原油月度调试通过
This commit is contained in:
		
							parent
							
								
									f1fe4ec943
								
							
						
					
					
						commit
						765ca10b5b
					
				@ -2,7 +2,7 @@ import logging
 | 
				
			|||||||
import os
 | 
					import os
 | 
				
			||||||
import logging.handlers
 | 
					import logging.handlers
 | 
				
			||||||
import datetime
 | 
					import datetime
 | 
				
			||||||
from lib.tools import MySQLDB,SQLiteHandler
 | 
					from lib.tools import MySQLDB, SQLiteHandler
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# eta 接口token
 | 
					# eta 接口token
 | 
				
			||||||
@ -19,57 +19,56 @@ edbdatapushurl = 'http://10.189.2.78:8108/v1/edb/push'
 | 
				
			|||||||
edbdeleteurl = 'http://10.189.2.78:8108/v1/edb/business/edb/del'
 | 
					edbdeleteurl = 'http://10.189.2.78:8108/v1/edb/business/edb/del'
 | 
				
			||||||
edbbusinessurl = 'http://10.189.2.78:8108/v1/edb/business/data/del'
 | 
					edbbusinessurl = 'http://10.189.2.78:8108/v1/edb/business/data/del'
 | 
				
			||||||
edbcodelist = ['CO1 Comdty', 'ovx index', 'C2404194834', 'C2404199738', 'dxy curncy', 'C2403128043', 'C2403150124',
 | 
					edbcodelist = ['CO1 Comdty', 'ovx index', 'C2404194834', 'C2404199738', 'dxy curncy', 'C2403128043', 'C2403150124',
 | 
				
			||||||
                   'DOESCRUD Index', 'WTRBM1 EEGC Index', 'FVHCM1 INDEX', 'doedtprd index', 'CFFDQMMN INDEX',
 | 
					               'DOESCRUD Index', 'WTRBM1 EEGC Index', 'FVHCM1 INDEX', 'doedtprd index', 'CFFDQMMN INDEX',
 | 
				
			||||||
                   'C2403083739', 'C2404167878', 'C2403250571', 'lmcads03 lme comdty', 'GC1 COMB Comdty',
 | 
					               'C2403083739', 'C2404167878', 'C2403250571', 'lmcads03 lme comdty', 'GC1 COMB Comdty',
 | 
				
			||||||
                   'C2404171822','C2404167855',
 | 
					               'C2404171822', 'C2404167855',
 | 
				
			||||||
                #    'W000825','W000826','G.IPE',  # 美国汽柴油
 | 
					               #    'W000825','W000826','G.IPE',  # 美国汽柴油
 | 
				
			||||||
                #    'S5131019','ID00135604','FSGAM1 Index','S5120408','ID00136724', # 新加坡汽柴油
 | 
					               #    'S5131019','ID00135604','FSGAM1 Index','S5120408','ID00136724', # 新加坡汽柴油
 | 
				
			||||||
                   ]  
 | 
					               ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# 临时写死用指定的列,与上面的edbcode对应,后面更改
 | 
					# 临时写死用指定的列,与上面的edbcode对应,后面更改
 | 
				
			||||||
edbnamelist = [
 | 
					edbnamelist = [
 | 
				
			||||||
    'ds','y',
 | 
					    'ds', 'y',
 | 
				
			||||||
    'Brent c1-c6','Brent c1-c3','Brent-WTI','美国商业原油库存',
 | 
					    'Brent c1-c6', 'Brent c1-c3', 'Brent-WTI', '美国商业原油库存',
 | 
				
			||||||
    'DFL','美国汽油裂解价差','ovx index','dxy curncy','lmcads03 lme comdty',
 | 
					    'DFL', '美国汽油裂解价差', 'ovx index', 'dxy curncy', 'lmcads03 lme comdty',
 | 
				
			||||||
    'C2403128043','C2403150124','FVHCM1 INDEX','doedtprd index','CFFDQMMN INDEX',
 | 
					    'C2403128043', 'C2403150124', 'FVHCM1 INDEX', 'doedtprd index', 'CFFDQMMN INDEX',
 | 
				
			||||||
    'C2403083739','C2404167878',
 | 
					    'C2403083739', 'C2404167878',
 | 
				
			||||||
    'GC1 COMB Comdty','C2404167855',
 | 
					    'GC1 COMB Comdty', 'C2404167855',
 | 
				
			||||||
    # 'A汽油价格','W000826','ICE柴油价格',
 | 
					    # 'A汽油价格','W000826','ICE柴油价格',
 | 
				
			||||||
    # '新加坡(含硫0.05%) 柴油现货价','柴油:10ppm:国际市场:FOB中间价:新加坡(日)','Bloomberg Commodity Fair Value Singapore Mogas 92 Swap Month 1','97#汽油FOB新加坡现货价','无铅汽油:97#:国际市场:FOB中间价:新加坡(日)'
 | 
					    # '新加坡(含硫0.05%) 柴油现货价','柴油:10ppm:国际市场:FOB中间价:新加坡(日)','Bloomberg Commodity Fair Value Singapore Mogas 92 Swap Month 1','97#汽油FOB新加坡现货价','无铅汽油:97#:国际市场:FOB中间价:新加坡(日)'
 | 
				
			||||||
    ]
 | 
					]
 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# eta自有数据指标编码
 | 
					# eta自有数据指标编码
 | 
				
