
is_del_tow_month = True # 是否删除两个月不更新的特征
|
||||||
is_bdwd = False # 是否使用八大维度
|
is_bdwd = False # 是否使用八大维度
|
||||||
|
|
||||||
|
|
||||||
@ -299,15 +483,17 @@ if add_kdj and is_edbnamelist:
|
|||||||
edbnamelist = edbnamelist+['K', 'D', 'J']
|
edbnamelist = edbnamelist+['K', 'D', 'J']
|
||||||
|
|
||||||
# 模型参数
|
# 模型参数
|
||||||
y = 'AVG-金能大唐久泰青州'
|
# y = 'AVG-金能大唐久泰青州'
|
||||||
avg_cols = [
|
# avg_cols = [
|
||||||
'PP:拉丝:1102K:出厂价:青州:国家能源宁煤(日)',
|
# 'PP:拉丝:1102K:出厂价:青州:国家能源宁煤(日)',
|
||||||
'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)',
|
# 'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)',
|
||||||
'PP:拉丝:L5E89:出厂价:河北、鲁北:大唐内蒙多伦(日)',
|
# 'PP:拉丝:L5E89:出厂价:河北、鲁北:大唐内蒙多伦(日)',
|
||||||
'PP:拉丝:HP550J:市场价:青岛:金能化学(日)'
|
# 'PP:拉丝:HP550J:市场价:青岛:金能化学(日)'
|
||||||
]
|
# ]
|
||||||
offsite = 80
|
# offsite = 80
|
||||||
offsite_col = ['PP:拉丝:HP550J:市场价:青岛:金能化学(日)']
|
# offsite_col = ['PP:拉丝:HP550J:市场价:青岛:金能化学(日)']
|
||||||
|
|
||||||
|
y = 'MAIN_CONFT_SETTLE_PRICE'
|
||||||
horizon = 2 # 预测的步长
|
horizon = 2 # 预测的步长
|
||||||
input_size = 14 # 输入序列长度
|
input_size = 14 # 输入序列长度
|
||||||
train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数
|
train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数
|
||||||
@ -330,9 +516,6 @@ weight_dict = [0.4, 0.15, 0.1, 0.1, 0.25] # 权重
|
|||||||
data_set = 'PP指标数据.xlsx' # 数据集文件
|
data_set = 'PP指标数据.xlsx' # 数据集文件
|
||||||
dataset = 'juxitingzhoududataset' # 数据集文件夹
|
dataset = 'juxitingzhoududataset' # 数据集文件夹
|
||||||
|
|
||||||
print("当前工作目录:", os.getcwd())
|
|
||||||
print("数据库路径:", os.path.abspath('juxitingzhoududataset/jbsh_juxiting_zhoudu.db'))
|
|
||||||
|
|
||||||
# 数据库名称
|
# 数据库名称
|
||||||
db_name = os.path.join(dataset, 'jbsh_juxiting_zhoudu.db')
|
db_name = os.path.join(dataset, 'jbsh_juxiting_zhoudu.db')
|
||||||
sqlitedb = SQLiteHandler(db_name)
|
sqlitedb = SQLiteHandler(db_name)
|
||||||
@ -374,7 +557,7 @@ logger.setLevel(logging.INFO)
|
|||||||
file_handler = logging.handlers.RotatingFileHandler(os.path.join(
|
file_handler = logging.handlers.RotatingFileHandler(os.path.join(
|
||||||
log_dir, 'pricepredict.log'), maxBytes=1024 * 1024, backupCount=5)
|
log_dir, 'pricepredict.log'), maxBytes=1024 * 1024, backupCount=5)
|
||||||
file_handler.setFormatter(logging.Formatter(
|
file_handler.setFormatter(logging.Formatter(
|
||||||
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
|
'%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S'))
|
||||||
|
|
||||||
# 配置控制台处理器,将日志打印到控制台
|
# 配置控制台处理器,将日志打印到控制台
|
||||||
console_handler = logging.StreamHandler()
|
console_handler = logging.StreamHandler()
|
||||||
|
@ -2,8 +2,8 @@
|
|||||||
|
|
||||||
from lib.dataread import *
|
from lib.dataread import *
|
||||||
from config_juxiting_zhoudu import *
|
from config_juxiting_zhoudu import *
|
||||||
from lib.tools import SendMail, exception_logger
|
from lib.tools import SendMail, exception_logger, convert_df_to_pydantic, exception_logger, get_modelsname
|
||||||
from models.nerulforcastmodels import ex_Model, model_losss_juxiting, tansuanli_export_pdf, pp_export_pdf
|
from models.nerulforcastmodels import ex_Model_Juxiting, model_losss_juxiting, pp_export_pdf
|
||||||
import datetime
|
import datetime
|
||||||
import torch
|
import torch
|
||||||
torch.set_float32_matmul_precision("high")
|
torch.set_float32_matmul_precision("high")
|
||||||
@ -13,9 +13,9 @@ global_config.update({
|
|||||||
