沥青定性维护本月数据后预测,测试通过

This commit is contained in:
workpc 2025-04-08 11:22:43 +08:00
parent ac8086d2d8
commit 5e3389d5dd
2 changed files with 62 additions and 355 deletions

View File

@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": null,
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
@ -14,7 +14,6 @@
"import time\n",
"import pandas as pd\n",
"pd.set_option('display.max_columns', None)\n",
"import datetime\n",
"\n",
"import numpy as np\n",
"# 变量定义\n",
@ -78,9 +77,9 @@
" # 填充缺失值\n",
" df = df.fillna(method='ffill')\n",
"\n",
" # 获取最后两行数据\n",
" df1 = df.tail(2)\n",
" # print(df1)\n",
" # 获取昨天,前天数据\n",
" df1 = df[-3:-1]\n",
" print(df1)\n",
" # 获取前一天的指定列值\n",
" previous_value = df1.iloc[0, column_index]\n",
" print('前一天的',previous_value,type(previous_value))\n",
@ -90,7 +89,7 @@
" # 判断指定列值的变化是否大于阈值\n",
" if abs(current_value - previous_value) > threshold:\n",
" # 如果变化大于阈值,将当前的指定列值改为前一天的值\n",
" df.iloc[-1, column_index] = previous_value\n",
" df.iloc[-2, column_index] = previous_value\n",
" print('修改了')\n",
" # print(df.tail())\n",
" # 将修改后的数据写回Excel文件\n",
@ -310,7 +309,8 @@
" df = pd.read_excel('定性模型数据项12-11.xlsx')\n",
"\n",
" df=df.fillna(df.ffill())\n",
" df1 = df[-2:].reset_index()\n",
" df1 = df[-3:-1].reset_index()\n",
" print(df1)\n",
" '''\n",
" # if df1.loc[1,'70号沥青开工率'] > 0.3: \n",
" 2025年1月8日 修改:\n",
@ -533,7 +533,7 @@
" # res = requests.post(url=upload_url, headers=headers1, json=data1, timeout=(3, 5))\n",
" \n",
"\n",
"def start():\n",
"def start(now=None):\n",
" workbook = xlrd.open_workbook(read_file_path_name)\n",
"\n",
"\n",
@ -558,8 +558,8 @@
" print(\"获取认证失败\")\n",
" token = None\n",
"\n",
"\n",
" now = datetime.now()\n",
" if now is None:\n",
" now = datetime.now()\n",
" year = now.year\n",
" month = now.month\n",
" day = now.day\n",
@ -644,11 +644,13 @@
" # 保存新的xls文件\n",
" new_workbook.save(\"定性模型数据项12-11.xlsx\")\n",
" \n",
" \n",
" update_e_value('定性模型数据项12-11.xlsx', 8, 1000)\n",
"\n",
" df = pd.read_excel('定性模型数据项12-11.xlsx')\n",
" df=df.fillna(df.ffill())\n",
" df1 = df[-2:].reset_index()\n",
" print(df1)\n",
" # if df1.loc[1,'70号沥青开工率'] > 0.3: -- 2025年1月9日 发版更改\n",
" if df1.loc[1,'70号沥青开工率'] / 100 > 0.3:\n",
" a = (df1.loc[1,'70号沥青开工率'] / 100 -0.2)*5/0.1\n",
@ -694,7 +696,6 @@
" # headers1 = {\"Authorization\": token_push}\n",
" # res = requests.post(url=upload_url, headers=headers1, json=data1, timeout=(3, 5))\n",
" \n",
" \n",
"\n",
"\n",
"def start_test():\n",
@ -1004,7 +1005,7 @@
"\n",
"def save_queryDataListItemNos_xls(data_df,dataItemNoList):\n",
"\n",
" current_year_month = datetime.datetime.now().strftime('%Y-%m')\n",
" current_year_month = datetime.now().strftime('%Y-%m')\n",
" grouped = data_df.groupby(\"dataDate\")\n",
"\n",
"\n",
@ -1035,16 +1036,20 @@
"\n",
"\n",
"\n",
"def queryDataListItemNos():\n",
"def queryDataListItemNos(date=None,token=None):\n",
" df = pd.read_excel('定性模型数据项12-11.xlsx')\n",
" dataItemNoList = df.iloc[0].tolist()[1:]\n",
"\n",
" token = getLogToken()\n",
" if not token:\n",
" return\n",
" if token is None:\n",
" token = getLogToken()\n",
" if token is None:\n",
" print(\"获取token失败\")\n",
" return\n",
"\n",
" # 获取当前日期\n",
" current_date = datetime.datetime.now()\n",
" if date is None:\n",
" date = datetime.now()\n",
" current_date = date\n",
"\n",
" # 获取当月1日\n",
" first_day_of_month = current_date.replace(day=1)\n",
@ -1068,7 +1073,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
@ -1089,14 +1094,13 @@
" # current_time_1 = time.strftime(\"%H:%M:%S\", time.localtime())\n",
"\n",
"\n",
" # # 获取当月的数据写入到指定文件\n",
" # queryDataListItemNos()\n",
"\n",
"\n",
"\n",
" # # 判断当前时间是否为执行任务的时间点\n",
" # if current_time == \"12:00:00\":\n",
" # print(\"执行定时任务\")\n",
" # start()\n",
" # start()\n",
"\n",
" # # 休眠1秒钟避免过多占用CPU资源\n",
" # time.sleep(1)\n",
@ -1109,23 +1113,19 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# if __name__ == \"__main__\":\n",
"# def main():\n",
