配置分离
This commit is contained in:
parent
d07669e0ee
commit
6e1c4600f3
211
config_jingbo.py
211
config_jingbo.py
@ -105,216 +105,39 @@ data = {
|
|||||||
ClassifyId = 1214
|
ClassifyId = 1214
|
||||||
|
|
||||||
|
|
||||||
################################################################################################################ 变量定义--线上环境
|
|
||||||
# server_host = '10.200.32.39'
|
|
||||||
|
|
||||||
# login_pushreport_url = "http://10.200.32.39/jingbo-api/api/server/login"
|
############################################################################################################### 变量定义--测试环境
|
||||||
# upload_url = "http://10.200.32.39/jingbo-api/api/analysis/reportInfo/researchUploadReportSave"
|
server_host = '192.168.100.53'
|
||||||
# upload_warning_url = "http://10.200.32.39/jingbo-api/api/basicBuiness/crudeOilWarning/save"
|
|
||||||
# query_data_list_item_nos_url = "http://10.200.32.39/jingbo-api/api/warehouse/dwDataItem/queryDataListItemNos"
|
|
||||||
|
|
||||||
# login_data = {
|
|
||||||
# "data": {
|
|
||||||
# "account": "api_dev",
|
|
||||||
# "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",
|
|
||||||
# "tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
|
|
||||||
# "terminal": "API"
|
|
||||||
# },
|
|
||||||
# "funcModule": "API",
|
|
||||||
# "funcOperation": "获取token"
|
|
||||||
# }
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# upload_data = {
|
|
||||||
# "funcModule":'研究报告信息',
|
|
||||||
# "funcOperation":'上传原油价格预测报告',
|
|
||||||
# "data":{
|
|
||||||
# "ownerAccount":'27663', #报告所属用户账号 27663 - 刘小朋
|
|
||||||
# "reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
|
||||||
# "fileName": '', #文件名称
|
|
||||||
# "fileBase64": '' ,#文件内容base64
|
|
||||||
# "categoryNo":'yyjgycbg', # 研究报告分类编码
|
|
||||||
# "smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
|
|
||||||
# "reportEmployeeCode":"E40482" ,# 报告人 E40482 - 管理员 0000027663 - 刘小朋
|
|
||||||
# "reportDeptCode" :"002000621000", # 报告部门 - 002000621000 SH期货研究部
|
|
||||||
# "productGroupCode":"RAW_MATERIAL" # 商品分类
|
|
||||||
# }
|
|
||||||
# }
|
|
||||||
|
|
||||||
# warning_data = {
|
|
||||||
# "funcModule":'原油特征停更预警',
|
|
||||||
# "funcOperation":'原油特征停更预警',
|
|
||||||
# "data":{
|
|
||||||
# 'WARNING_TYPE_NAME':'特征数据停更预警',
|
|
||||||
# 'WARNING_CONTENT':'',
|
|
||||||
# 'WARNING_DATE':''
|
|
||||||
# }
|
|
||||||
# }
|
|
||||||
|
|
||||||
# query_data_list_item_nos_data = {
|
|
||||||
# "funcModule": "数据项",
|
|
||||||
# "funcOperation": "查询",
|
|
||||||
# "data": {
|
|
||||||
# "dateStart":"20200101",
|
|
||||||
# "dateEnd":"20241231",
|
|
||||||
# "dataItemNoList":["Brentzdj","Brentzgj"] # 数据项编码,代表 brent最低价和最高价
|
|
||||||
# }
|
|
||||||
# }
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# ## 生产环境数据库
|
|
||||||
# # host = 'rm-2zehj3r1n60ttz9x5.mysql.rds.aliyuncs.com'
|
|
||||||
# # port = 3306
|
|
||||||
# # dbusername ='jingbo'
|
|
||||||
# # password = 'shihua@123'
|
|
||||||
# # dbname = 'jingbo'
|
|
||||||
# # table_name = 'v_tbl_crude_oil_warning'
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# ## 预生产环境
|
|
||||||
# host = 'rm-2zehj3r1n60ttz9x5ko.mysql.rds.aliyuncs.com'
|
|
||||||
# port = 3306
|
|
||||||
# dbusername ='jingbo'
|
|
||||||