'logger': logger,
|
'logger': logger,
|
||||||
'dataset': dataset,
|
'dataset': dataset,
|
||||||
'y': y,
|
'y': y,
|
||||||
'offsite_col': offsite_col,
|
# 'offsite_col': offsite_col,
|
||||||
'avg_cols': avg_cols,
|
# 'avg_cols': avg_cols,
|
||||||
'offsite': offsite,
|
# 'offsite': offsite,
|
||||||
'edbcodenamedict': edbcodenamedict,
|
'edbcodenamedict': edbcodenamedict,
|
||||||
'is_debug': is_debug,
|
'is_debug': is_debug,
|
||||||
'is_train': is_train,
|
'is_train': is_train,
|
||||||
@ -67,6 +67,14 @@ global_config.update({
|
|||||||
'push_data_value_list_url': push_data_value_list_url,
|
'push_data_value_list_url': push_data_value_list_url,
|
||||||
'push_data_value_list_data': push_data_value_list_data,
|
'push_data_value_list_data': push_data_value_list_data,
|
||||||
|
|
||||||
|
# 上传预警数据
|
||||||
|
'push_waring_data_value_list_url': push_waring_data_value_list_url,
|
||||||
|
'push_waring_data_value_list_data': push_waring_data_value_list_data,
|
||||||
|
|
||||||
|
# 获取取消订阅的数据
|
||||||
|
'get_waring_data_value_list_url': get_waring_data_value_list_url,
|
||||||
|
'get_waring_data_value_list_data': get_waring_data_value_list_data,
|
||||||
|
|
||||||
# eta 配置
|
# eta 配置
|
||||||
'APPID': APPID,
|
'APPID': APPID,
|
||||||
'SECRET': SECRET,
|
'SECRET': SECRET,
|
||||||
@ -83,12 +91,15 @@ global_config.update({
|
|||||||
|
|
||||||
# 数据库配置
|
# 数据库配置
|
||||||
'sqlitedb': sqlitedb,
|
'sqlitedb': sqlitedb,
|
||||||
|
'bdwd_items': bdwd_items,
|
||||||
'is_bdwd': is_bdwd,
|
'is_bdwd': is_bdwd,
|
||||||
|
'db_mysql': db_mysql,
|
||||||
|
'DEFAULT_CONFIG': DEFAULT_CONFIG,
|
||||||
})
|
})
|
||||||
|
|
||||||
|
|
||||||
def push_market_value():
|
def push_market_value():
|
||||||
logger.info('发送预测结果到市场信息平台')
|
config.logger.info('发送预测结果到市场信息平台')
|
||||||
# 读取预测数据和模型评估数据
|
# 读取预测数据和模型评估数据
|
||||||
predict_file_path = os.path.join(config.dataset, 'predict.csv')
|
predict_file_path = os.path.join(config.dataset, 'predict.csv')
|
||||||
model_eval_file_path = os.path.join(config.dataset, 'model_evaluation.csv')
|
model_eval_file_path = os.path.join(config.dataset, 'model_evaluation.csv')
|
||||||
@ -96,7 +107,7 @@ def push_market_value():
|
|||||||
predictdata_df = pd.read_csv(predict_file_path)
|
predictdata_df = pd.read_csv(predict_file_path)
|
||||||
top_models_df = pd.read_csv(model_eval_file_path)
|
top_models_df = pd.read_csv(model_eval_file_path)
|
||||||
except FileNotFoundError as e:
|
except FileNotFoundError as e:
|
||||||
logger.error(f"文件未找到: {e}")
|
config.logger.error(f"文件未找到: {e}")
|
||||||
return
|
return
|
||||||
|
|
||||||
predictdata = predictdata_df.copy()
|
predictdata = predictdata_df.copy()
|
||||||
@ -140,7 +151,92 @@ def push_market_value():
|
|||||||
try:
|
try:
|
||||||
push_market_data(predictdata)
|
push_market_data(predictdata)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"推送数据失败: {e}")
|
config.logger.error(f"推送数据失败: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
def sql_inset_predict(global_config):
|
||||||
|
df = pd.read_csv(os.path.join(config.dataset, 'predict.csv'))
|
||||||
|
df['created_dt'] = pd.to_datetime(df['created_dt'])
|
||||||
|
df['ds'] = pd.to_datetime(df['ds'])
|
||||||
|
# 获取次日预测结果
|
||||||
|
next_day_df = df[df['ds'] == df['ds'].min()]
|
||||||
|
# 获取本周预测结果
|
||||||
|
this_week_df = df[df['ds'] == df['ds'].max()]
|
||||||
|
|
||||||
|
wd = ['day_price', 'week_price']
|
||||||
|