"# # 获取当前日期\n",
"# date = datetime.now().date()\n",
"# date = date.strftime('%Y%m%d')\n",
"# # 获取登录token\n",
"# token = getLogToken()\n",
"# updateExcelData(date,token)\n",
"# update_e_value('定性模型数据项12-11.xlsx', 8, 1000)\n",
"# x = qualitativeModel()\n",
"# print('预测结果:',x)\n",
"# cur_time,cur_time2 = getNow(date)\n",
"# pushData(cur_time,x,token)\n",
" # def main(date='',token=None):\n",
" # updateExcelData(date,token)\n",
" # queryDataListItemNos(token=token)\n",
" # update_e_value('定性模型数据项12-11.xlsx', 8, 1000)\n",
" # x = qualitativeModel()\n",
" # print('**************************************************预测结果:',x)\n",
" # # cur_time,cur_time2 = getNow(date)\n",
" # # pushData(cur_time,x,token)\n",
"\n",
"# print(\"运行中...\")\n",
"# # 每天定时12点运行\n",
@ -1159,23 +1159,23 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"20250304\n"
"20250401\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:53: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n",
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_6640\\43143909.py:66: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n",
" df = df.applymap(lambda x: float(x) if isinstance(x, (int, float)) else x)\n",
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:57: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_6640\\43143909.py:70: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
" df = df.fillna(method='ffill')\n"
]
},
@ -1183,319 +1183,25 @@
"name": "stdout",
"output_type": "stream",
"text": [
"前一天的 3543.2385 <class 'float'>\n",
"现在的 3414.5246 <class 'float'>\n",
"昨日计划提货偏差改之前 -571.14\n",
"昨日计划提货偏差改之后 339.1062000000002\n",
"**************************************************预测结果: 3585.63\n",
"20250305\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:53: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n",
" df = df.applymap(lambda x: float(x) if isinstance(x, (int, float)) else x)\n",
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:57: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
" df = df.fillna(method='ffill')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"前一天的 3414.5246 <class 'float'>\n",
"现在的 3409.5135 <class 'float'>\n",
"昨日计划提货偏差改之前 3173.74\n",
"昨日计划提货偏差改之后 436.6761999999999\n",
"**************************************************预测结果: 3781.57\n",
"20250306\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:53: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n",
" df = df.applymap(lambda x: float(x) if isinstance(x, (int, float)) else x)\n",
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:57: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
" df = df.fillna(method='ffill')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"前一天的 3409.5135 <class 'float'>\n",
"现在的 3304.2291 <class 'float'>\n",
"昨日计划提货偏差改之前 2324.63\n",
"昨日计划提货偏差改之后 608.3411999999998\n",
"**************************************************预测结果: 3760.78\n",
"20250307\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:53: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n",
" df = df.applymap(lambda x: float(x) if isinstance(x, (int, float)) else x)\n",
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:57: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
" df = df.fillna(method='ffill')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"前一天的 3304.2291 <class 'float'>\n",
"现在的 3312.3543 <class 'float'>\n",
"昨日计划提货偏差改之前 3426.43\n",
"昨日计划提货偏差改之后 232.5551999999998\n",
"**************************************************预测结果: 3781.31\n",
"20250308\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:53: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n",
" df = df.applymap(lambda x: float(x) if isinstance(x, (int, float)) else x)\n",
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:57: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
" df = df.fillna(method='ffill')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"前一天的 3312.3543 <class 'float'>\n",
