原油周度预测调试完成
This commit is contained in:
		
							parent
							
								
									4a7d07eb3b
								
							
						
					
					
						commit
						4dde6a8c4f
					
				
										
											Binary file not shown.
										
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
										
											Binary file not shown.
										
									
								
							| @ -160,7 +160,7 @@ table_name = 'v_tbl_crude_oil_warning' | ||||
| 
 | ||||
| ### 开关 | ||||
| is_train = False # 是否训练 | ||||
| is_debug = False # 是否调试 | ||||
| is_debug = True # 是否调试 | ||||
| is_eta = False # 是否使用eta接口 | ||||
| is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效 | ||||
| is_timefurture = True # 是否使用时间特征 | ||||
| @ -182,7 +182,7 @@ print("数据库连接成功",host,dbname,dbusername) | ||||
| 
 | ||||
| 
 | ||||
| # 数据截取日期 | ||||
| start_year = 2020 # 数据开始年份 | ||||
| start_year = 2017 # 数据开始年份 | ||||
| end_time = '' # 数据截取日期 | ||||
| freq = 'W'  # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日 | ||||
| delweekenday = True if freq == 'B' else False # 是否删除周末数据 | ||||
| @ -193,7 +193,7 @@ if add_kdj and is_edbnamelist: | ||||
| 
 | ||||
| ### 模型参数   | ||||
| y = 'Brent连1合约价格' # 原油指标数据的目标变量  Brent连1合约价格   Brent活跃合约 | ||||
| horizon =4 # 预测的步长 | ||||
| horizon =2 # 预测的步长 | ||||
| input_size = 12  # 输入序列长度 | ||||
| train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数 | ||||
| val_check_steps = 30  # 评估频率 | ||||
|  | ||||
| @ -42,9 +42,9 @@ plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号 | ||||
| 
 | ||||
| # from config_jingbo_pro import * | ||||
| # from config_jingbo import * | ||||
| # from config_jingbo_zhoudu import * | ||||
| from config_jingbo_zhoudu import * | ||||
| # from config_yongan import * | ||||
| from config_juxiting import * | ||||
| # from config_juxiting import * | ||||
| # from config_juxiting_zhoudu import * | ||||
| # from config_juxiting_pro import * | ||||
| 
 | ||||
|  | ||||
| @ -197,7 +197,8 @@ def ex_Model(df,horizon,input_size,train_steps,val_check_steps,early_stop_patien | ||||
|     #进行未来时间预测 | ||||
|     df_predict=nf.predict(df_test).reset_index() | ||||
|     # 去掉index列 | ||||
|     df_predict.drop(columns=['index'], inplace=True) | ||||
|     if 'index' in df_predict.columns: | ||||
|         df_predict.drop(columns=['index'], inplace=True) | ||||
|     df_predict.astype({col: 'float32' for col in df_predict.columns if col not in ['ds'] }) | ||||
|      | ||||
|     # 添加预测时间 | ||||
| @ -859,7 +860,7 @@ def model_losss(sqlitedb,end_time): | ||||
|     # 然后筛选出那些 cutoff 等于 max_cutoff 的行,这样就得到了每个分组中 cutoff 最大的行,并保留了其他列 | ||||
|     df_combined = df_combined[df_combined['CREAT_DATE'] == df_combined['max_cutoff']] | ||||
|     # 删除模型生成的cutoff列 | ||||
|     df_combined.drop(columns=['CREAT_DATE', 'max_cutoff','created_dt','min_within_quantile','max_within_quantile','id','min_price','max_price','LOW_PRICE','HIGH_PRICE','mean'], inplace=True,errors='ignore')  | ||||
|     df_combined.drop(columns=['CREAT_DATE', 'max_cutoff','created_dt','min_within_quantile','max_within_quantile','id','min_price','max_price','LOW_PRICE','HIGH_PRICE'], inplace=True,errors='ignore')  | ||||
|     # 获取模型名称 | ||||
|     modelnames  = df_combined.columns.to_list()[1:]  | ||||
|     if 'y' in modelnames: | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user