model_name_list, model_id_name_dict = get_modelsname(df, global_config)
|
||||||
|
|
||||||
|
PRICE_COLUMNS = [
|
||||||
|
'day_price', 'week_price', 'second_week_price', 'next_week_price',
|
||||||
|
'next_month_price', 'next_february_price', 'next_march_price', 'next_april_price'
|
||||||
|
]
|
||||||
|
|
||||||
|
params_list = []
|
||||||
|
for df, price_type in zip([next_day_df, this_week_df], wd):
|
||||||
|
|
||||||
|
update_columns = [
|
||||||
|
"feature_factor_frequency = VALUES(feature_factor_frequency)",
|
||||||
|
"oil_code = VALUES(oil_code)",
|
||||||
|
"oil_name = VALUES(oil_name)",
|
||||||
|
"data_date = VALUES(data_date)",
|
||||||
|
"market_price = VALUES(market_price)",
|
||||||
|
f"{price_type} = VALUES({price_type})",
|
||||||
|
"model_evaluation_id = VALUES(model_evaluation_id)",
|
||||||
|
"tenant_code = VALUES(tenant_code)",
|
||||||
|
"version_num = VALUES(version_num)",
|
||||||
|
"delete_flag = VALUES(delete_flag)",
|
||||||
|
"update_user = VALUES(update_user)",
|
||||||
|
"update_date = VALUES(update_date)"
|
||||||
|
]
|
||||||
|
|
||||||
|
insert_query = f"""
|
||||||
|
INSERT INTO v_tbl_predict_prediction_results (
|
||||||
|
feature_factor_frequency, strategy_id, oil_code, oil_name, data_date,
|
||||||
|
market_price, day_price, week_price, second_week_price, next_week_price,
|
||||||
|
next_month_price, next_february_price, next_march_price, next_april_price,
|
||||||
|
model_evaluation_id, model_id, tenant_code, version_num, delete_flag,
|
||||||
|
create_user, create_date, update_user, update_date
|
||||||
|
) VALUES (
|
||||||
|
%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s
|
||||||
|
)
|
||||||
|
ON DUPLICATE KEY UPDATE
|
||||||
|
{', '.join(update_columns)}
|
||||||
|
"""
|
||||||
|
|
||||||
|
next_day_df = df[['ds', 'created_dt'] + model_name_list]
|
||||||
|
|
||||||
|
pydantic_results = convert_df_to_pydantic(
|
||||||
|
next_day_df, model_id_name_dict, global_config)
|
||||||
|
if pydantic_results:
|
||||||
|
|
||||||
|
for result in pydantic_results:
|
||||||
|
price_values = [None] * len(PRICE_COLUMNS)
|
||||||
|
price_index = PRICE_COLUMNS.index(price_type)
|
||||||
|
price_values[price_index] = next_day_df[model_id_name_dict[result.model_id]].values[0]
|
||||||
|
|
||||||
|
params = (
|
||||||
|
result.feature_factor_frequency,
|
||||||
|
result.strategy_id,
|
||||||
|
global_config['DEFAULT_CONFIG']['oil_code'],
|
||||||
|
global_config['DEFAULT_CONFIG']['oil_name'],
|
||||||
|
next_day_df['created_dt'].values[0],
|
||||||
|
result.market_price,
|
||||||
|
*price_values,
|
||||||
|
result.model_evaluation_id,
|
||||||
|
result.model_id,
|
||||||
|
result.tenant_code,
|
||||||
|
1,
|
||||||
|
'0',
|
||||||
|
result.create_user,
|
||||||
|
result.create_date,
|
||||||
|
result.update_user,
|
||||||
|
result.update_date
|
||||||
|
)
|
||||||
|
params_list.append(params)
|
||||||
|
affected_rows = config.db_mysql.execute_batch_insert(
|
||||||
|
insert_query, params_list)
|
||||||
|
config.logger.info(f"成功插入或更新 {affected_rows} 条记录")
|
||||||
|
config.db_mysql.close()
|
||||||
|
|
||||||
|
|
||||||
def predict_main():
|
def predict_main():
|
||||||
@ -206,7 +302,7 @@ def predict_main():
|
|||||||
try:
|
try:
|
||||||
# 如果是测试环境,最高价最低价取excel文档
|
# 如果是测试环境,最高价最低价取excel文档
|
||||||
if server_host == '192.168.100.53':
|
if server_host == '192.168.100.53':
|
||||||
logger.info('从excel文档获取最高价最低价')
|