"现在的 3375.9949 <class 'float'>\n",
"昨日计划提货偏差改之前 2314.8\n",
"昨日计划提货偏差改之后 95.26919999999973\n",
"**************************************************预测结果: 3781.04\n",
"20250309\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:53: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n",
" df = df.applymap(lambda x: float(x) if isinstance(x, (int, float)) else x)\n",
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:57: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
" df = df.fillna(method='ffill')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"前一天的 3375.9949 <class 'float'>\n",
"现在的 3367.7575 <class 'float'>\n",
"昨日计划提货偏差改之前 4676.24\n",
"昨日计划提货偏差改之后 -324.57479999999987\n",
"**************************************************预测结果: 3780.47\n",
"20250310\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:53: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n",
" df = df.applymap(lambda x: float(x) if isinstance(x, (int, float)) else x)\n",
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:57: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
" df = df.fillna(method='ffill')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"前一天的 3367.7575 <class 'float'>\n",
"现在的 3347.97 <class 'float'>\n",
"昨日计划提货偏差改之前 -1038.55\n",
"昨日计划提货偏差改之后 -176.92599999999993\n",
"**************************************************预测结果: 3780.72\n",
"20250311\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:53: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n",
" df = df.applymap(lambda x: float(x) if isinstance(x, (int, float)) else x)\n",
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:57: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
" df = df.fillna(method='ffill')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"前一天的 3347.97 <class 'float'>\n",
"现在的 3282.8269 <class 'float'>\n",
"昨日计划提货偏差改之前 2467.05\n",
"昨日计划提货偏差改之后 348.5867999999996\n",
"**************************************************预测结果: 3701.49\n",
"20250312\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:53: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n",
" df = df.applymap(lambda x: float(x) if isinstance(x, (int, float)) else x)\n",
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:57: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
" df = df.fillna(method='ffill')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"前一天的 3282.8269 <class 'float'>\n",
"现在的 3362.2709 <class 'float'>\n",
"昨日计划提货偏差改之前 -198.73\n",
"昨日计划提货偏差改之后 338.9767999999999\n",
"**************************************************预测结果: 3621.48\n",
"20250313\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:53: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n",
" df = df.applymap(lambda x: float(x) if isinstance(x, (int, float)) else x)\n",
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:57: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
" df = df.fillna(method='ffill')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"前一天的 3362.2709 <class 'float'>\n",
"现在的 3476.9658 <class 'float'>\n",
"昨日计划提货偏差改之前 2356.71\n",
"昨日计划提货偏差改之后 703.9968000000003\n",
"**************************************************预测结果: 3644.94\n",
"20250314\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:53: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n",
" df = df.applymap(lambda x: float(x) if isinstance(x, (int, float)) else x)\n",
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:57: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
" df = df.fillna(method='ffill')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"前一天的 3476.9658 <class 'float'>\n",
"现在的 3426.2475 <class 'float'>\n",
"昨日计划提货偏差改之前 2295.03\n",
"昨日计划提货偏差改之后 299.41520000000037\n",
"**************************************************预测结果: 3621.29\n",
"20250315\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:53: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n",