# password = 'shihua@123'
|
|
||||||
# dbname = 'jingbo-test'
|
|
||||||
# table_name = 'v_tbl_crude_oil_warning'
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# # 线上开关备份
|
|
||||||
# is_train = True # 是否训练
|
|
||||||
# is_debug = False # 是否调试
|
|
||||||
# is_eta = True # 是否使用eta接口
|
|
||||||
# is_timefurture = True # 是否使用时间特征
|
|
||||||
# is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
|
||||||
# is_edbcode = False # 特征使用edbcoding列表中的
|
|
||||||
# is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
|
||||||
# is_update_eta = True # 预测结果上传到eta
|
|
||||||
# is_update_report = True # 是否上传报告
|
|
||||||
# is_update_warning_data = True if datetime.datetime.now().weekday() == 1 else False # 是否上传预警数据
|
|
||||||
# is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
################################################################################################################ 变量定义--测试环境
|
|
||||||
# server_host = '192.168.100.53'
|
|
||||||
|
|
||||||
# login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login"
|
|
||||||
# upload_url = f"http://{server_host}:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
|
|
||||||
# upload_warning_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
|
|
||||||
# query_data_list_item_nos_url = f"http://{server_host}:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos"
|
|
||||||
|
|
||||||
# login_data = {
|
|
||||||
# "data": {
|
|
||||||
# "account": "api_test",
|
|
||||||
# # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
|
|
||||||
# "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
|
|
||||||
# "tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
|
|
||||||
# "terminal": "API"
|
|
||||||
# },
|
|
||||||
# "funcModule": "API",
|
|
||||||
# "funcOperation": "获取token"
|
|
||||||
# }
|
|
||||||
|
|
||||||
# upload_data = {
|
|
||||||
# "funcModule":'研究报告信息',
|
|
||||||
# "funcOperation":'上传原油价格预测报告',
|
|
||||||
# "data":{
|
|
||||||
# "ownerAccount":'arui', #报告所属用户账号
|
|
||||||
# "reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
|
||||||
# "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
|
|
||||||
# "fileBase64": '' ,#文件内容base64
|
|
||||||
# "categoryNo":'yyjgycbg', # 研究报告分类编码
|
|
||||||
# "smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
|
|
||||||
# "reportEmployeeCode":"E40116", # 报告人
|
|
||||||
# "reportDeptCode" :"D0044" ,# 报告部门
|
|
||||||
# "productGroupCode":"RAW_MATERIAL" # 商品分类
|
|
||||||
# }
|
|
||||||
# }
|
|
||||||
|
|
||||||
|
|
||||||
# warning_data = {
|
|
||||||
# "funcModule":'原油特征停更预警',
|
|
||||||
# "funcOperation":'原油特征停更预警',
|
|
||||||
# "data":{
|
|
||||||
# 'WARNING_TYPE_NAME':'特征数据停更预警',
|
|
||||||
# 'WARNING_CONTENT':'',
|
|
||||||
# 'WARNING_DATE':''
|
|
||||||
# }
|
|
||||||
# }
|
|
||||||
|
|
||||||
# query_data_list_item_nos_data = {
|
|
||||||
# "funcModule": "数据项",
|
|
||||||
# "funcOperation": "查询",
|
|
||||||
# "data": {
|
|
||||||
# "dateStart":"20200101",
|
|
||||||
# "dateEnd":"20241231",
|
|
||||||
# "dataItemNoList":["Brentzdj","Brentzgj"] # 数据项编码,代表 brent最低价和最高价
|
|
||||||
# }
|
|
||||||
# }
|
|
||||||
|
|
||||||
|
|
||||||
# # 北京环境数据库
|
|
||||||
# host = '192.168.101.27'
|
|
||||||
# port = 3306
|
|
||||||
# dbusername ='root'
|
|
||||||
# password = '123456'
|
|
||||||
# dbname = 'jingbo_test'
|
|
||||||
# table_name = 'v_tbl_crude_oil_warning'
|
|
||||||
|
|
||||||
|
|
||||||
# ### 开关
|
|
||||||
# is_train = False # 是否训练
|
|
||||||
# is_debug = False # 是否调试
|
|
||||||
# is_eta = False # 是否使用eta接口
|
|
||||||
# is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
|
|
||||||
# is_timefurture = True # 是否使用时间特征
|
|
||||||
# is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
|
||||||
# is_edbcode = False # 特征使用edbcoding列表中的
|
|
||||||
# is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
|
||||||
# is_update_eta = False # 预测结果上传到eta
|
|
||||||
# is_update_report = True # 是否上传报告
|
|
||||||
# is_update_warning_data = True # 是否上传预警数据
|
|
||||||
# is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
|
||||||
# is_del_tow_month = True # 是否删除两个月不更新的特征
|
|
||||||
|
|
||||||
|
|
||||||
################################################################################################################ 变量定义--雍安测试环境
|
|
||||||
login_pushreport_url = "http://192.168.100.115:9090/dom-api/api/server/login"
|
|
||||||
upload_url = "http://192.168.100.115:9090/dom-api/api/analysis/reportInfo/researchUploadReportSave"
|
|
||||||
# upload_url = "http://192.168.100.109:8080/jingbo/api/analysis/reportInfo/researchUploadReportSave" # zhaoqiwei
|
|
||||||
upload_warning_url = "http://192.168.100.115:9090/dom-api/api/basicBuiness/crudeOilWarning/save"
|
|
||||||
query_data_list_item_nos_url = "http://192.168.100.115:9090/dom-api/api/warehouse/dwDataItem/queryDataListItemNos"
|
|
||||||
|
|
||||||
|
login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login"
|
||||||
|
upload_url = f"http://{server_host}:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
|
||||||
|
upload_warning_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
|
||||||
|
query_data_list_item_nos_url = f"http://{server_host}:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos"
|
||||||
|
|
||||||
login_data = {
|
login_data = {
|
||||||
"data": {
|
"data": {
|
||||||
"account": "api-dev",
|
"account": "api_test",
|
||||||
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",
|
# "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
|
||||||
"tenantHashCode": "1eb24ab5a6af12e30daf78af276664f1",
|
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
|
||||||
|
"tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
|
||||||
"terminal": "API"
|
"terminal": "API"
|
||||||
},
|
},
|
||||||
"funcModule": "API",
|
"funcModule": "API",
|
||||||
"funcOperation": "获取token"
|
"funcOperation": "获取token"
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
upload_data = {
|
upload_data = {
|
||||||
"funcModule":'研究报告信息',
|
"funcModule":'研究报告信息',
|
||||||
"funcOperation":'上传原油价格预测报告',
|
"funcOperation":'上传原油价格预测报告',
|
||||||
"data":{
|
"data":{
|
||||||
"ownerAccount":'rui.liu', #报告所属用户账号
|
"ownerAccount":'arui', #报告所属用户账号
|
||||||
"reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
"reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
||||||
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
|
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
|
||||||
"fileBase64": '' ,#文件内容base64
|
"fileBase64": '' ,#文件内容base64
|
||||||
"categoryNo":'yyjgycbg', # 研究报告分类编码
|
"categoryNo":'yyjgycbg', # 研究报告分类编码
|
||||||
"smartBusinessClassCode":'1', #分析报告分类编码
|
"smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
|
||||||
"reportEmployeeCode":"U270018", # 报告人
|
"reportEmployeeCode":"E40116", # 报告人
|
||||||
"reportDeptCode" :"D270001" ,# 报告部门
|
"reportDeptCode" :"D0044" ,# 报告部门
|
||||||
# "reportDeptCode" :"000001" ,# 报告部门
|
|
||||||
"productGroupCode":"RAW_MATERIAL" # 商品分类
|
"productGroupCode":"RAW_MATERIAL" # 商品分类
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -361,7 +184,7 @@ is_edbcode = False # 特征使用edbcoding列表中的
|
|||||||
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
||||||
is_update_eta = False # 预测结果上传到eta
|
is_update_eta = False # 预测结果上传到eta
|
||||||
is_update_report = True # 是否上传报告
|
is_update_report = True # 是否上传报告
|
||||||
is_update_warning_data = False # 是否上传预警数据
|
is_update_warning_data = True # 是否上传预警数据
|
||||||
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
||||||
is_del_tow_month = True # 是否删除两个月不更新的特征
|
is_del_tow_month = True # 是否删除两个月不更新的特征
|
||||||
|
|
||||||
@ -424,8 +247,8 @@ if end_time == '':
|
|||||||
username='1321340118@qq.com'
|
username='1321340118@qq.com'
|
||||||
passwd='wgczgyhtyyyyjghi'
|
passwd='wgczgyhtyyyyjghi'
|
||||||
# recv=['liurui_test@163.com','52585119@qq.com']
|
# recv=['liurui_test@163.com','52585119@qq.com']
|
||||||
# recv=['liurui_test@163.com','jin.wang@chambroad.com']
|
recv=['liurui_test@163.com','jin.wang@chambroad.com']
|
||||||
recv=['liurui_test@163.com']
|
# recv=['liurui_test@163.com']
|
||||||
title='reportname'
|
title='reportname'
|
||||||
content='brent价格预测报告请看附件'
|
content='brent价格预测报告请看附件'
|
||||||
file=os.path.join(dataset,'reportname')
|
file=os.path.join(dataset,'reportname')
|
||||||
|
@ -168,73 +168,6 @@ is_update_warning_data = True if datetime.datetime.now().weekday() == 1 else Fa
|
|||||||
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
||||||
|
|
||||||
|
|
||||||
################################################################################################################ 变量定义--测试环境
|
|
||||||
# login_pushreport_url = "http://192.168.100.53:8080/jingbo-dev/api/server/login"
|
|
||||||
# upload_url = "http://192.168.100.53:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
|
|
||||||
# # upload_url = "http://192.168.100.109:8080/jingbo/api/analysis/reportInfo/researchUploadReportSave" # zhaoqiwei
|
|
||||||
# upload_warning_url = "http://192.168.100.53:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
|
|
||||||
|
|
||||||
|
|
||||||
# login_data = {
|
|
||||||
# "data": {
|
|
||||||
# "account": "api_test",
|
|
||||||
# # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
|
|
||||||
# "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
|
|
||||||
# "tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
|
|
||||||
# "terminal": "API"
|
|
||||||
# },
|
|
||||||
# "funcModule": "API",
|
|
||||||
# "funcOperation": "获取token"
|
|
||||||
# }
|
|
||||||
|
|
||||||
# upload_data = {
|
|
||||||
# "funcModule":'研究报告信息',
|
|
||||||
# "funcOperation":'上传原油价格预测报告',
|
|
||||||
# "data":{
|
|
||||||
# "ownerAccount":'arui', #报告所属用户账号
|
|
||||||
# "reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
|