logger.info('从excel文档获取市场信息平台指标')
|
||||||
df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
|
df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
|
||||||
else:
|
else:
|
||||||
logger.info('从市场信息平台获取数据')
|
logger.info('从市场信息平台获取数据')
|
||||||
@ -214,7 +310,7 @@ def predict_main():
|
|||||||
end_time, df_zhibiaoshuju)
|
end_time, df_zhibiaoshuju)
|
||||||
|
|
||||||
except:
|
except:
|
||||||
logger.info('最高最低价拼接失败')
|
logger.info('市场信息平台数据项-eta数据项 拼接失败')
|
||||||
|
|
||||||
# 保存到xlsx文件的sheet表
|
# 保存到xlsx文件的sheet表
|
||||||
with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
|
with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
|
||||||
@ -346,26 +442,26 @@ def predict_main():
|
|||||||
row, col = df.shape
|
row, col = df.shape
|
||||||
|
|
||||||
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
||||||
ex_Model(df,
|
ex_Model_Juxiting(df,
|
||||||
horizon=global_config['horizon'],
|
horizon=global_config['horizon'],
|
||||||
input_size=global_config['input_size'],
|
input_size=global_config['input_size'],
|
||||||
train_steps=global_config['train_steps'],
|
train_steps=global_config['train_steps'],
|
||||||
val_check_steps=global_config['val_check_steps'],
|
val_check_steps=global_config['val_check_steps'],
|
||||||
early_stop_patience_steps=global_config['early_stop_patience_steps'],
|
early_stop_patience_steps=global_config['early_stop_patience_steps'],
|
||||||
is_debug=global_config['is_debug'],
|
is_debug=global_config['is_debug'],
|
||||||
dataset=global_config['dataset'],
|
dataset=global_config['dataset'],
|
||||||
is_train=global_config['is_train'],
|
is_train=global_config['is_train'],
|
||||||
is_fivemodels=global_config['is_fivemodels'],
|
is_fivemodels=global_config['is_fivemodels'],
|
||||||
val_size=global_config['val_size'],
|
val_size=global_config['val_size'],
|
||||||
test_size=global_config['test_size'],
|
test_size=global_config['test_size'],
|
||||||
settings=global_config['settings'],
|
settings=global_config['settings'],
|
||||||
now=now,
|
now=now,
|
||||||
etadata=etadata,
|
etadata=etadata,
|
||||||
modelsindex=global_config['modelsindex'],
|
modelsindex=global_config['modelsindex'],
|
||||||
data=data,
|
data=data,
|
||||||
is_eta=global_config['is_eta'],
|
is_eta=global_config['is_eta'],
|
||||||
end_time=global_config['end_time'],
|
end_time=global_config['end_time'],
|
||||||
)
|
)
|
||||||
|
|
||||||
logger.info('模型训练完成')
|
logger.info('模型训练完成')
|
||||||
|
|
||||||
@ -375,17 +471,18 @@ def predict_main():
|
|||||||
logger.info('训练数据绘图end')
|
logger.info('训练数据绘图end')
|
||||||
|
|
||||||
# # 模型报告
|
# # 模型报告
|
||||||
# logger.info('制作报告ing')
|
logger.info('制作报告ing')
|
||||||
# title = f'{settings}--{end_time}-预测报告' # 报告标题
|
title = f'{settings}--{end_time}-预测报告' # 报告标题
|
||||||
# reportname = f'聚烯烃PP大模型周度预测--{end_time}.pdf' # 报告文件名
|
reportname = f'聚烯烃PP大模型周度预测--{end_time}.pdf' # 报告文件名
|
||||||
# reportname = reportname.replace(':', '-') # 替换冒号
|
reportname = reportname.replace(':', '-') # 替换冒号
|
||||||
# pp_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time,
|
pp_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time,
|
||||||
# reportname=reportname, sqlitedb=sqlitedb),
|
reportname=reportname, sqlitedb=sqlitedb),
|
||||||
|
|
||||||
# logger.info('制作报告end')
|
logger.info('制作报告end')
|
||||||
# logger.info('模型训练完成')
|
logger.info('模型训练完成')
|
||||||
|
|
||||||
# push_market_value()
|