" df = df.applymap(lambda x: float(x) if isinstance(x, (int, float)) else x)\n",
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:57: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
" df = df.fillna(method='ffill')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"前一天的 3426.2475 <class 'float'>\n",
"现在的 3471.3062 <class 'float'>\n",
"昨日计划提货偏差改之前 3608.02\n",
"昨日计划提货偏差改之后 326.89519999999993\n",
"**************************************************预测结果: 3651.37\n",
"20250316\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:53: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n",
" df = df.applymap(lambda x: float(x) if isinstance(x, (int, float)) else x)\n",
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:57: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
" df = df.fillna(method='ffill')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"前一天的 3471.3062 <class 'float'>\n",
"现在的 3484.929 <class 'float'>\n",
"昨日计划提货偏差改之前 3044.14\n",
"昨日计划提货偏差改之后 309.15520000000015\n",
"**************************************************预测结果: 3651.31\n",
"20250317\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:53: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n",
" df = df.applymap(lambda x: float(x) if isinstance(x, (int, float)) else x)\n",
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:57: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
" df = df.fillna(method='ffill')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"前一天的 3484.929 <class 'float'>\n",
"现在的 3553.0486 <class 'float'>\n",
"昨日计划提货偏差改之前 653.09\n",
"昨日计划提货偏差改之后 304.6226999999999\n",
"**************************************************预测结果: 3651.3\n",
"20250318\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:53: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n",
" df = df.applymap(lambda x: float(x) if isinstance(x, (int, float)) else x)\n",
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_10124\\1472055096.py:57: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
" df = df.fillna(method='ffill')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"前一天的 3553.0486 <class 'float'>\n",
"现在的 3543.2385 <class 'float'>\n",
"昨日计划提货偏差改之前 3654.03\n",
"昨日计划提货偏差改之后 31.435199999999895\n",
"**************************************************预测结果: 3610.87\n"
" 日期 京博指导价 70号沥青开工率 资金因素 昨日计划提货偏差 生产情况 基质沥青库存 \\\n",
"1399 2025-04-06 3600.0 37.3095 1.0 -1051.74 6000.0 107382.182661 \n",
"1400 2025-04-07 3500.0 36.784 1.0 478.28 6000.0 107382.182661 \n",
"\n",
" 下游客户价格预期 即期成本 订单结构 计划产量 京博产量 \n",
"1399 3630.0 3136.0033 1.0 4982.8366 5715.5175 \n",
"1400 3630.0 2972.5098 1.0 4982.8366 5522.676 \n",
"前一天的 3136.0033 <class 'float'>\n",
"现在的 2972.5098 <class 'float'>\n",
" index 日期 京博指导价 70号沥青开工率 资金因素 昨日计划提货偏差 生产情况 基质沥青库存 \\\n",
"0 1399 2025-04-06 3600 37.3095 1 -1051.74 6000 107382.182661 \n",
"1 1400 2025-04-07 3500 36.784 1 478.28 6000 107382.182661 \n",
"\n",
" 下游客户价格预期 即期成本 订单结构 计划产量 京博产量 \n",
"0 3630 3136.0033 1 4982.8366 5715.5175 \n",
"1 3630 2972.5098 1 4982.8366 5522.676 \n",
"昨日计划提货偏差改之前 478.28\n",
"昨日计划提货偏差改之后 539.8394000000008\n",
"**************************************************预测结果: 3567.73\n"
]
}
],
@ -1504,6 +1210,7 @@
"\n",
"def main(date='',token=None):\n",
" updateExcelData(date,token)\n",
" queryDataListItemNos(token=token)\n",
" update_e_value('定性模型数据项12-11.xlsx', 8, 1000)\n",
" x = qualitativeModel()\n",
" print('**************************************************预测结果:',x)\n",
@ -1511,8 +1218,8 @@
" # pushData(cur_time,x,token)\n",
"\n",
"\n",
"start_date = datetime(2025, 3, 4)\n",
"end_date = datetime(2025, 3, 19)\n",
"start_date = datetime(2025, 4, 1)\n",
"end_date = datetime(2025, 4, 2)\n",
"token = getLogToken()\n",
"while start_date < end_date:\n",
" print(start_date.strftime('%Y%m%d'))\n",
@ -1524,7 +1231,7 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
@ -1537,7 +1244,7 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [