2025年7月1日发版
This commit is contained in:
		
							parent
							
								
									c85d11866f
								
							
						
					
					
						commit
						68ec1c8ffb
					
				
							
								
								
									
										340
									
								
								config_jingbo.py
									
									
									
									
									
								
							
							
						
						
									
										340
									
								
								config_jingbo.py
									
									
									
									
									
								
							| @ -93,163 +93,24 @@ data = { | ||||
| ClassifyId = 1214 | ||||
| 
 | ||||
| 
 | ||||
| # # 变量定义--线上环境 | ||||
| # server_host = '10.200.32.39' | ||||
| # login_pushreport_url = "http://10.200.32.39/jingbo-api/api/server/login" | ||||
| # upload_url = "http://10.200.32.39/jingbo-api/api/analysis/reportInfo/researchUploadReportSave" | ||||
| # upload_warning_url = "http://10.200.32.39/jingbo-api/api/basicBuiness/crudeOilWarning/save" | ||||
| # query_data_list_item_nos_url = f"http://{server_host}/jingbo-api/api/warehouse/dwDataItem/queryDataListItemNos" | ||||
| # # 上传数据项值 | ||||
| # push_data_value_list_url = f"http://{server_host}/jingbo-api/api/dw/dataValue/pushDataValueList" | ||||
| # # 上传停更数据到市场信息平台 | ||||
| # push_waring_data_value_list_url = f"http://{server_host}/jingbo-api/api/basicBuiness/crudeOilWarning/crudeSaveOrupdate" | ||||
| # # 获取预警数据中取消订阅指标ID | ||||
| # get_waring_data_value_list_url = f"http://{server_host}/jingbo-api/api/basicBuiness/crudeOilWarning/dataList" | ||||
| 
 | ||||
| 
 | ||||
| # login_data = { | ||||
| #     "data": { | ||||
| #         "account": "api_dev", | ||||
| #         "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", | ||||
| #         "tenantHashCode": "8a4577dbd919675758d57999a1e891fe", | ||||
| #         "terminal": "API" | ||||
| #     }, | ||||
| #     "funcModule": "API", | ||||
| #     "funcOperation": "获取token" | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # upload_data = { | ||||
| #     "funcModule": '研究报告信息', | ||||
| #     "funcOperation": '上传原油价格预测报告', | ||||
| #     "data": { | ||||
| #         "groupNo": '',  # 用户组id | ||||
| #         "ownerAccount": '27663',  # 报告所属用户账号  27663 - 刘小朋 | ||||
| #         "reportType": 'OIL_PRICE_FORECAST',  # 报告类型,固定为OIL_PRICE_FORECAST | ||||
| #         "fileName": '',  # 文件名称 | ||||
| #         "fileBase64": '',  # 文件内容base64 | ||||
| #         "categoryNo": 'yyjgycbg',  # 研究报告分类编码 | ||||
| #         "smartBusinessClassCode": 'YCJGYCBG',  # 分析报告分类编码 | ||||
| #         "reportEmployeeCode": "E40482",  # 报告人  E40482  - 管理员  0000027663 - 刘小朋 | ||||
| #         "reportDeptCode": "002000621000",  # 报告部门 - 002000621000  SH期货研究部 | ||||
| #         "productGroupCode": "RAW_MATERIAL"  # 商品分类 | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| # warning_data = { | ||||
| #     "groupNo": '',  # 用户组id | ||||
| #     "funcModule": '原油特征停更预警', | ||||
| #     "funcOperation": '原油特征停更预警', | ||||
| #     "data": { | ||||
| #         'WARNING_TYPE_NAME': '特征数据停更预警', | ||||
| #         'WARNING_CONTENT': '', | ||||
| #         'WARNING_DATE': '' | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| # query_data_list_item_nos_data = { | ||||
| #     "funcModule": "数据项", | ||||
| #     "funcOperation": "查询", | ||||
| #     "data": { | ||||
| #         "dateStart": "20200101", | ||||
| #         "dateEnd": "20241231", | ||||
| #         "dataItemNoList": ["Brentzdj", "Brentzgj"]  # 数据项编码,代表 brent最低价和最高价 | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # push_data_value_list_data = { | ||||
| #     "funcModule": "数据表信息列表", | ||||
| #     "funcOperation": "新增", | ||||
| #     "data": [ | ||||
| #         {"dataItemNo": "91230600716676129", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.11 | ||||
| #          }, | ||||
| #         {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.55 | ||||
| #          }, | ||||
| #         {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.55 | ||||
| #          } | ||||
| #     ] | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # push_waring_data_value_list_data = { | ||||
| #     "data": { | ||||
| #         "crudeOilWarningDtoList": [ | ||||
| #             { | ||||
| #                 "lastUpdateDate": "20240501", | ||||
| #                 "updateSuspensionCycle": 1, | ||||
| #                 "dataSource": "8", | ||||
| #                 "frequency": "1", | ||||
| #                 "indicatorName": "美元指数", | ||||
| #                 "indicatorId": "myzs001", | ||||
| #                 "warningDate": "2024-05-13" | ||||
| #             } | ||||
| #         ], | ||||
| #         "dataSource": "8" | ||||
| #     }, | ||||
| #     "funcModule": "商品数据同步", | ||||
| #     "funcOperation": "同步" | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # get_waring_data_value_list_data = { | ||||
| #     "data": "8", "funcModule": "商品数据同步", "funcOperation": "同步"} | ||||
| 
 | ||||
| 
 | ||||
| # # 八大维度数据项编码 | ||||
| # bdwd_items = { | ||||
| #     'ciri': '原油大数据预测|FORECAST|PRICE|T', | ||||
| #     'benzhou': '原油大数据预测|FORECAST|PRICE|W', | ||||
| #     'cizhou': '原油大数据预测|FORECAST|PRICE|W_1', | ||||
| #     'gezhou': '原油大数据预测|FORECAST|PRICE|W_2', | ||||
| #     'ciyue': '原油大数据预测|FORECAST|PRICE|M_1', | ||||
| #     'cieryue': '原油大数据预测|FORECAST|PRICE|M_2', | ||||
| #     'cisanyue': '原油大数据预测|FORECAST|PRICE|M_3', | ||||
| #     'cisiyue': '原油大数据预测|FORECAST|PRICE|M_4', | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # # 生产环境数据库 | ||||
| # host = 'rm-2zehj3r1n60ttz9x5.mysql.rds.aliyuncs.com' | ||||
| # port = 3306 | ||||
| # dbusername = 'jingbo' | ||||
| # password = 'shihua@123' | ||||
| # dbname = 'jingbo' | ||||
| # table_name = 'v_tbl_crude_oil_warning' | ||||
| 
 | ||||
| 
 | ||||
| # # 变量定义--测试环境 | ||||
| server_host = '192.168.100.53'  # 内网 | ||||
| # server_host = '183.242.74.28'  # 外网 | ||||
| login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login" | ||||
| # 上传报告 | ||||
| upload_url = f"http://{server_host}:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave" | ||||
| # 停更预警 | ||||
| upload_warning_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save" | ||||
| # 查询数据项编码 | ||||
| query_data_list_item_nos_url = f"http://{server_host}:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos" | ||||
| # 变量定义--线上环境 | ||||
| server_host = '10.200.32.39' | ||||
| login_pushreport_url = "http://10.200.32.39/jingbo-api/api/server/login" | ||||
| upload_url = "http://10.200.32.39/jingbo-api/api/analysis/reportInfo/researchUploadReportSave" | ||||
| upload_warning_url = "http://10.200.32.39/jingbo-api/api/basicBuiness/crudeOilWarning/save" | ||||
| query_data_list_item_nos_url = f"http://{server_host}/jingbo-api/api/warehouse/dwDataItem/queryDataListItemNos" | ||||
| # 上传数据项值 | ||||
| push_data_value_list_url = f"http://{server_host}:8080/jingbo-dev/api/dw/dataValue/pushDataValueList" | ||||