push_market_value()
|
||||||
|
sql_inset_predict(global_config)
|
||||||
|
|
||||||
# # LSTM 单变量模型
|
# # LSTM 单变量模型
|
||||||
# ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset)
|
# ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset)
|
||||||
@ -412,11 +509,15 @@ def predict_main():
|
|||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
# global end_time
|
# global end_time
|
||||||
# 遍历2024-11-25 到 2024-12-3 之间的工作日日期
|
# 遍历2024-11-25 到 2024-12-3 之间的工作日日期
|
||||||
for i_time in pd.date_range('2025-3-1', '2025-5-26', freq='W'):
|
# for i_time in pd.date_range('2025-4-14', '2025-4-15', freq='B'):
|
||||||
try:
|
# try:
|
||||||
global_config['end_time'] = i_time.strftime('%Y-%m-%d')
|
# global_config['end_time'] = i_time.strftime('%Y-%m-%d')
|
||||||
predict_main()
|
# predict_main()
|
||||||
except Exception as e:
|
# except Exception as e:
|
||||||
logger.info(f'预测失败:{e}')
|
# logger.info(f'预测失败:{e}')
|
||||||
continue
|
# continue
|
||||||
|
|
||||||
# predict_main()
|
# predict_main()
|
||||||
|
|
||||||
|
# push_market_value()
|
||||||
|
sql_inset_predict(global_config)
|
||||||
|
@ -1,9 +1,9 @@
|
|||||||
# 读取配置
|
# 读取配置
|
||||||
|
|
||||||
from lib.dataread import *
|
from lib.dataread import *
|
||||||
from config_jingbo_zhoudu import *
|
from config_juxiting_zhoudu import *
|
||||||
from lib.tools import SendMail, convert_df_to_pydantic, exception_logger, get_modelsname
|
from lib.tools import SendMail, exception_logger, convert_df_to_pydantic, exception_logger, get_modelsname
|
||||||
from models.nerulforcastmodels import ex_Model, model_losss, brent_export_pdf
|
from models.nerulforcastmodels import ex_Model_Juxiting, model_losss_juxiting, pp_export_pdf
|
||||||
import datetime
|
import datetime
|
||||||
import torch
|
import torch
|
||||||
torch.set_float32_matmul_precision("high")
|
torch.set_float32_matmul_precision("high")
|
||||||
@ -13,6 +13,10 @@ global_config.update({
|
|||||||
'logger': logger,
|
'logger': logger,
|
||||||
'dataset': dataset,
|
'dataset': dataset,
|
||||||
'y': y,
|
'y': y,
|
||||||
|
# 'offsite_col': offsite_col,
|
||||||
|
# 'avg_cols': avg_cols,
|
||||||
|
# 'offsite': offsite,
|
||||||
|
'edbcodenamedict': edbcodenamedict,
|
||||||
'is_debug': is_debug,
|
'is_debug': is_debug,
|
||||||
'is_train': is_train,
|
'is_train': is_train,
|
||||||
'is_fivemodels': is_fivemodels,
|
'is_fivemodels': is_fivemodels,
|
||||||
@ -63,6 +67,14 @@ global_config.update({
|
|||||||
'push_data_value_list_url': push_data_value_list_url,
|
'push_data_value_list_url': push_data_value_list_url,
|
||||||
'push_data_value_list_data': push_data_value_list_data,
|
'push_data_value_list_data': push_data_value_list_data,
|
||||||
|
|
||||||
|
# 上传预警数据
|
||||||
|
'push_waring_data_value_list_url': push_waring_data_value_list_url,
|
||||||
|
'push_waring_data_value_list_data': push_waring_data_value_list_data,
|
||||||
|
|
||||||
|
# 获取取消订阅的数据
|
||||||
|
'get_waring_data_value_list_url': get_waring_data_value_list_url,
|
||||||
|
'get_waring_data_value_list_data': get_waring_data_value_list_data,
|
||||||
|
|
||||||
# eta 配置
|
# eta 配置
|
||||||
'APPID': APPID,
|
'APPID': APPID,
|
||||||
'SECRET': SECRET,
|
'SECRET': SECRET,
|
||||||
@ -79,6 +91,7 @@ global_config.update({
|
|||||||
|
|
||||||
# 数据库配置
|
# 数据库配置
|
||||||
'sqlitedb': sqlitedb,
|
'sqlitedb': sqlitedb,
|
||||||
|
'bdwd_items': bdwd_items,
|
||||||
'is_bdwd': is_bdwd,
|
