聚烯烃数据处理,独立主程序
This commit is contained in:
parent
8ebbeed7b6
commit
624dd0d507
@ -227,8 +227,16 @@ add_kdj = False # 是否添加kdj指标
|
|||||||
if add_kdj and is_edbnamelist:
|
if add_kdj and is_edbnamelist:
|
||||||
edbnamelist = edbnamelist+['K','D','J']
|
edbnamelist = edbnamelist+['K','D','J']
|
||||||
### 模型参数
|
### 模型参数
|
||||||
y = 'PP:拉丝:1102K:市场价:青州:国家能源宁煤(日)' # 原油指标数据的目标变量
|
# y = 'PP:拉丝:1102K:市场价:青州:国家能源宁煤(日)' # 原油指标数据的目标变量
|
||||||
# y = '期货结算价(连续):布伦特原油:前一个观测值' # ineoil的目标变量
|
y = 'AVG(金能大唐久泰青州)' # 原油指标数据的目标变量
|
||||||
|
avg_cols = [
|
||||||
|
'PP:拉丝:1102K:出厂价:青州:国家能源宁煤(日)',
|
||||||
|
'PP:拉丝:L5E89:出厂价:华北(第二区域):内蒙古久泰新材料(日)',
|
||||||
|
'PP:拉丝:L5E89:出厂价:河北、鲁北:大唐内蒙多伦(日)',
|
||||||
|
'PP:拉丝:HP550J:市场价:青岛:金能化学(日)'
|
||||||
|
]
|
||||||
|
offsite = 50
|
||||||
|
offsite_col = ['PP:拉丝:HP550J:市场价:青岛:金能化学(日)']
|
||||||
horizon =5 # 预测的步长
|
horizon =5 # 预测的步长
|
||||||
input_size = 40 # 输入序列长度
|
input_size = 40 # 输入序列长度
|
||||||
train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数
|
train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数
|
||||||
|
@ -501,6 +501,75 @@ def datachuli(df_zhibiaoshuju,df_zhibiaoliebiao,datecol='date',end_time='',y='y'
|
|||||||
featureAnalysis(df,dataset=dataset,y=y)
|
featureAnalysis(df,dataset=dataset,y=y)
|
||||||
return df
|
return df
|
||||||
|
|
||||||
|
def datachuli_juxiting(df_zhibiaoshuju,df_zhibiaoliebiao,datecol='date',end_time='',y='y',dataset='dataset',delweekenday=False,add_kdj=False,is_timefurture=False):
|
||||||
|
df = df_zhibiaoshuju.copy()
|
||||||
|
if end_time == '':
|
||||||
|
end_time = datetime.datetime.now().strftime('%Y-%m-%d')
|
||||||
|
# date转为pddate
|
||||||
|
df.rename(columns={datecol:'ds'},inplace=True)
|
||||||
|
|
||||||
|
df[offsite_col] = df[offsite_col]-offsite
|
||||||
|
df['AVG(金能大唐久泰青州)'] = df[avg_cols].mean(axis=1)
|
||||||
|
print(df[['ds','AVG(金能大唐久泰青州)']+avg_cols].head(20))
|
||||||
|
# 重命名预测列
|
||||||
|
df.rename(columns={y:'y'},inplace=True)
|
||||||
|
# 按时间顺序排列
|
||||||
|
df.sort_values(by='ds',inplace=True)
|
||||||
|
df['ds'] = pd.to_datetime(df['ds'])
|
||||||
|
# 获取2018年到当前日期的数据
|
||||||
|
df = df[df['ds'].dt.year >= 2018]
|
||||||
|
# 获取小于等于当前日期的数据
|
||||||
|
df = df[df['ds'] <= end_time]
|
||||||
|
logger.info(f'删除两月不更新特征前数据量:{df.shape}')
|
||||||
|
# 去掉近最后数据对应的日期在两月以前的列,删除近2月的数据是常熟的列
|
||||||
|
current_date = datetime.datetime.now()
|
||||||
|
two_months_ago = current_date - timedelta(days=40)
|
||||||
|
|
||||||
|
def check_column(col_name):
|
||||||
|
if 'ds' in col_name or 'y' in col_name:
|
||||||
|
return False
|
||||||
|
df_check_column = df[['ds',col_name]]
|
||||||
|
df_check_column = df_check_column.dropna()
|
||||||
|
if len(df_check_column) == 0:
|
||||||
|
return True
|
||||||
|
if df_check_column[(df_check_column['ds']>= two_months_ago)].groupby(col_name).ngroups < 2:
|
||||||
|
return True
|
||||||
|
corresponding_date = df_check_column.iloc[-1]['ds']
|
||||||
|
return corresponding_date < two_months_ago
|
||||||
|
columns_to_drop = df.columns[df.columns.map(check_column)].tolist()
|
||||||
|
df = df.drop(columns = columns_to_drop)
|
||||||
|
|
||||||
|
logger.info(f'删除两月不更新特征后数据量:{df.shape}')
|
||||||
|
|
||||||
|
# 删除预测列空值的行
|
||||||
|
df = df.dropna(subset=['y'])
|
||||||
|
logger.info(f'删除预测列为空值的行后数据量:{df.shape}')
|
||||||
|
df = df.dropna(axis=1, how='all')
|
||||||
|
logger.info(f'删除全为空值的列后数据量:{df.shape}')
|
||||||
|
df.to_csv(os.path.join(dataset,'未填充的特征数据.csv'),index=False)
|
||||||
|
# 去掉指标列表中的columns_to_drop的行
|
||||||
|
df_zhibiaoliebiao = df_zhibiaoliebiao[df_zhibiaoliebiao['指标名称'].isin(df.columns.tolist())]
|
||||||
|
df_zhibiaoliebiao.to_csv(os.path.join(dataset,'特征处理后的指标名称及分类.csv'),index=False)
|
||||||
|
# 频度分析
|
||||||
|
featurePindu(dataset=dataset)
|
||||||
|
# 向上填充
|
||||||
|
df = df.ffill()
|
||||||
|
# 向下填充
|
||||||
|
df = df.bfill()
|
||||||
|
|
||||||
|
# 删除周六日的数据
|
||||||
|
if delweekenday:
|
||||||
|
df = df[df['ds'].dt.weekday < 5]
|
||||||
|
|
||||||
|
if add_kdj:
|
||||||
|
df = calculate_kdj(df)
|
||||||
|
|
||||||
|
if is_timefurture:
|
||||||
|
df = addtimecharacteristics(df=df,dataset=dataset)
|
||||||
|
|
||||||
|
featureAnalysis(df,dataset=dataset,y=y)
|
||||||
|
return df
|
||||||
|
|
||||||
def getdata(filename, datecol='date',y='y',dataset='',add_kdj=False,is_timefurture=False,end_time=''):
|
def getdata(filename, datecol='date',y='y',dataset='',add_kdj=False,is_timefurture=False,end_time=''):
|
||||||
logger.info('getdata接收:'+filename+' '+datecol+' '+end_time)
|
logger.info('getdata接收:'+filename+' '+datecol+' '+end_time)
|
||||||
# 判断后缀名 csv或excel
|
# 判断后缀名 csv或excel
|
||||||
@ -514,6 +583,20 @@ def getdata(filename, datecol='date',y='y',dataset='',add_kdj=False,is_timefurtu
|
|||||||
# 日期字符串转为datatime
|
# 日期字符串转为datatime
|
||||||
df = datachuli(df_zhibiaoshuju,df_zhibiaoliebiao,datecol,y = y,dataset=dataset,add_kdj=add_kdj,is_timefurture=is_timefurture,end_time=end_time)
|
df = datachuli(df_zhibiaoshuju,df_zhibiaoliebiao,datecol,y = y,dataset=dataset,add_kdj=add_kdj,is_timefurture=is_timefurture,end_time=end_time)
|
||||||
|
|
||||||
|
return df
|
||||||
|
def getdata_juxiting(filename, datecol='date',y='y',dataset='',add_kdj=False,is_timefurture=False,end_time=''):
|
||||||
|
logger.info('getdata接收:'+filename+' '+datecol+' '+end_time)
|
||||||
|
# 判断后缀名 csv或excel
|
||||||
|
if filename.endswith('.csv'):
|
||||||
|
df = loadcsv(filename)
|
||||||
|
else:
|
||||||
|
# 读取excel 指标数据
|
||||||
|
df_zhibiaoshuju = pd.read_excel(filename,sheet_name='指标数据')
|
||||||
|
df_zhibiaoliebiao = pd.read_excel(filename,sheet_name='指标列表')
|
||||||
|
|
||||||
|
# 日期字符串转为datatime
|
||||||
|
df = datachuli_juxiting(df_zhibiaoshuju,df_zhibiaoliebiao,datecol,y = y,dataset=dataset,add_kdj=add_kdj,is_timefurture=is_timefurture,end_time=end_time)
|
||||||
|
|
||||||
return df
|
return df
|
||||||
|
|
||||||
# def filter_data(ClassifyName,data):
|
# def filter_data(ClassifyName,data):
|
||||||
|
38
main.py
38
main.py
@ -114,25 +114,25 @@ def predict_main():
|
|||||||
row,col = df.shape
|
row,col = df.shape
|
||||||
|
|
||||||
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
||||||
# ex_Model(df,
|
ex_Model(df,
|
||||||
# horizon=horizon,
|
horizon=horizon,
|
||||||
# input_size=input_size,
|
input_size=input_size,
|
||||||
# train_steps=train_steps,
|
train_steps=train_steps,
|
||||||
# val_check_steps=val_check_steps,
|
val_check_steps=val_check_steps,
|
||||||
# early_stop_patience_steps=early_stop_patience_steps,
|
early_stop_patience_steps=early_stop_patience_steps,
|
||||||
# is_debug=is_debug,
|
is_debug=is_debug,
|
||||||
# dataset=dataset,
|
dataset=dataset,
|
||||||
# is_train=is_train,
|
is_train=is_train,
|
||||||
# is_fivemodels=is_fivemodels,
|
is_fivemodels=is_fivemodels,
|
||||||
# val_size=val_size,
|
val_size=val_size,
|
||||||
# test_size=test_size,
|
test_size=test_size,
|
||||||
# settings=settings,
|
settings=settings,
|
||||||
# now=now,
|
now=now,
|
||||||
# etadata = etadata,
|
etadata = etadata,
|
||||||
# modelsindex = modelsindex,
|
modelsindex = modelsindex,
|
||||||
# data = data,
|
data = data,
|
||||||
# is_eta=is_eta,
|
is_eta=is_eta,
|
||||||
# )
|
)
|
||||||
|
|
||||||
|
|
||||||
logger.info('模型训练完成')
|
logger.info('模型训练完成')
|
||||||
|
178
main_juxiting.py
Normal file
178
main_juxiting.py
Normal file
@ -0,0 +1,178 @@
|
|||||||
|
# 读取配置
|
||||||
|
from config_juxiting import *
|
||||||
|
from lib.dataread import *
|
||||||
|
from lib.tools import *
|
||||||
|
from models.nerulforcastmodels import ex_Model,model_losss,brent_export_pdf,tansuanli_export_pdf,pp_export_pdf,model_losss_juxiting
|
||||||
|
|
||||||
|
import glob
|
||||||
|
import torch
|
||||||
|
torch.set_float32_matmul_precision("high")
|
||||||
|
|
||||||
|
sqlitedb = SQLiteHandler(db_name)
|
||||||
|
sqlitedb.connect()
|
||||||
|
|
||||||
|
def predict_main():
|
||||||
|
signature = BinanceAPI(APPID, SECRET)
|
||||||
|
etadata = EtaReader(signature=signature,
|
||||||
|
classifylisturl = classifylisturl,
|
||||||
|
classifyidlisturl=classifyidlisturl,
|
||||||
|
edbcodedataurl=edbcodedataurl,
|
||||||
|
edbcodelist=edbcodelist,
|
||||||
|
edbdatapushurl=edbdatapushurl,
|
||||||
|
edbdeleteurl=edbdeleteurl,
|
||||||
|
edbbusinessurl=edbbusinessurl
|
||||||
|
)
|
||||||
|
# 获取数据
|
||||||
|
if is_eta:
|
||||||
|
# eta数据
|
||||||
|
logger.info('从eta获取数据...')