| push_data_value_list_url = f"http://{server_host}/jingbo-api/api/dw/dataValue/pushDataValueList" | ||||
| # 上传停更数据到市场信息平台 | ||||
| push_waring_data_value_list_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/crudeSaveOrupdate" | ||||
| push_waring_data_value_list_url = f"http://{server_host}/jingbo-api/api/basicBuiness/crudeOilWarning/crudeSaveOrupdate" | ||||
| # 获取预警数据中取消订阅指标ID | ||||
| get_waring_data_value_list_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/dataList" | ||||
| get_waring_data_value_list_url = f"http://{server_host}/jingbo-api/api/basicBuiness/crudeOilWarning/dataList" | ||||
| 
 | ||||
| 
 | ||||
| login_data = { | ||||
|     "data": { | ||||
|         "account": "api_test", | ||||
|         # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456 | ||||
|         "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",  # 123456 | ||||
|         "account": "api_dev", | ||||
|         "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", | ||||
|         "tenantHashCode": "8a4577dbd919675758d57999a1e891fe", | ||||
|         "terminal": "API" | ||||
|     }, | ||||
| @ -257,25 +118,24 @@ login_data = { | ||||
|     "funcOperation": "获取token" | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| upload_data = { | ||||
|     "groupNo": '',  # 用户组id | ||||
|     "funcModule": '研究报告信息', | ||||
|     "funcOperation": '上传原油价格预测报告', | ||||
|     "data": { | ||||
|         "ownerAccount": 'arui',  # 报告所属用户账号 | ||||
|         "groupNo": '',  # 用户组id | ||||
|         "ownerAccount": '27663',  # 报告所属用户账号  27663 - 刘小朋 | ||||
|         "reportType": 'OIL_PRICE_FORECAST',  # 报告类型,固定为OIL_PRICE_FORECAST | ||||
|         "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf',  # 文件名称 | ||||
|         "fileName": '',  # 文件名称 | ||||
|         "fileBase64": '',  # 文件内容base64 | ||||
|         "categoryNo": 'yyjgycbg',  # 研究报告分类编码 | ||||
|         "smartBusinessClassCode": 'YCJGYCBG',  # 分析报告分类编码 | ||||
|         "reportEmployeeCode": "E40116",  # 报告人 | ||||
|         "reportDeptCode": "D0044",  # 报告部门 | ||||
|         "reportEmployeeCode": "E40482",  # 报告人  E40482  - 管理员  0000027663 - 刘小朋 | ||||
|         "reportDeptCode": "002000621000",  # 报告部门 - 002000621000  SH期货研究部 | ||||
|         "productGroupCode": "RAW_MATERIAL"  # 商品分类 | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| # 已弃用 | ||||
| warning_data = { | ||||
|     "groupNo": '',  # 用户组id | ||||
|     "funcModule": '原油特征停更预警', | ||||
| @ -297,6 +157,7 @@ query_data_list_item_nos_data = { | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| push_data_value_list_data = { | ||||
|     "funcModule": "数据表信息列表", | ||||
|     "funcOperation": "新增", | ||||
| @ -319,6 +180,7 @@ push_data_value_list_data = { | ||||
|     ] | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| push_waring_data_value_list_data = { | ||||
|     "data": { | ||||
|         "crudeOilWarningDtoList": [ | ||||
| @ -342,27 +204,165 @@ push_waring_data_value_list_data = { | ||||
| get_waring_data_value_list_data = { | ||||
|     "data": "8", "funcModule": "商品数据同步", "funcOperation": "同步"} | ||||
| 
 | ||||
| 
 | ||||
| # 八大维度数据项编码 | ||||
| bdwd_items = { | ||||
|     'ciri': 'yyycbdwdcr', | ||||
|     'benzhou': 'yyycbdwdbz', | ||||
|     'cizhou': 'yyycbdwdcz', | ||||
|     'gezhou': 'yyycbdwdgz', | ||||
|     'ciyue': 'yyycbdwdcy', | ||||
|     'cieryue': 'yyycbdwdcey', | ||||
|     'cisanyue': 'yyycbdwdcsy', | ||||
|     'cisiyue': 'yyycbdwdcsiy', | ||||
|     'ciri': '原油大数据预测|FORECAST|PRICE|T', | ||||
|     'benzhou': '原油大数据预测|FORECAST|PRICE|W', | ||||
|     'cizhou': '原油大数据预测|FORECAST|PRICE|W_1', | ||||
|     'gezhou': '原油大数据预测|FORECAST|PRICE|W_2', | ||||
|     'ciyue': '原油大数据预测|FORECAST|PRICE|M_1', | ||||
|     'cieryue': '原油大数据预测|FORECAST|PRICE|M_2', | ||||
|     'cisanyue': '原油大数据预测|FORECAST|PRICE|M_3', | ||||
|     'cisiyue': '原油大数据预测|FORECAST|PRICE|M_4', | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| # 北京环境数据库 | ||||
| host = '192.168.101.27' | ||||
| # 生产环境数据库 | ||||
| host = 'rm-2zehj3r1n60ttz9x5.mysql.rds.aliyuncs.com' | ||||
| port = 3306 | ||||
| dbusername = 'root' | ||||
| password = '123456' | ||||
| dbname = 'jingbo_test' | ||||
| dbusername = 'jingbo' | ||||
| password = 'shihua@123' | ||||
| dbname = 'jingbo' | ||||
| table_name = 'v_tbl_crude_oil_warning' | ||||
| 
 | ||||
| 
 | ||||
| # # # 变量定义--测试环境 | ||||
| # server_host = '192.168.100.53'  # 内网 | ||||
| # # server_host = '183.242.74.28'  # 外网 | ||||
| # login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login" | ||||
| # # 上传报告 | ||||
| # upload_url = f"http://{server_host}:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave" | ||||
| # # 停更预警 | ||||
| # upload_warning_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save" | ||||
| # # 查询数据项编码 | ||||
| # query_data_list_item_nos_url = f"http://{server_host}:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos" | ||||
| # # 上传数据项值 | ||||
| # push_data_value_list_url = f"http://{server_host}:8080/jingbo-dev/api/dw/dataValue/pushDataValueList" | ||||
| # # 上传停更数据到市场信息平台 | ||||
| # push_waring_data_value_list_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/crudeSaveOrupdate" | ||||
| # # 获取预警数据中取消订阅指标ID | ||||
| # get_waring_data_value_list_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/dataList" | ||||
| 
 | ||||
| 
 | ||||
| # login_data = { | ||||
| #     "data": { | ||||
| #         "account": "api_test", | ||||
| #         # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456 | ||||
| #         "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",  # 123456 | ||||
| #         "tenantHashCode": "8a4577dbd919675758d57999a1e891fe", | ||||
| #         "terminal": "API" | ||||
| #     }, | ||||
| #     "funcModule": "API", | ||||
| #     "funcOperation": "获取token" | ||||
| # } | ||||
| 
 | ||||
| # upload_data = { | ||||
| #     "groupNo": '',  # 用户组id | ||||
| #     "funcModule": '研究报告信息', | ||||
| #     "funcOperation": '上传原油价格预测报告', | ||||
| #     "data": { | ||||
| #         "ownerAccount": 'arui',  # 报告所属用户账号 | ||||
| #         "reportType": 'OIL_PRICE_FORECAST',  # 报告类型,固定为OIL_PRICE_FORECAST | ||||
| #         "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf',  # 文件名称 | ||||
| #         "fileBase64": '',  # 文件内容base64 | ||||
| #         "categoryNo": 'yyjgycbg',  # 研究报告分类编码 | ||||
| #         "smartBusinessClassCode": 'YCJGYCBG',  # 分析报告分类编码 | ||||
| #         "reportEmployeeCode": "E40116",  # 报告人 | ||||
| #         "reportDeptCode": "D0044",  # 报告部门 | ||||
| #         "productGroupCode": "RAW_MATERIAL"  # 商品分类 | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # # 已弃用 | ||||
| # warning_data = { | ||||
| #     "groupNo": '',  # 用户组id | ||||
| #     "funcModule": '原油特征停更预警', | ||||
| #     "funcOperation": '原油特征停更预警', | ||||
| #     "data": { | ||||
| #         'WARNING_TYPE_NAME': '特征数据停更预警', | ||||
| #         'WARNING_CONTENT': '', | ||||
| #         'WARNING_DATE': '' | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| # query_data_list_item_nos_data = { | ||||
| #     "funcModule": "数据项", | ||||
| #     "funcOperation": "查询", | ||||
| #     "data": { | ||||
| #         "dateStart": "20200101", | ||||
| #         "dateEnd": "20241231", | ||||
| #         "dataItemNoList": ["Brentzdj", "Brentzgj"]  # 数据项编码,代表 brent最低价和最高价 | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| # push_data_value_list_data = { | ||||
| #     "funcModule": "数据表信息列表", | ||||
| #     "funcOperation": "新增", | ||||
| #     "data": [ | ||||
| #         {"dataItemNo": "91230600716676129", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.11 | ||||
| #          }, | ||||
| #         {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.55 | ||||
| #          }, | ||||
| #         {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.55 | ||||
| #          } | ||||
| #     ] | ||||
| # } | ||||
| 
 | ||||
| # push_waring_data_value_list_data = { | ||||
| #     "data": { | ||||
| #         "crudeOilWarningDtoList": [ | ||||
| #             { | ||||
| #                 "lastUpdateDate": "20240501", | ||||
| #                 "updateSuspensionCycle": 1, | ||||
| #                 "dataSource": "8", | ||||
| #                 "frequency": "1", | ||||
| #                 "indicatorName": "美元指数", | ||||
| #                 "indicatorId": "myzs001", | ||||
| #                 "warningDate": "2024-05-13" | ||||
| #             } | ||||
| #         ], | ||||
| #         "dataSource": "8" | ||||
| #     }, | ||||
| #     "funcModule": "商品数据同步", | ||||
| #     "funcOperation": "同步" | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # get_waring_data_value_list_data = { | ||||
| #     "data": "8", "funcModule": "商品数据同步", "funcOperation": "同步"} | ||||
| 
 | ||||
| # # 八大维度数据项编码 | ||||
| # bdwd_items = { | ||||
| #     'ciri': 'yyycbdwdcr', | ||||
| #     'benzhou': 'yyycbdwdbz', | ||||
| #     'cizhou': 'yyycbdwdcz', | ||||
| #     'gezhou': 'yyycbdwdgz', | ||||
| #     'ciyue': 'yyycbdwdcy', | ||||
| #     'cieryue': 'yyycbdwdcey', | ||||
| #     'cisanyue': 'yyycbdwdcsy', | ||||
| #     'cisiyue': 'yyycbdwdcsiy', | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # # 北京环境数据库 | ||||
| # host = '192.168.101.27' | ||||
| # port = 3306 | ||||
| # dbusername = 'root' | ||||
| # password = '123456' | ||||
| # dbname = 'jingbo_test' | ||||
| # table_name = 'v_tbl_crude_oil_warning' | ||||
| 
 | ||||
| DEFAULT_CONFIG = { | ||||
|     'feature_factor_frequency': 'D', | ||||
|     'strategy_id': 1, | ||||
|  | ||||
| @ -172,131 +172,19 @@ data = { | ||||
| ClassifyId = 1214 | ||||
| 
 | ||||
| 
 | ||||
| # # 变量定义--线上环境 | ||||
| # server_host = '10.200.32.39' | ||||
| # login_pushreport_url = "http://10.200.32.39/jingbo-api/api/server/login" | ||||
| # upload_url = "http://10.200.32.39/jingbo-api/api/analysis/reportInfo/researchUploadReportSave" | ||||
| # upload_warning_url = "http://10.200.32.39/jingbo-api/api/basicBuiness/crudeOilWarning/save" | ||||
| # query_data_list_item_nos_url = f"http://{server_host}/jingbo-api/api/warehouse/dwDataItem/queryDataListItemNos" | ||||
| # # 上传数据项值 | ||||
| # push_data_value_list_url = f"http://{server_host}/jingbo-api/api/dw/dataValue/pushDataValueList" | ||||
| 
 | ||||
| # login_data = { | ||||
| #     "data": { | ||||
| #         "account": "api_dev", | ||||
| #         "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", | ||||
| #         "tenantHashCode": "8a4577dbd919675758d57999a1e891fe", | ||||
| #         "terminal": "API" | ||||
| #     }, | ||||
| #     "funcModule": "API", | ||||
| #     "funcOperation": "获取token" | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # upload_data = { | ||||
| #     "funcModule": '研究报告信息', | ||||
| #     "funcOperation": '上传原油价格预测报告', | ||||
| #     "data": { | ||||
| #         "groupNo": '',  # 用户组id | ||||
| #         "ownerAccount": '27663',  # 报告所属用户账号  27663 - 刘小朋 | ||||
| #         "reportType": 'OIL_PRICE_FORECAST',  # 报告类型,固定为OIL_PRICE_FORECAST | ||||
| #         "fileName": '',  # 文件名称 | ||||
| #         "fileBase64": '',  # 文件内容base64 | ||||
| #         "categoryNo": 'yyjgycbg',  # 研究报告分类编码 | ||||
| #         "smartBusinessClassCode": 'YCJGYCBG',  # 分析报告分类编码 | ||||
| #         "reportEmployeeCode": "E40482",  # 报告人  E40482  - 管理员  0000027663 - 刘小朋 | ||||
| #         "reportDeptCode": "002000621000",  # 报告部门 - 002000621000  SH期货研究部 | ||||
| #         "productGroupCode": "RAW_MATERIAL"  # 商品分类 | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| # warning_data = { | ||||
| #     "groupNo": '',  # 用户组id | ||||
| #     "funcModule": '原油特征停更预警', | ||||
| #     "funcOperation": '原油特征停更预警', | ||||
| #     "data": { | ||||
| #         'WARNING_TYPE_NAME': '特征数据停更预警', | ||||
| #         'WARNING_CONTENT': '', | ||||
| #         'WARNING_DATE': '' | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| # query_data_list_item_nos_data = { | ||||
| #     "funcModule": "数据项", | ||||
| #     "funcOperation": "查询", | ||||
| #     "data": { | ||||
| #         "dateStart": "20200101", | ||||
| #         "dateEnd": "20241231", | ||||
| #         "dataItemNoList": ["Brentzdj", "Brentzgj"]  # 数据项编码,代表 brent最低价和最高价 | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # push_data_value_list_data = { | ||||
| #     "funcModule": "数据表信息列表", | ||||
| #     "funcOperation": "新增", | ||||
| #     "data": [ | ||||
| #         {"dataItemNo": "91230600716676129", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.11 | ||||
| #          }, | ||||
| #         {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.55 | ||||
| #          }, | ||||
| #         {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.55 | ||||
| #          } | ||||
| #     ] | ||||
| # } | ||||
| # # 八大维度数据项编码 | ||||
| # bdwd_items = { | ||||
| #     'ciri': '原油大数据预测|FORECAST|PRICE|T', | ||||
| #     'benzhou': '原油大数据预测|FORECAST|PRICE|W', | ||||
| #     'cizhou': '原油大数据预测|FORECAST|PRICE|W_1', | ||||
| #     'gezhou': '原油大数据预测|FORECAST|PRICE|W_2', | ||||
| #     'ciyue': '原油大数据预测|FORECAST|PRICE|M_1', | ||||
| #     'cieryue': '原油大数据预测|FORECAST|PRICE|M_2', | ||||
| #     'cisanyue': '原油大数据预测|FORECAST|PRICE|M_3', | ||||
| #     'cisiyue': '原油大数据预测|FORECAST|PRICE|M_4', | ||||
| # } | ||||
| 
 | ||||
| # # 报告中八大维度数据项重命名 | ||||
| # columnsrename = { | ||||
| #     '原油大数据预测|FORECAST|PRICE|T': '次日', '原油大数据预测|FORECAST|PRICE|W': '本周', | ||||
| #     '原油大数据预测|FORECAST|PRICE|W_1': '次周', '原油大数据预测|FORECAST|PRICE|W_2': '隔周', | ||||
| #     '原油大数据预测|FORECAST|PRICE|M_1': '次月', '原油大数据预测|FORECAST|PRICE|M_2': '次二月', | ||||
| #     '原油大数据预测|FORECAST|PRICE|M_3': '次三月', '原油大数据预测|FORECAST|PRICE|M_4': '次四月' | ||||
| # } | ||||
| 
 | ||||
| # # 生产环境数据库 | ||||
| # host = 'rm-2zehj3r1n60ttz9x5.mysql.rds.aliyuncs.com' | ||||
| # port = 3306 | ||||
| # dbusername = 'jingbo' | ||||
| # password = 'shihua@123' | ||||
| # dbname = 'jingbo' | ||||
| # table_name = 'v_tbl_crude_oil_warning' | ||||
| 
 | ||||
| 
 | ||||
| # 变量定义--测试环境 | ||||
| server_host = '192.168.100.53:8080'  # 内网 | ||||
| # server_host = '183.242.74.28'  # 外网 | ||||
| login_pushreport_url = f"http://{server_host}/jingbo-dev/api/server/login" | ||||
| upload_url = f"http://{server_host}/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave" | ||||
| upload_warning_url = f"http://{server_host}/jingbo-dev/api/basicBuiness/crudeOilWarning/save" | ||||
| query_data_list_item_nos_url = f"http://{server_host}/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos" | ||||
| # 变量定义--线上环境 | ||||
| server_host = '10.200.32.39' | ||||
| login_pushreport_url = "http://10.200.32.39/jingbo-api/api/server/login" | ||||
| upload_url = "http://10.200.32.39/jingbo-api/api/analysis/reportInfo/researchUploadReportSave" | ||||
| upload_warning_url = "http://10.200.32.39/jingbo-api/api/basicBuiness/crudeOilWarning/save" | ||||
| query_data_list_item_nos_url = f"http://{server_host}/jingbo-api/api/warehouse/dwDataItem/queryDataListItemNos" | ||||
| # 上传数据项值 | ||||
| push_data_value_list_url = f"http://{server_host}/jingbo-dev/api/dw/dataValue/pushDataValueList" | ||||
| push_data_value_list_url = f"http://{server_host}/jingbo-api/api/dw/dataValue/pushDataValueList" | ||||
| 
 | ||||
| login_data = { | ||||
|     "data": { | ||||
|         "account": "api_test", | ||||
|         # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456 | ||||
|         "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",  # 123456 | ||||
|         "account": "api_dev", | ||||
|         "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", | ||||
|         "tenantHashCode": "8a4577dbd919675758d57999a1e891fe", | ||||
|         "terminal": "API" | ||||
|     }, | ||||
| @ -304,24 +192,24 @@ login_data = { | ||||
|     "funcOperation": "获取token" | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| upload_data = { | ||||
|     "groupNo": '',  # 用户组id | ||||
|     "funcModule": '研究报告信息', | ||||
|     "funcOperation": '上传原油价格预测报告', | ||||
|     "data": { | ||||
|         "ownerAccount": 'arui',  # 报告所属用户账号 | ||||
|         "groupNo": '',  # 用户组id | ||||
|         "ownerAccount": '27663',  # 报告所属用户账号  27663 - 刘小朋 | ||||
|         "reportType": 'OIL_PRICE_FORECAST',  # 报告类型,固定为OIL_PRICE_FORECAST | ||||
|         "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf',  # 文件名称 | ||||
|         "fileName": '',  # 文件名称 | ||||
|         "fileBase64": '',  # 文件内容base64 | ||||
|         "categoryNo": 'yyjgycbg',  # 研究报告分类编码 | ||||
|         "smartBusinessClassCode": 'YCJGYCBG',  # 分析报告分类编码 | ||||
|         "reportEmployeeCode": "E40116",  # 报告人 | ||||
|         "reportDeptCode": "D0044",  # 报告部门 | ||||
|         "reportEmployeeCode": "E40482",  # 报告人  E40482  - 管理员  0000027663 - 刘小朋 | ||||
|         "reportDeptCode": "002000621000",  # 报告部门 - 002000621000  SH期货研究部 | ||||
|         "productGroupCode": "RAW_MATERIAL"  # 商品分类 | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| warning_data = { | ||||
|     "groupNo": '',  # 用户组id | ||||
|     "funcModule": '原油特征停更预警', | ||||
| @ -343,6 +231,7 @@ query_data_list_item_nos_data = { | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| push_data_value_list_data = { | ||||
|     "funcModule": "数据表信息列表", | ||||
|     "funcOperation": "新增", | ||||
| @ -366,27 +255,138 @@ push_data_value_list_data = { | ||||
| } | ||||
| # 八大维度数据项编码 | ||||
| bdwd_items = { | ||||
|     'ciri': 'yyycbdwdcr', | ||||
|     'benzhou': 'yyycbdwdbz', | ||||
|     'cizhou': 'yyycbdwdcz', | ||||
|     'gezhou': 'yyycbdwdgz', | ||||
|     'ciyue': 'yyycbdwdcy', | ||||
|     'cieryue': 'yyycbdwdcey', | ||||
|     'cisanyue': 'yyycbdwdcsy', | ||||
|     'cisiyue': 'yyycbdwdcsiy', | ||||
|     'ciri': '原油大数据预测|FORECAST|PRICE|T', | ||||
|     'benzhou': '原油大数据预测|FORECAST|PRICE|W', | ||||
|     'cizhou': '原油大数据预测|FORECAST|PRICE|W_1', | ||||
|     'gezhou': '原油大数据预测|FORECAST|PRICE|W_2', | ||||
|     'ciyue': '原油大数据预测|FORECAST|PRICE|M_1', | ||||
|     'cieryue': '原油大数据预测|FORECAST|PRICE|M_2', | ||||
|     'cisanyue': '原油大数据预测|FORECAST|PRICE|M_3', | ||||
|     'cisiyue': '原油大数据预测|FORECAST|PRICE|M_4', | ||||
| } | ||||
| 
 | ||||
| # 报告中八大维度数据项重命名 | ||||
| columnsrename = {'yyycbdwdbz': '本周', 'yyycbdwdcey': '次二月', 'yyycbdwdcr': '次日', 'yyycbdwdcsiy': '次四月', | ||||
|                  'yyycbdwdcsy': '次三月', 'yyycbdwdcy': '次月', 'yyycbdwdcz': '次周', 'yyycbdwdgz': '隔周', } | ||||
| # 北京环境数据库 | ||||
| host = '192.168.101.27' | ||||
| columnsrename = { | ||||
|     '原油大数据预测|FORECAST|PRICE|T': '次日', '原油大数据预测|FORECAST|PRICE|W': '本周', | ||||
|     '原油大数据预测|FORECAST|PRICE|W_1': '次周', '原油大数据预测|FORECAST|PRICE|W_2': '隔周', | ||||
|     '原油大数据预测|FORECAST|PRICE|M_1': '次月', '原油大数据预测|FORECAST|PRICE|M_2': '次二月', | ||||
|     '原油大数据预测|FORECAST|PRICE|M_3': '次三月', '原油大数据预测|FORECAST|PRICE|M_4': '次四月' | ||||
| } | ||||
| 
 | ||||
| # 生产环境数据库 | ||||
| host = 'rm-2zehj3r1n60ttz9x5.mysql.rds.aliyuncs.com' | ||||
| port = 3306 | ||||
| dbusername = 'root' | ||||
| password = '123456' | ||||
| dbname = 'jingbo_test' | ||||
| dbusername = 'jingbo' | ||||
| password = 'shihua@123' | ||||
| dbname = 'jingbo' | ||||
| table_name = 'v_tbl_crude_oil_warning' | ||||
| 
 | ||||
| 
 | ||||
| # # 变量定义--测试环境 | ||||
| # server_host = '192.168.100.53:8080'  # 内网 | ||||
| # # server_host = '183.242.74.28'  # 外网 | ||||
| # login_pushreport_url = f"http://{server_host}/jingbo-dev/api/server/login" | ||||
| # upload_url = f"http://{server_host}/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave" | ||||
| # upload_warning_url = f"http://{server_host}/jingbo-dev/api/basicBuiness/crudeOilWarning/save" | ||||
| # query_data_list_item_nos_url = f"http://{server_host}/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos" | ||||
| # # 上传数据项值 | ||||
| # push_data_value_list_url = f"http://{server_host}/jingbo-dev/api/dw/dataValue/pushDataValueList" | ||||
| 
 | ||||
| # login_data = { | ||||
| #     "data": { | ||||
| #         "account": "api_test", | ||||
| #         # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456 | ||||
| #         "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",  # 123456 | ||||
| #         "tenantHashCode": "8a4577dbd919675758d57999a1e891fe", | ||||
| #         "terminal": "API" | ||||
| #     }, | ||||
| #     "funcModule": "API", | ||||
| #     "funcOperation": "获取token" | ||||
| # } | ||||
| 
 | ||||
| # upload_data = { | ||||
| #     "groupNo": '',  # 用户组id | ||||
| #     "funcModule": '研究报告信息', | ||||
| #     "funcOperation": '上传原油价格预测报告', | ||||
| #     "data": { | ||||
| #         "ownerAccount": 'arui',  # 报告所属用户账号 | ||||
| #         "reportType": 'OIL_PRICE_FORECAST',  # 报告类型,固定为OIL_PRICE_FORECAST | ||||
| #         "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf',  # 文件名称 | ||||
| #         "fileBase64": '',  # 文件内容base64 | ||||
| #         "categoryNo": 'yyjgycbg',  # 研究报告分类编码 | ||||
| #         "smartBusinessClassCode": 'YCJGYCBG',  # 分析报告分类编码 | ||||
| #         "reportEmployeeCode": "E40116",  # 报告人 | ||||
| #         "reportDeptCode": "D0044",  # 报告部门 | ||||
| #         "productGroupCode": "RAW_MATERIAL"  # 商品分类 | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # warning_data = { | ||||
| #     "groupNo": '',  # 用户组id | ||||
| #     "funcModule": '原油特征停更预警', | ||||
| #     "funcOperation": '原油特征停更预警', | ||||
| #     "data": { | ||||
| #         'WARNING_TYPE_NAME': '特征数据停更预警', | ||||
| #         'WARNING_CONTENT': '', | ||||
| #         'WARNING_DATE': '' | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| # query_data_list_item_nos_data = { | ||||
| #     "funcModule": "数据项", | ||||
| #     "funcOperation": "查询", | ||||
| #     "data": { | ||||
| #         "dateStart": "20200101", | ||||
| #         "dateEnd": "20241231", | ||||
| #         "dataItemNoList": ["Brentzdj", "Brentzgj"]  # 数据项编码,代表 brent最低价和最高价 | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| # push_data_value_list_data = { | ||||
| #     "funcModule": "数据表信息列表", | ||||
| #     "funcOperation": "新增", | ||||
| #     "data": [ | ||||
| #         {"dataItemNo": "91230600716676129", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.11 | ||||
| #          }, | ||||
| #         {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.55 | ||||
| #          }, | ||||
| #         {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.55 | ||||
| #          } | ||||
| #     ] | ||||
| # } | ||||
| # # 八大维度数据项编码 | ||||
| # bdwd_items = { | ||||
| #     'ciri': 'yyycbdwdcr', | ||||
| #     'benzhou': 'yyycbdwdbz', | ||||
| #     'cizhou': 'yyycbdwdcz', | ||||
| #     'gezhou': 'yyycbdwdgz', | ||||
| #     'ciyue': 'yyycbdwdcy', | ||||
| #     'cieryue': 'yyycbdwdcey', | ||||
| #     'cisanyue': 'yyycbdwdcsy', | ||||
| #     'cisiyue': 'yyycbdwdcsiy', | ||||
| # } | ||||
| 
 | ||||
| # # 报告中八大维度数据项重命名 | ||||
| # columnsrename = {'yyycbdwdbz': '本周', 'yyycbdwdcey': '次二月', 'yyycbdwdcr': '次日', 'yyycbdwdcsiy': '次四月', | ||||
| #                  'yyycbdwdcsy': '次三月', 'yyycbdwdcy': '次月', 'yyycbdwdcz': '次周', 'yyycbdwdgz': '隔周', } | ||||
| # # 北京环境数据库 | ||||
| # host = '192.168.101.27' | ||||
| # port = 3306 | ||||
| # dbusername = 'root' | ||||
| # password = '123456' | ||||
| # dbname = 'jingbo_test' | ||||
| # table_name = 'v_tbl_crude_oil_warning' | ||||
| 
 | ||||
| DEFAULT_CONFIG = { | ||||
|     'feature_factor_frequency': 'D', | ||||
|     'strategy_id': 1, | ||||
|  | ||||
| @ -119,125 +119,19 @@ data = { | ||||
| ClassifyId = 1214 | ||||
| 
 | ||||
| 
 | ||||
| # # 变量定义--线上环境 | ||||
| # server_host = '10.200.32.39' | ||||
| # login_pushreport_url = "http://10.200.32.39/jingbo-api/api/server/login" | ||||
| # upload_url = "http://10.200.32.39/jingbo-api/api/analysis/reportInfo/researchUploadReportSave" | ||||
| # upload_warning_url = "http://10.200.32.39/jingbo-api/api/basicBuiness/crudeOilWarning/save" | ||||
| # query_data_list_item_nos_url = f"http://{server_host}/jingbo-api/api/warehouse/dwDataItem/queryDataListItemNos" | ||||
| # # 上传数据项值 | ||||
| # push_data_value_list_url = f"http://{server_host}/jingbo-api/api/dw/dataValue/pushDataValueList" | ||||
| 
 | ||||
| # login_data = { | ||||
| #     "data": { | ||||
| #         "account": "api_dev", | ||||
| #         "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", | ||||
| #         "tenantHashCode": "8a4577dbd919675758d57999a1e891fe", | ||||
| #         "terminal": "API" | ||||
| #     }, | ||||
| #     "funcModule": "API", | ||||
| #     "funcOperation": "获取token" | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # upload_data = { | ||||
| #     "funcModule": '研究报告信息', | ||||
| #     "funcOperation": '上传原油价格预测报告', | ||||
| #     "data": { | ||||
| #         "groupNo": '',  # 用户组id | ||||
| #         "ownerAccount": '27663',  # 报告所属用户账号  27663 - 刘小朋 | ||||
| #         "reportType": 'OIL_PRICE_FORECAST',  # 报告类型,固定为OIL_PRICE_FORECAST | ||||
| #         "fileName": '',  # 文件名称 | ||||
| #         "fileBase64": '',  # 文件内容base64 | ||||
| #         "categoryNo": 'yyjgycbg',  # 研究报告分类编码 | ||||
| #         "smartBusinessClassCode": 'YCJGYCBG',  # 分析报告分类编码 | ||||
| #         "reportEmployeeCode": "E40482",  # 报告人  E40482  - 管理员  0000027663 - 刘小朋 | ||||
| #         "reportDeptCode": "002000621000",  # 报告部门 - 002000621000  SH期货研究部 | ||||
| #         "productGroupCode": "RAW_MATERIAL"  # 商品分类 | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| # warning_data = { | ||||
| #     "groupNo": '',  # 用户组id | ||||
| #     "funcModule": '原油特征停更预警', | ||||
| #     "funcOperation": '原油特征停更预警', | ||||
| #     "data": { | ||||
| #         'WARNING_TYPE_NAME': '特征数据停更预警', | ||||
| #         'WARNING_CONTENT': '', | ||||
| #         'WARNING_DATE': '' | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| # query_data_list_item_nos_data = { | ||||
| #     "funcModule": "数据项", | ||||
| #     "funcOperation": "查询", | ||||
| #     "data": { | ||||
| #         "dateStart": "20200101", | ||||
| #         "dateEnd": "20241231", | ||||
| #         "dataItemNoList": ["Brentzdj", "Brentzgj"]  # 数据项编码,代表 brent最低价和最高价 | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # push_data_value_list_data = { | ||||
| #     "funcModule": "数据表信息列表", | ||||
| #     "funcOperation": "新增", | ||||
| #     "data": [ | ||||
| #         {"dataItemNo": "91230600716676129", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.11 | ||||
| #          }, | ||||
| #         {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.55 | ||||
| #          }, | ||||
| #         {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.55 | ||||
| #          } | ||||
| #     ] | ||||
| # } | ||||
| # # 八大维度数据项编码 | ||||
| # bdwd_items = { | ||||
| #     'ciri': '原油大数据预测|FORECAST|PRICE|T', | ||||
| #     'benzhou': '原油大数据预测|FORECAST|PRICE|W', | ||||
| #     'cizhou': '原油大数据预测|FORECAST|PRICE|W_1', | ||||
| #     'gezhou': '原油大数据预测|FORECAST|PRICE|W_2', | ||||
| #     'ciyue': '原油大数据预测|FORECAST|PRICE|M_1', | ||||
| #     'cieryue': '原油大数据预测|FORECAST|PRICE|M_2', | ||||
| #     'cisanyue': '原油大数据预测|FORECAST|PRICE|M_3', | ||||
| #     'cisiyue': '原油大数据预测|FORECAST|PRICE|M_4', | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # # 生产环境数据库 | ||||
| # host = 'rm-2zehj3r1n60ttz9x5.mysql.rds.aliyuncs.com' | ||||
| # port = 3306 | ||||
| # dbusername = 'jingbo' | ||||
| # password = 'shihua@123' | ||||
| # dbname = 'jingbo' | ||||
| # table_name = 'v_tbl_crude_oil_warning' | ||||
| 
 | ||||
| 
 | ||||
| # # 变量定义--测试环境 | ||||
| server_host = '192.168.100.53:8080'  # 内网 | ||||
| # server_host = '183.242.74.28'  # 外网 | ||||
| 
 | ||||
| login_pushreport_url = f"http://{server_host}/jingbo-dev/api/server/login" | ||||
| upload_url = f"http://{server_host}/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave" | ||||
| upload_warning_url = f"http://{server_host}/jingbo-dev/api/basicBuiness/crudeOilWarning/save" | ||||
| query_data_list_item_nos_url = f"http://{server_host}/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos" | ||||
| # 变量定义--线上环境 | ||||
| server_host = '10.200.32.39' | ||||
| login_pushreport_url = "http://10.200.32.39/jingbo-api/api/server/login" | ||||
| upload_url = "http://10.200.32.39/jingbo-api/api/analysis/reportInfo/researchUploadReportSave" | ||||
| upload_warning_url = "http://10.200.32.39/jingbo-api/api/basicBuiness/crudeOilWarning/save" | ||||
| query_data_list_item_nos_url = f"http://{server_host}/jingbo-api/api/warehouse/dwDataItem/queryDataListItemNos" | ||||
| # 上传数据项值 | ||||
| push_data_value_list_url = f"http://{server_host}/jingbo-dev/api/dw/dataValue/pushDataValueList" | ||||
| push_data_value_list_url = f"http://{server_host}/jingbo-api/api/dw/dataValue/pushDataValueList" | ||||
| 
 | ||||
| login_data = { | ||||
|     "data": { | ||||
|         "account": "api_test", | ||||
|         # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456 | ||||
|         "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",  # 123456 | ||||
|         "account": "api_dev", | ||||
|         "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", | ||||
|         "tenantHashCode": "8a4577dbd919675758d57999a1e891fe", | ||||
|         "terminal": "API" | ||||
|     }, | ||||
| @ -245,24 +139,26 @@ login_data = { | ||||
|     "funcOperation": "获取token" | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| upload_data = { | ||||
|     "funcModule": '研究报告信息', | ||||
|     "funcOperation": '上传原油价格预测报告', | ||||
|     "data": { | ||||
|         "ownerAccount": 'arui',  # 报告所属用户账号 | ||||
|         "groupNo": '',  # 用户组id | ||||
|         "ownerAccount": '27663',  # 报告所属用户账号  27663 - 刘小朋 | ||||
|         "reportType": 'OIL_PRICE_FORECAST',  # 报告类型,固定为OIL_PRICE_FORECAST | ||||
|         "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf',  # 文件名称 | ||||
|         "fileName": '',  # 文件名称 | ||||
|         "fileBase64": '',  # 文件内容base64 | ||||
|         "categoryNo": 'yyjgycbg',  # 研究报告分类编码 | ||||
|         "smartBusinessClassCode": 'YCJGYCBG',  # 分析报告分类编码 | ||||
|         "reportEmployeeCode": "E40116",  # 报告人 | ||||
|         "reportDeptCode": "D0044",  # 报告部门 | ||||
|         "reportEmployeeCode": "E40482",  # 报告人  E40482  - 管理员  0000027663 - 刘小朋 | ||||
|         "reportDeptCode": "002000621000",  # 报告部门 - 002000621000  SH期货研究部 | ||||
|         "productGroupCode": "RAW_MATERIAL"  # 商品分类 | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| warning_data = { | ||||
|     "groupNo": '',  # 用户组id | ||||
|     "funcModule": '原油特征停更预警', | ||||
|     "funcOperation": '原油特征停更预警', | ||||
|     "data": { | ||||
| @ -282,6 +178,7 @@ query_data_list_item_nos_data = { | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| push_data_value_list_data = { | ||||
|     "funcModule": "数据表信息列表", | ||||
|     "funcOperation": "新增", | ||||
| @ -305,26 +202,129 @@ push_data_value_list_data = { | ||||
| } | ||||
| # 八大维度数据项编码 | ||||
| bdwd_items = { | ||||
|     'ciri': 'yyycbdwdcr', | ||||
|     'benzhou': 'yyycbdwdbz', | ||||
|     'cizhou': 'yyycbdwdcz', | ||||
|     'gezhou': 'yyycbdwdgz', | ||||
|     'ciyue': 'yyycbdwdcy', | ||||
|     'cieryue': 'yyycbdwdcey', | ||||
|     'cisanyue': 'yyycbdwdcsy', | ||||
|     'cisiyue': 'yyycbdwdcsiy', | ||||
|     'ciri': '原油大数据预测|FORECAST|PRICE|T', | ||||
|     'benzhou': '原油大数据预测|FORECAST|PRICE|W', | ||||
|     'cizhou': '原油大数据预测|FORECAST|PRICE|W_1', | ||||
|     'gezhou': '原油大数据预测|FORECAST|PRICE|W_2', | ||||
|     'ciyue': '原油大数据预测|FORECAST|PRICE|M_1', | ||||
|     'cieryue': '原油大数据预测|FORECAST|PRICE|M_2', | ||||
|     'cisanyue': '原油大数据预测|FORECAST|PRICE|M_3', | ||||
|     'cisiyue': '原油大数据预测|FORECAST|PRICE|M_4', | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| # 北京环境数据库 | ||||
| host = '192.168.101.27' | ||||
| # 生产环境数据库 | ||||
| host = 'rm-2zehj3r1n60ttz9x5.mysql.rds.aliyuncs.com' | ||||
| port = 3306 | ||||
| dbusername = 'root' | ||||
| password = '123456' | ||||
| dbname = 'jingbo_test' | ||||
| dbusername = 'jingbo' | ||||
| password = 'shihua@123' | ||||
| dbname = 'jingbo' | ||||
| table_name = 'v_tbl_crude_oil_warning' | ||||
| 
 | ||||
| 
 | ||||
| # # # 变量定义--测试环境 | ||||
| # server_host = '192.168.100.53:8080'  # 内网 | ||||
| # # server_host = '183.242.74.28'  # 外网 | ||||
| 
 | ||||
| # login_pushreport_url = f"http://{server_host}/jingbo-dev/api/server/login" | ||||
| # upload_url = f"http://{server_host}/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave" | ||||
| # upload_warning_url = f"http://{server_host}/jingbo-dev/api/basicBuiness/crudeOilWarning/save" | ||||
| # query_data_list_item_nos_url = f"http://{server_host}/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos" | ||||
| # # 上传数据项值 | ||||
| # push_data_value_list_url = f"http://{server_host}/jingbo-dev/api/dw/dataValue/pushDataValueList" | ||||
| 
 | ||||
| # login_data = { | ||||
| #     "data": { | ||||
| #         "account": "api_test", | ||||
| #         # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456 | ||||
| #         "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",  # 123456 | ||||
| #         "tenantHashCode": "8a4577dbd919675758d57999a1e891fe", | ||||
| #         "terminal": "API" | ||||
| #     }, | ||||
| #     "funcModule": "API", | ||||
| #     "funcOperation": "获取token" | ||||
| # } | ||||
| 
 | ||||
| # upload_data = { | ||||
| #     "funcModule": '研究报告信息', | ||||
| #     "funcOperation": '上传原油价格预测报告', | ||||
| #     "data": { | ||||
| #         "ownerAccount": 'arui',  # 报告所属用户账号 | ||||
| #         "reportType": 'OIL_PRICE_FORECAST',  # 报告类型,固定为OIL_PRICE_FORECAST | ||||
| #         "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf',  # 文件名称 | ||||
| #         "fileBase64": '',  # 文件内容base64 | ||||
| #         "categoryNo": 'yyjgycbg',  # 研究报告分类编码 | ||||
| #         "smartBusinessClassCode": 'YCJGYCBG',  # 分析报告分类编码 | ||||
| #         "reportEmployeeCode": "E40116",  # 报告人 | ||||
| #         "reportDeptCode": "D0044",  # 报告部门 | ||||
| #         "productGroupCode": "RAW_MATERIAL"  # 商品分类 | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # warning_data = { | ||||
| #     "funcModule": '原油特征停更预警', | ||||
| #     "funcOperation": '原油特征停更预警', | ||||
| #     "data": { | ||||
| #         'WARNING_TYPE_NAME': '特征数据停更预警', | ||||
| #         'WARNING_CONTENT': '', | ||||
| #         'WARNING_DATE': '' | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| # query_data_list_item_nos_data = { | ||||
| #     "funcModule": "数据项", | ||||
| #     "funcOperation": "查询", | ||||
| #     "data": { | ||||
| #         "dateStart": "20200101", | ||||
| #         "dateEnd": "20241231", | ||||
| #         "dataItemNoList": ["Brentzdj", "Brentzgj"]  # 数据项编码,代表 brent最低价和最高价 | ||||
| #     } | ||||
| # } | ||||
| 
 | ||||
| # push_data_value_list_data = { | ||||
| #     "funcModule": "数据表信息列表", | ||||
| #     "funcOperation": "新增", | ||||
| #     "data": [ | ||||
| #         {"dataItemNo": "91230600716676129", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.11 | ||||
| #          }, | ||||
| #         {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.55 | ||||
| #          }, | ||||
| #         {"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY", | ||||
| #          "dataDate": "20230113", | ||||
| #          "dataStatus": "add", | ||||
| #          "dataValue": 100.55 | ||||
| #          } | ||||
| #     ] | ||||
| # } | ||||
| # # 八大维度数据项编码 | ||||
| # bdwd_items = { | ||||
| #     'ciri': 'yyycbdwdcr', | ||||
| #     'benzhou': 'yyycbdwdbz', | ||||
| #     'cizhou': 'yyycbdwdcz', | ||||
| #     'gezhou': 'yyycbdwdgz', | ||||
| #     'ciyue': 'yyycbdwdcy', | ||||
| #     'cieryue': 'yyycbdwdcey', | ||||
| #     'cisanyue': 'yyycbdwdcsy', | ||||
| #     'cisiyue': 'yyycbdwdcsiy', | ||||
| # } | ||||
| 
 | ||||
| 
 | ||||
| # # 北京环境数据库 | ||||
| # host = '192.168.101.27' | ||||
| # port = 3306 | ||||
| # dbusername = 'root' | ||||
| # password = '123456' | ||||
| # dbname = 'jingbo_test' | ||||
| # table_name = 'v_tbl_crude_oil_warning' | ||||
| 
 | ||||
| 
 | ||||
| DEFAULT_CONFIG = { | ||||
|     'feature_factor_frequency': 'D', | ||||
|     'strategy_id': 1, | ||||
|  | ||||
| @ -581,11 +581,11 @@ def predict_main(): | ||||
| if __name__ == '__main__': | ||||
|     # global end_time | ||||
|     # # 遍历2024-11-25 到 2024-12-3 之间的工作日日期 | ||||
|     for i_time in pd.date_range('2025-6-11', '2025-6-28', freq='B'): | ||||
|         global_config['end_time'] = i_time.strftime('%Y-%m-%d') | ||||
|         global_config['db_mysql'].connect() | ||||
|         predict_main() | ||||
|     # for i_time in pd.date_range('2025-6-19', '2025-6-28', freq='B'): | ||||
|     #     global_config['end_time'] = i_time.strftime('%Y-%m-%d') | ||||
|     #     global_config['db_mysql'].connect() | ||||
|     #     predict_main() | ||||
| 
 | ||||
|     # predict_main() | ||||
|     predict_main() | ||||
|     # push_market_value() | ||||
|     # sql_inset_predict(global_config=global_config) | ||||
|  | ||||
| @ -473,44 +473,44 @@ def predict_main(): | ||||
|             # except Exception as e: | ||||
|             #     logger.info(f'更新accuracy表的y值失败:{e}') | ||||
| 
 | ||||
|     # 判断当前日期是不是周一 | ||||
|     is_weekday = datetime.datetime.now().weekday() == 0 | ||||
|     if is_weekday: | ||||
|         logger.info('今天是周一,更新预测模型') | ||||
|         # 计算最近60天预测残差最低的模型名称 | ||||
|         model_results = sqlitedb.select_data( | ||||
|             'trueandpredict', order_by="ds DESC", limit="60") | ||||
|         # 删除空值率为90%以上的列 | ||||
|         if len(model_results) > 10: | ||||
|             model_results = model_results.dropna( | ||||
|                 thresh=len(model_results)*0.1, axis=1) | ||||
|         # 删除空行 | ||||
|         model_results = model_results.dropna() | ||||
|         modelnames = model_results.columns.to_list()[2:-1] | ||||
|         for col in model_results[modelnames].select_dtypes(include=['object']).columns: | ||||
|             model_results[col] = model_results[col].astype(np.float32) | ||||
|         # 计算每个预测值与真实值之间的偏差率 | ||||
|         for model in modelnames: | ||||
|             model_results[f'{model}_abs_error_rate'] = abs( | ||||
|                 model_results['y'] - model_results[model]) / model_results['y'] | ||||
|         # 获取每行对应的最小偏差率值 | ||||
|         min_abs_error_rate_values = model_results.apply( | ||||
|             lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1) | ||||
|         # 获取每行对应的最小偏差率值对应的列名 | ||||
|         min_abs_error_rate_column_name = model_results.apply( | ||||
|             lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1) | ||||
|         # 将列名索引转换为列名 | ||||
|         min_abs_error_rate_column_name = min_abs_error_rate_column_name.map( | ||||
|             lambda x: x.split('_')[0]) | ||||
|         # 取出现次数最多的模型名称 | ||||
|         most_common_model = min_abs_error_rate_column_name.value_counts().idxmax() | ||||
|         logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}") | ||||
|         # 保存结果到数据库 | ||||
|         if not sqlitedb.check_table_exists('most_model'): | ||||
|             sqlitedb.create_table( | ||||
|                 'most_model', columns="ds datetime, most_common_model TEXT") | ||||
|         sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime( | ||||
|             '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) | ||||
|     # # 判断当前日期是不是周一 | ||||
|     # is_weekday = datetime.datetime.now().weekday() == 0 | ||||
|     # if is_weekday: | ||||
|     #     logger.info('今天是周一,更新预测模型') | ||||
|     #     # 计算最近60天预测残差最低的模型名称 | ||||
|     #     model_results = sqlitedb.select_data( | ||||
|     #         'trueandpredict', order_by="ds DESC", limit="60") | ||||
|     #     # 删除空值率为90%以上的列 | ||||
|     #     if len(model_results) > 10: | ||||
|     #         model_results = model_results.dropna( | ||||
|     #             thresh=len(model_results)*0.1, axis=1) | ||||
|     #     # 删除空行 | ||||
|     #     model_results = model_results.dropna() | ||||
|     #     modelnames = model_results.columns.to_list()[2:-1] | ||||
|     #     for col in model_results[modelnames].select_dtypes(include=['object']).columns: | ||||
|     #         model_results[col] = model_results[col].astype(np.float32) | ||||
|     #     # 计算每个预测值与真实值之间的偏差率 | ||||
|     #     for model in modelnames: | ||||
|     #         model_results[f'{model}_abs_error_rate'] = abs( | ||||
|     #             model_results['y'] - model_results[model]) / model_results['y'] | ||||
|     #     # 获取每行对应的最小偏差率值 | ||||
|     #     min_abs_error_rate_values = model_results.apply( | ||||
|     #         lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1) | ||||
|     #     # 获取每行对应的最小偏差率值对应的列名 | ||||
|     #     min_abs_error_rate_column_name = model_results.apply( | ||||
|     #         lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1) | ||||
|     #     # 将列名索引转换为列名 | ||||
|     #     min_abs_error_rate_column_name = min_abs_error_rate_column_name.map( | ||||
|     #         lambda x: x.split('_')[0]) | ||||
|     #     # 取出现次数最多的模型名称 | ||||
|     #     most_common_model = min_abs_error_rate_column_name.value_counts().idxmax() | ||||
|     #     logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}") | ||||
|     #     # 保存结果到数据库 | ||||
|     #     if not sqlitedb.check_table_exists('most_model'): | ||||
|     #         sqlitedb.create_table( | ||||
|     #             'most_model', columns="ds datetime, most_common_model TEXT") | ||||
|     #     sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime( | ||||
|     #         '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) | ||||
| 
 | ||||
|     if is_corr: | ||||
|         df = corr_feature(df=df) | ||||
| @ -590,13 +590,10 @@ def predict_main(): | ||||
| if __name__ == '__main__': | ||||
|     # global end_time | ||||
|     # 遍历2024-11-25 到 2024-12-3 之间的工作日日期 | ||||
|     # for i_time in pd.date_range('2025-3-13', '2025-3-31', freq='B'): | ||||
|     #     try: | ||||
|     #         global_config['end_time'] = i_time.strftime('%Y-%m-%d') | ||||
|     #         predict_main() | ||||
|     #     except Exception as e: | ||||
|     #         logger.info(f'预测失败:{e}') | ||||
|     #         continue | ||||
|     for i_time in pd.date_range('2025-6-4', '2025-6-30', freq='B'): | ||||
|         global_config['end_time'] = i_time.strftime('%Y-%m-%d') | ||||
|         global_config['db_mysql'].connect() | ||||
|         predict_main() | ||||
| 
 | ||||
|     # predict_main() | ||||
|     sql_inset_predict(global_config=global_config) | ||||
|     # sql_inset_predict(global_config=global_config) | ||||
|  | ||||
| @ -383,44 +383,44 @@ def predict_main(): | ||||
|             # except Exception as e: | ||||
|             #     logger.info(f'更新accuracy表的y值失败:{e}') | ||||
| 
 | ||||
|     # 判断当前日期是不是周一 | ||||
|     is_weekday = datetime.datetime.now().weekday() == 0 | ||||
|     if is_weekday: | ||||
|         logger.info('今天是周一,更新预测模型') | ||||
|         # 计算最近60天预测残差最低的模型名称 | ||||
|         model_results = sqlitedb.select_data( | ||||
|             'trueandpredict', order_by="ds DESC", limit="60") | ||||
|         # 删除空值率为90%以上的列 | ||||
|         if len(model_results) > 10: | ||||
|             model_results = model_results.dropna( | ||||
|                 thresh=len(model_results)*0.1, axis=1) | ||||
|         # 删除空行 | ||||
|         model_results = model_results.dropna() | ||||
|         modelnames = model_results.columns.to_list()[2:-2] | ||||
|         for col in model_results[modelnames].select_dtypes(include=['object']).columns: | ||||
|             model_results[col] = model_results[col].astype(np.float32) | ||||
|         # 计算每个预测值与真实值之间的偏差率 | ||||
|         for model in modelnames: | ||||
|             model_results[f'{model}_abs_error_rate'] = abs( | ||||
|                 model_results['y'] - model_results[model]) / model_results['y'] | ||||
|         # 获取每行对应的最小偏差率值 | ||||
|         min_abs_error_rate_values = model_results.apply( | ||||
|             lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1) | ||||
|         # 获取每行对应的最小偏差率值对应的列名 | ||||
|         min_abs_error_rate_column_name = model_results.apply( | ||||
|             lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1) | ||||
|         # 将列名索引转换为列名 | ||||
|         min_abs_error_rate_column_name = min_abs_error_rate_column_name.map( | ||||
|             lambda x: x.split('_')[0]) | ||||
|         # 取出现次数最多的模型名称 | ||||
|         most_common_model = min_abs_error_rate_column_name.value_counts().idxmax() | ||||
|         logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}") | ||||
|         # 保存结果到数据库 | ||||
|         if not sqlitedb.check_table_exists('most_model'): | ||||
|             sqlitedb.create_table( | ||||
|                 'most_model', columns="ds datetime, most_common_model TEXT") | ||||
|         sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime( | ||||
|             '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) | ||||
|     # 判断当前日期是不是周一   预测目标周度许转换,暂注释 | ||||
|     # is_weekday = datetime.datetime.strptime(global_config['end_time'], "%Y-%m-%d").weekday() == 0 | ||||
|     # if is_weekday: | ||||
|     #     logger.info('今天是周一,更新预测模型') | ||||
|     #     # 计算最近60天预测残差最低的模型名称 | ||||
|     #     model_results = sqlitedb.select_data( | ||||
|     #         'trueandpredict', order_by="ds DESC", limit="60") | ||||
|     #     # 删除空值率为90%以上的列 | ||||
|     #     if len(model_results) > 10: | ||||
|     #         model_results = model_results.dropna( | ||||
|     #             thresh=len(model_results)*0.1, axis=1) | ||||
|     #     # 删除空行 | ||||
|     #     model_results = model_results.dropna() | ||||
|     #     modelnames = model_results.columns.to_list()[2:-2] | ||||
|     #     for col in model_results[modelnames].select_dtypes(include=['object']).columns: | ||||
|     #         model_results[col] = model_results[col].astype(np.float32) | ||||
|     #     # 计算每个预测值与真实值之间的偏差率 | ||||
|     #     for model in modelnames: | ||||
|     #         model_results[f'{model}_abs_error_rate'] = abs( | ||||
|     #             model_results['y'] - model_results[model]) / model_results['y'] | ||||
|     #     # 获取每行对应的最小偏差率值 | ||||
|     #     min_abs_error_rate_values = model_results.apply( | ||||
|     #         lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1) | ||||
|     #     # 获取每行对应的最小偏差率值对应的列名 | ||||
|     #     min_abs_error_rate_column_name = model_results.apply( | ||||
|     #         lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1) | ||||
|     #     # 将列名索引转换为列名 | ||||
|     #     min_abs_error_rate_column_name = min_abs_error_rate_column_name.map( | ||||
|     #         lambda x: x.split('_')[0]) | ||||
|     #     # 取出现次数最多的模型名称 | ||||
|     #     most_common_model = min_abs_error_rate_column_name.value_counts().idxmax() | ||||
|     #     logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}") | ||||
|     #     # 保存结果到数据库 | ||||
|     #     if not sqlitedb.check_table_exists('most_model'): | ||||
|     #         sqlitedb.create_table( | ||||
|     #             'most_model', columns="ds datetime, most_common_model TEXT") | ||||
|     #     sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime( | ||||
|     #         '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) | ||||
| 
 | ||||
|     if is_corr: | ||||
|         df = corr_feature(df=df) | ||||
| @ -492,13 +492,10 @@ def predict_main(): | ||||
| if __name__ == '__main__': | ||||
|     # global end_time | ||||
|     # 遍历2024-11-25 到 2024-12-3 之间的工作日日期 | ||||
|     # for i_time in pd.date_range('2025-2-1', '2025-3-31', freq='B'): | ||||
|     #     try: | ||||
|     #         global_config['end_time'] = i_time.strftime('%Y-%m-%d') | ||||
|     #         predict_main() | ||||
|     #     except Exception as e: | ||||
|     #         logger.info(f'预测失败:{e}') | ||||
|     #         continue | ||||
|     for i_time in pd.date_range('2025-6-23', '2025-6-30', freq='B'): | ||||
|         global_config['end_time'] = i_time.strftime('%Y-%m-%d') | ||||
|         global_config['db_mysql'].connect() | ||||
|         predict_main() | ||||
| 
 | ||||
|     # predict_main() | ||||
|     sql_inset_predict(global_config=global_config) | ||||
|     # sql_inset_predict(global_config=global_config) | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user