||||||
# "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
|
|
||||||
# "fileBase64": '' ,#文件内容base64
|
|
||||||
# "categoryNo":'yyjgycbg', # 研究报告分类编码
|
|
||||||
# "smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
|
|
||||||
# "reportEmployeeCode":"E40116", # 报告人
|
|
||||||
# "reportDeptCode" :"D0044" ,# 报告部门
|
|
||||||
# "productGroupCode":"RAW_MATERIAL" # 商品分类
|
|
||||||
# }
|
|
||||||
# }
|
|
||||||
|
|
||||||
# warning_data = {
|
|
||||||
# "funcModule":'原油特征停更预警',
|
|
||||||
# "funcOperation":'原油特征停更预警',
|
|
||||||
# "data":{
|
|
||||||
# 'WARNING_TYPE_NAME':'特征数据停更预警',
|
|
||||||
# 'WARNING_CONTENT':'',
|
|
||||||
# 'WARNING_DATE':''
|
|
||||||
# }
|
|
||||||
# }
|
|
||||||
|
|
||||||
# # 北京环境数据库
|
|
||||||
# host = '192.168.101.27'
|
|
||||||
# port = 3306
|
|
||||||
# dbusername ='root'
|
|
||||||
# password = '123456'
|
|
||||||
# dbname = 'jingbo_test'
|
|
||||||
# table_name = 'v_tbl_crude_oil_warning'
|
|
||||||
|
|
||||||
|
|
||||||
# ### 开关
|
|
||||||
# is_train = True # 是否训练
|
|
||||||
# is_debug = False # 是否调试
|
|
||||||
# is_eta = False # 是否使用eta接口
|
|
||||||
# is_timefurture = True # 是否使用时间特征
|
|
||||||
# is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
|
||||||
# is_edbcode = False # 特征使用edbcoding列表中的
|
|
||||||
# is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
|
||||||
# is_update_eta = False # 预测结果上传到eta
|
|
||||||
# is_update_report = False # 是否上传报告
|
|
||||||
# is_update_warning_data = False # 是否上传预警数据
|
|
||||||
# is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
|
||||||
|
|
||||||
# 连接到数据库
|
# 连接到数据库
|
||||||
db_mysql = MySQLDB(host=host, user=dbusername, password=password, database=dbname)
|
db_mysql = MySQLDB(host=host, user=dbusername, password=password, database=dbname)
|
||||||
db_mysql.connect()
|
db_mysql.connect()
|
||||||
|
1733
lib/dataread_jingbo_pro.py
Normal file
1733
lib/dataread_jingbo_pro.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -284,7 +284,7 @@ def predict_main():
|
|||||||
file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
|
file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
|
||||||
ssl=ssl,
|
ssl=ssl,
|
||||||
)
|
)
|
||||||
# m.send_mail()
|
m.send_mail()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
@ -489,6 +489,7 @@ def model_losss(sqlitedb,end_time):
|
|||||||
accuracy_rote = 0
|
accuracy_rote = 0
|
||||||
for i,group in df3.groupby('CREAT_DATE'):
|
for i,group in df3.groupby('CREAT_DATE'):
|
||||||
accuracy_rote += (group['ACCURACY'].sum()/len(group))*weight_dict[len(group)-1]
|
accuracy_rote += (group['ACCURACY'].sum()/len(group))*weight_dict[len(group)-1]
|
||||||
|
accuracy_rote = round(accuracy_rote,2)
|
||||||
df4 = pd.DataFrame(columns=['开始日期','结束日期','准确率'])
|
df4 = pd.DataFrame(columns=['开始日期','结束日期','准确率'])
|
||||||
df4.loc[len(df4)] = {'开始日期':ds_dates[0],'结束日期':ds_dates[-1],'准确率':accuracy_rote}
|
df4.loc[len(df4)] = {'开始日期':ds_dates[0],'结束日期':ds_dates[-1],'准确率':accuracy_rote}
|
||||||
df4.to_sql("accuracy_rote", con=sqlitedb.connection, if_exists='append', index=False)
|
df4.to_sql("accuracy_rote", con=sqlitedb.connection, if_exists='append', index=False)
|
||||||
|
Loading…
Reference in New Issue
Block a user