|
||||||
|
signature = BinanceAPI(APPID, SECRET)
|
||||||
|
etadata = EtaReader(signature=signature,
|
||||||
|
classifylisturl = classifylisturl,
|
||||||
|
classifyidlisturl=classifyidlisturl,
|
||||||
|
edbcodedataurl=edbcodedataurl,
|
||||||
|
edbcodelist=edbcodelist,
|
||||||
|
edbdatapushurl=edbdatapushurl,
|
||||||
|
edbdeleteurl=edbdeleteurl,
|
||||||
|
edbbusinessurl=edbbusinessurl,
|
||||||
|
)
|
||||||
|
df_zhibiaoshuju,df_zhibiaoliebiao = etadata.get_eta_api_pp_data(data_set=data_set,dataset=dataset) # 原始数据,未处理
|
||||||
|
|
||||||
|
# 数据处理
|
||||||
|
df = datachuli_juxiting(df_zhibiaoshuju,df_zhibiaoliebiao,y = y,dataset=dataset,add_kdj=add_kdj,is_timefurture=is_timefurture,end_time=end_time)
|
||||||
|
|
||||||
|
else:
|
||||||
|
logger.info('读取本地数据:'+os.path.join(dataset,data_set))
|
||||||
|
df = getdata_juxiting(filename=os.path.join(dataset,data_set),y=y,dataset=dataset,add_kdj=add_kdj,is_timefurture=is_timefurture,end_time=end_time) # 原始数据,未处理
|
||||||
|
|
||||||
|
# 更改预测列名称
|
||||||
|
df.rename(columns={y:'y'},inplace=True)
|
||||||
|
|
||||||
|
if is_edbnamelist:
|
||||||
|
df = df[edbnamelist]
|
||||||
|
df.to_csv(os.path.join(dataset,'指标数据.csv'), index=False)
|
||||||
|
# 保存最新日期的y值到数据库
|
||||||
|
# 取第一行数据存储到数据库中
|
||||||
|
first_row = df[['ds','y']].tail(1)
|
||||||
|
# 将最新真实值保存到数据库
|
||||||
|
if not sqlitedb.check_table_exists('trueandpredict'):
|
||||||
|
first_row.to_sql('trueandpredict',sqlitedb.connection,index=False)
|
||||||
|
else:
|
||||||
|
for row in first_row.itertuples(index=False):
|
||||||
|
row_dict = row._asdict()
|
||||||
|
row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
|
||||||
|
check_query = sqlitedb.select_data('trueandpredict',where_condition = f"ds = '{row.ds}'")
|
||||||
|
if len(check_query) > 0:
|
||||||
|
set_clause = ", ".join([f"{key} = '{value}'" for key, value in row_dict.items()])
|
||||||
|
sqlitedb.update_data('trueandpredict',set_clause,where_condition = f"ds = '{row.ds}'")
|
||||||
|
continue
|
||||||
|
sqlitedb.insert_data('trueandpredict',tuple(row_dict.values()),columns=row_dict.keys())
|
||||||
|
|
||||||
|
import datetime
|
||||||
|
# 判断当前日期是不是周一
|
||||||
|
is_weekday = datetime.datetime.now().weekday() == 0
|
||||||
|
if is_weekday:
|
||||||
|
logger.info('今天是周一,更新预测模型')
|
||||||
|
# 计算最近20天预测残差最低的模型名称
|
||||||
|
|
||||||
|
model_results = sqlitedb.select_data('trueandpredict',order_by = "ds DESC",limit = "20")
|
||||||
|
model_results = model_results.dropna()
|
||||||
|
modelnames = model_results.columns.to_list()[2:]
|
||||||
|
for col in model_results[modelnames].select_dtypes(include=['object']).columns:
|
||||||
|
model_results[col] = model_results[col].astype(np.float32)
|
||||||
|
# 计算每个预测值与真实值之间的偏差率
|
||||||
|
for model in modelnames:
|
||||||
|
model_results[f'{model}_abs_error_rate'] = abs(model_results['y'] - model_results[model]) / model_results['y']
|
||||||
|
|
||||||
|
# 获取每行对应的最小偏差率值
|
||||||
|
min_abs_error_rate_values = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
|
||||||
|
# 获取每行对应的最小偏差率值对应的列名
|
||||||
|
min_abs_error_rate_column_name = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