'is_bdwd': is_bdwd,
|
||||||
'db_mysql': db_mysql,
|
'db_mysql': db_mysql,
|
||||||
'DEFAULT_CONFIG': DEFAULT_CONFIG,
|
'DEFAULT_CONFIG': DEFAULT_CONFIG,
|
||||||
@ -86,7 +99,7 @@ global_config.update({
|
|||||||
|
|
||||||
|
|
||||||
def push_market_value():
|
def push_market_value():
|
||||||
logger.info('发送预测结果到市场信息平台')
|
config.logger.info('发送预测结果到市场信息平台')
|
||||||
# 读取预测数据和模型评估数据
|
# 读取预测数据和模型评估数据
|
||||||
predict_file_path = os.path.join(config.dataset, 'predict.csv')
|
predict_file_path = os.path.join(config.dataset, 'predict.csv')
|
||||||
model_eval_file_path = os.path.join(config.dataset, 'model_evaluation.csv')
|
model_eval_file_path = os.path.join(config.dataset, 'model_evaluation.csv')
|
||||||
@ -94,7 +107,7 @@ def push_market_value():
|
|||||||
predictdata_df = pd.read_csv(predict_file_path)
|
predictdata_df = pd.read_csv(predict_file_path)
|
||||||
top_models_df = pd.read_csv(model_eval_file_path)
|
top_models_df = pd.read_csv(model_eval_file_path)
|
||||||
except FileNotFoundError as e:
|
except FileNotFoundError as e:
|
||||||
logger.error(f"文件未找到: {e}")
|
config.logger.error(f"文件未找到: {e}")
|
||||||
return
|
return
|
||||||
|
|
||||||
predictdata = predictdata_df.copy()
|
predictdata = predictdata_df.copy()
|
||||||
@ -138,7 +151,7 @@ def push_market_value():
|
|||||||
try:
|
try:
|
||||||
push_market_data(predictdata)
|
push_market_data(predictdata)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"推送数据失败: {e}")
|
config.logger.error(f"推送数据失败: {e}")
|
||||||
|
|
||||||
|
|
||||||
def sql_inset_predict(global_config):
|
def sql_inset_predict(global_config):
|
||||||
@ -154,7 +167,7 @@ def sql_inset_predict(global_config):
|
|||||||
model_name_list, model_id_name_dict = get_modelsname(df, global_config)
|
model_name_list, model_id_name_dict = get_modelsname(df, global_config)
|
||||||
|
|
||||||
PRICE_COLUMNS = [
|
PRICE_COLUMNS = [
|
||||||
'day_price', 'week_price', 'second_week_price', 'next_week_price',
|
'day_price', 'week_price', 'second_week_price', 'next_week_price',
|
||||||
'next_month_price', 'next_february_price', 'next_march_price', 'next_april_price'
|
'next_month_price', 'next_february_price', 'next_march_price', 'next_april_price'
|
||||||
]
|
]
|
||||||
|
|
||||||
@ -204,8 +217,8 @@ def sql_inset_predict(global_config):
|
|||||||
params = (
|
params = (
|
||||||
result.feature_factor_frequency,
|
result.feature_factor_frequency,
|
||||||
result.strategy_id,
|
result.strategy_id,
|
||||||
result.oil_code,
|
global_config['DEFAULT_CONFIG']['oil_code'],
|
||||||
result.oil_name,
|
global_config['DEFAULT_CONFIG']['oil_name'],
|
||||||
next_day_df['created_dt'].values[0],
|
next_day_df['created_dt'].values[0],
|
||||||
result.market_price,
|
result.market_price,
|
||||||
*price_values,
|
*price_values,
|
||||||
@ -266,7 +279,6 @@ def predict_main():
|
|||||||
None
|
None
|
||||||
"""
|
"""
|
||||||
end_time = global_config['end_time']
|
end_time = global_config['end_time']
|
||||||
|
|
||||||
signature = BinanceAPI(APPID, SECRET)
|
signature = BinanceAPI(APPID, SECRET)
|
||||||
etadata = EtaReader(signature=signature,
|
etadata = EtaReader(signature=signature,
|
||||||
classifylisturl=global_config['classifylisturl'],
|
classifylisturl=global_config['classifylisturl'],
|
||||||
@ -282,7 +294,7 @@ def predict_main():
|
|||||||
if is_eta:
|
if is_eta:
|
||||||
logger.info('从eta获取数据...')
|
logger.info('从eta获取数据...')