|
||||||
|
# 将列名索引转换为列名
|
||||||
|
min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(lambda x: x.split('_')[0])
|
||||||
|
# 取出现次数最多的模型名称
|
||||||
|
most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
|
||||||
|
logger.info(f"最近20天预测残差最低的模型名称:{most_common_model}")
|
||||||
|
|
||||||
|
# 保存结果到数据库
|
||||||
|
|
||||||
|
if not sqlitedb.check_table_exists('most_model'):
|
||||||
|
sqlitedb.create_table('most_model',columns="ds datetime, most_common_model TEXT")
|
||||||
|
sqlitedb.insert_data('most_model',(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),most_common_model,),columns=('ds','most_common_model',))
|
||||||
|
|
||||||
|
if is_corr:
|
||||||
|
df = corr_feature(df=df)
|
||||||
|
|
||||||
|
df1 = df.copy() # 备份一下,后面特征筛选完之后加入ds y 列用
|
||||||
|
logger.info(f"开始训练模型...")
|
||||||
|
row,col = df.shape
|
||||||
|
|
||||||
|
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
||||||
|
ex_Model(df,
|
||||||
|
horizon=horizon,
|
||||||
|
input_size=input_size,
|
||||||
|
train_steps=train_steps,
|
||||||
|
val_check_steps=val_check_steps,
|
||||||
|
early_stop_patience_steps=early_stop_patience_steps,
|
||||||
|
is_debug=is_debug,
|
||||||
|
dataset=dataset,
|
||||||
|
is_train=is_train,
|
||||||
|
is_fivemodels=is_fivemodels,
|
||||||
|
val_size=val_size,
|
||||||
|
test_size=test_size,
|
||||||
|
settings=settings,
|
||||||
|
now=now,
|
||||||
|
etadata = etadata,
|
||||||
|
modelsindex = modelsindex,
|
||||||
|
data = data,
|
||||||
|
is_eta=is_eta,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
logger.info('模型训练完成')
|
||||||
|
# # 模型评估
|
||||||
|
|
||||||
|
logger.info('训练数据绘图ing')
|
||||||
|
model_results3 = model_losss_juxiting(sqlitedb)
|
||||||
|
|
||||||
|
logger.info('训练数据绘图end')
|
||||||
|
# 模型报告
|
||||||
|
|
||||||
|
logger.info('制作报告ing')
|
||||||
|
title = f'{settings}--{now}-预测报告' # 报告标题
|
||||||
|
if 'Brent' in y:
|
||||||
|
brent_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
|
||||||
|
reportname=reportname,sqlitedb=sqlitedb),
|
||||||
|
else:
|
||||||
|
pp_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
|
||||||
|
reportname=reportname,sqlitedb=sqlitedb),
|
||||||
|
|
||||||
|
logger.info('制作报告end')
|
||||||
|
logger.info('模型训练完成')
|
||||||
|
|
||||||
|
# tansuanli_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,end_time=end_time,reportname=reportname)
|
||||||
|
|
||||||
|
# # LSTM 单变量模型
|
||||||
|
# ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset)
|
||||||
|
|
||||||
|
# # lstm 多变量模型
|
||||||
|
# ex_Lstm_M(df,n_days=input_size,out_days=horizon,is_debug=is_debug,datasetpath=dataset)
|
||||||
|
|
||||||
|
# # GRU 模型
|
||||||
|
# # ex_GRU(df)
|
||||||
|
|
||||||
|
# 发送邮件
|
||||||
|
m = SendMail(
|
||||||
|
username=username,
|
||||||
|
passwd=passwd,
|
||||||
|
recv=recv,
|
||||||
|
title=title,
|
||||||
|
content=content,
|
||||||
|
file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
|
||||||
|
ssl=ssl,
|
||||||
|
)
|
||||||
|
# m.send_mail()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
predict_main()
|
Loading…
Reference in New Issue
Block a user