|
||||||
|
|
||||||
df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(
|
df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_pp_data(
|
||||||
data_set=data_set, dataset=dataset) # 原始数据,未处理
|
data_set=data_set, dataset=dataset) # 原始数据,未处理
|
||||||
|
|
||||||
if is_market:
|
if is_market:
|
||||||
@ -290,7 +302,7 @@ def predict_main():
|
|||||||
try:
|
try:
|
||||||
# 如果是测试环境,最高价最低价取excel文档
|
# 如果是测试环境,最高价最低价取excel文档
|
||||||
if server_host == '192.168.100.53':
|
if server_host == '192.168.100.53':
|
||||||
logger.info('从excel文档获取最高价最低价')
|
logger.info('从excel文档获取市场信息平台指标')
|
||||||
df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
|
df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
|
||||||
else:
|
else:
|
||||||
logger.info('从市场信息平台获取数据')
|
logger.info('从市场信息平台获取数据')
|
||||||
@ -298,7 +310,7 @@ def predict_main():
|
|||||||
end_time, df_zhibiaoshuju)
|
end_time, df_zhibiaoshuju)
|
||||||
|
|
||||||
except:
|
except:
|
||||||
logger.info('最高最低价拼接失败')
|
logger.info('市场信息平台数据项-eta数据项 拼接失败')
|
||||||
|
|
||||||
# 保存到xlsx文件的sheet表
|
# 保存到xlsx文件的sheet表
|
||||||
with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
|
with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
|
||||||
@ -306,14 +318,14 @@ def predict_main():
|
|||||||
df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
|
df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
|
||||||
|
|
||||||
# 数据处理
|
# 数据处理
|
||||||
df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
|
df = datachuli_juxiting(df_zhibiaoshuju, df_zhibiaoliebiao, y=global_config['y'], dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
|
||||||
end_time=end_time)
|
end_time=end_time)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
# 读取数据
|
# 读取数据
|
||||||
logger.info('读取本地数据:' + os.path.join(dataset, data_set))
|
logger.info('读取本地数据:' + os.path.join(dataset, data_set))
|
||||||
df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
|
df, df_zhibiaoliebiao = getdata_zhoudu_juxiting(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
|
||||||
is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
|
is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
|
||||||
|
|
||||||
# 更改预测列名称
|
# 更改预测列名称
|
||||||
df.rename(columns={y: 'y'}, inplace=True)
|
df.rename(columns={y: 'y'}, inplace=True)
|
||||||
@ -383,8 +395,8 @@ def predict_main():
|
|||||||
# except Exception as e:
|
# except Exception as e:
|
||||||
# logger.info(f'更新accuracy表的y值失败:{e}')
|
# logger.info(f'更新accuracy表的y值失败:{e}')
|
||||||
|
|
||||||
# 判断当前日期是不是周一 预测目标周度许转换,暂注释
|
# 判断当前日期是不是周一
|
||||||
# is_weekday = datetime.datetime.strptime(global_config['end_time'], "%Y-%m-%d").weekday() == 0
|
is_weekday = datetime.datetime.now().weekday() == 0
|
||||||
# if is_weekday:
|
# if is_weekday:
|
||||||
# logger.info('今天是周一,更新预测模型')
|
# logger.info('今天是周一,更新预测模型')
|
||||||
# # 计算最近60天预测残差最低的模型名称
|
# # 计算最近60天预测残差最低的模型名称
|
||||||
@ -430,45 +442,41 @@ def predict_main():
|
|||||||
row, col = df.shape
|
row, col = df.shape
|
||||||
|
|
||||||
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
||||||
ex_Model(df,
|
ex_Model_Juxiting(df,
|
||||||
horizon=global_config['horizon'],
|
horizon=global_config['horizon'],
|
||||||
input_size=global_config['input_size'],
|
input_size=global_config['input_size'],
|
||||||
train_steps=global_config['train_steps'],
|
train_steps=global_config['train_steps'],
|
||||||
val_check_steps=global_config['val_check_steps'],
|
val_check_steps=global_config['val_check_steps'],
|
||||||
early_stop_patience_steps=global_config['early_stop_patience_steps'],
|
early_stop_patience_steps=global_config['early_stop_patience_steps'],
|
||||||
is_debug=global_config['is_debug'],
|
is_debug=global_config['is_debug'],
|
||||||
dataset=global_config['dataset'],
|
dataset=global_config['dataset'],
|
||||||
is_train=global_config['is_train'],
|
is_train=global_config['is_train'],
|
||||||
is_fivemodels=global_config['is_fivemodels'],
|
is_fivemodels=global_config['is_fivemodels'],
|
||||||
val_size=global_config['val_size'],
|
val_size=global_config['val_size'],
|
||||||
test_size=global_config['test_size'],
|
test_size=global_config['test_size'],
|
||||||
settings=global_config['settings'],
|
settings=global_config['settings'],
|
||||||
now=now,
|
now=now,
|
||||||
etadata=etadata,
|
etadata=etadata,
|
||||||
modelsindex=global_config['modelsindex'],
|
modelsindex=global_config['modelsindex'],
|
||||||
data=data,
|
data=data,
|
||||||
is_eta=global_config['is_eta'],
|
is_eta=global_config['is_eta'],
|
||||||
end_time=global_config['end_time'],
|
end_time=global_config['end_time'],
|
||||||
)
|
)
|
||||||
|
|
||||||
logger.info('模型训练完成')
|
logger.info('模型训练完成')
|
||||||
|
|
||||||
logger.info('训练数据绘图ing')
|
logger.info('训练数据绘图ing')
|
||||||
model_results3 = model_losss(sqlitedb, end_time=end_time)
|
model_results3 = model_losss_juxiting(
|
||||||
|
sqlitedb, end_time=global_config['end_time'], is_fivemodels=global_config['is_fivemodels'])
|
||||||
logger.info('训练数据绘图end')
|
logger.info('训练数据绘图end')
|
||||||
|
|
||||||
# # 模型报告
|
# # 模型报告
|
||||||
logger.info('制作报告ing')
|
logger.info('制作报告ing')
|
||||||
title = f'{settings}--{end_time}-预测报告' # 报告标题
|
title = f'{settings}--{end_time}-预测报告' # 报告标题
|
||||||
reportname = f'Brent原油大模型周度预测--{end_time}.pdf' # 报告文件名
|
reportname = f'聚烯烃PP大模型周度预测--{end_time}.pdf' # 报告文件名
|
||||||
reportname = reportname.replace(':', '-') # 替换冒号
|
reportname = reportname.replace(':', '-') # 替换冒号
|
||||||
brent_export_pdf(dataset=dataset,
|
pp_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time,
|
||||||
num_models=5 if is_fivemodels else 22,
|
reportname=reportname, sqlitedb=sqlitedb),
|
||||||
time=end_time,
|
|
||||||
reportname=reportname,
|
|
||||||
inputsize=global_config['horizon'],
|
|
||||||
sqlitedb=sqlitedb
|
|
||||||
),
|
|
||||||
|
|
||||||
logger.info('制作报告end')
|
logger.info('制作报告end')
|
||||||
logger.info('模型训练完成')
|
logger.info('模型训练完成')
|
||||||
@ -476,6 +484,15 @@ def predict_main():
|
|||||||
push_market_value()
|
push_market_value()
|
||||||
sql_inset_predict(global_config)
|
sql_inset_predict(global_config)
|
||||||
|
|
||||||
|
# # LSTM 单变量模型
|
||||||
|
# ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset)
|
||||||
|
|
||||||
|
# # lstm 多变量模型
|
||||||
|
# ex_Lstm_M(df,n_days=input_size,out_days=horizon,is_debug=is_debug,datasetpath=dataset)
|
||||||
|
|
||||||
|
# # GRU 模型
|
||||||
|
# # ex_GRU(df)
|
||||||
|
|
||||||
# 发送邮件
|
# 发送邮件
|
||||||
# m = SendMail(
|
# m = SendMail(
|
||||||
# username=username,
|
# username=username,
|
||||||
@ -492,10 +509,15 @@ def predict_main():
|
|||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
# global end_time
|
# global end_time
|
||||||
# 遍历2024-11-25 到 2024-12-3 之间的工作日日期
|
# 遍历2024-11-25 到 2024-12-3 之间的工作日日期
|
||||||
for i_time in pd.date_range('2025-6-23', '2025-6-30', freq='B'):
|
# for i_time in pd.date_range('2025-4-14', '2025-4-15', freq='B'):
|
||||||
global_config['end_time'] = i_time.strftime('%Y-%m-%d')
|
# try:
|
||||||
global_config['db_mysql'].connect()
|
# global_config['end_time'] = i_time.strftime('%Y-%m-%d')
|
||||||
predict_main()
|
# predict_main()
|
||||||
|
# except Exception as e:
|
||||||
|
# logger.info(f'预测失败:{e}')
|
||||||
|
# continue
|
||||||
|
|
||||||
# predict_main()
|
predict_main()
|
||||||
# sql_inset_predict(global_config=global_config)
|
|
||||||
|
# push_market_value()
|
||||||
|
# sql_inset_predict(global_config)
|
||||||
|
Loading…
Reference in New Issue
Block a user