			||||||
modelsindex = {
 | 
					modelsindex = {
 | 
				
			||||||
        'NHITS': 'SELF0000001',
 | 
					    'NHITS': 'SELF0000001',
 | 
				
			||||||
        'Informer':'SELF0000057',
 | 
					    'Informer': 'SELF0000057',
 | 
				
			||||||
        'LSTM':'SELF0000058',
 | 
					    'LSTM': 'SELF0000058',
 | 
				
			||||||
        'iTransformer':'SELF0000059',
 | 
					    'iTransformer': 'SELF0000059',
 | 
				
			||||||
        'TSMixer':'SELF0000060',
 | 
					    'TSMixer': 'SELF0000060',
 | 
				
			||||||
        'TSMixerx':'SELF0000061',
 | 
					    'TSMixerx': 'SELF0000061',
 | 
				
			||||||
        'PatchTST':'SELF0000062',
 | 
					    'PatchTST': 'SELF0000062',
 | 
				
			||||||
        'RNN':'SELF0000063',
 | 
					    'RNN': 'SELF0000063',
 | 
				
			||||||
        'GRU':'SELF0000064',
 | 
					    'GRU': 'SELF0000064',
 | 
				
			||||||
        'TCN':'SELF0000065',
 | 
					    'TCN': 'SELF0000065',
 | 
				
			||||||
        'BiTCN':'SELF0000066',
 | 
					    'BiTCN': 'SELF0000066',
 | 
				
			||||||
        'DilatedRNN':'SELF0000067',
 | 
					    'DilatedRNN': 'SELF0000067',
 | 
				
			||||||
        'MLP':'SELF0000068',
 | 
					    'MLP': 'SELF0000068',
 | 
				
			||||||
        'DLinear':'SELF0000069',
 | 
					    'DLinear': 'SELF0000069',
 | 
				
			||||||
        'NLinear':'SELF0000070',
 | 
					    'NLinear': 'SELF0000070',
 | 
				
			||||||
        'TFT':'SELF0000071',
 | 
					    'TFT': 'SELF0000071',
 | 
				
			||||||
        'FEDformer':'SELF0000072',
 | 
					    'FEDformer': 'SELF0000072',
 | 
				
			||||||
        'StemGNN':'SELF0000073',
 | 
					    'StemGNN': 'SELF0000073',
 | 
				
			||||||
        'MLPMultivariate':'SELF0000074',
 | 
					    'MLPMultivariate': 'SELF0000074',
 | 
				
			||||||
        'TiDE':'SELF0000075',
 | 
					    'TiDE': 'SELF0000075',
 | 
				
			||||||
        'DeepNPTS':'SELF0000076'
 | 
					    'DeepNPTS': 'SELF0000076'
 | 
				
			||||||
    }
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# eta 上传预测结果的请求体,后面发起请求的时候更改 model datalist  数据
 | 
					# eta 上传预测结果的请求体,后面发起请求的时候更改 model datalist  数据
 | 
				
			||||||
data = {
 | 
					data = {
 | 
				
			||||||
            "IndexCode": "",
 | 
					    "IndexCode": "",
 | 
				
			||||||
            "IndexName": "价格预测模型",
 | 
					    "IndexName": "价格预测模型",
 | 
				
			||||||
            "Unit": "无",
 | 
					    "Unit": "无",
 | 
				
			||||||
            "Frequency": "日度",
 | 
					            "Frequency": "日度",
 | 
				
			||||||
            "SourceName": f"价格预测",
 | 
					            "SourceName": f"价格预测",
 | 
				
			||||||
            "Remark": 'ddd',
 | 
					            "Remark": 'ddd',
 | 
				
			||||||
@ -79,19 +78,18 @@ data = {
 | 
				
			|||||||
                    "Value": 333444
 | 
					                    "Value": 333444
 | 
				
			||||||
                }
 | 
					                }
 | 
				
			||||||
            ]
 | 
					            ]
 | 
				
			||||||
        }
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# eta 分类
 | 
					# eta 分类
 | 
				
			||||||
# level:3才可以获取到数据,所以需要人工把能源化工下所有的level3级都找到
 | 
					# level:3才可以获取到数据,所以需要人工把能源化工下所有的level3级都找到
 | 
				
			||||||
        # url = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId=1214'
 | 
					# url = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId=1214'
 | 
				
			||||||
        #ParentId ":1160, 能源化工
 | 
					# ParentId ":1160, 能源化工
 | 
				
			||||||
        # ClassifyId ":1214,原油
 | 
					# ClassifyId ":1214,原油
 | 
				
			||||||
        #ParentId ":1214,",就是原油下所有的数据。
 | 
					# ParentId ":1214,",就是原油下所有的数据。
 | 
				
			||||||
ClassifyId = 1214
 | 
					ClassifyId = 1214
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# 变量定义--测试环境
 | 
				
			||||||
###############################################################################################################  变量定义--测试环境
 | 
					 | 
				
			||||||
server_host = '192.168.100.53'
 | 
					server_host = '192.168.100.53'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login"
 | 
					login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login"
 | 
				
			||||||
@ -103,7 +101,7 @@ login_data = {
 | 
				
			|||||||
    "data": {
 | 
					    "data": {
 | 
				
			||||||
        "account": "api_test",
 | 
					        "account": "api_test",
 | 
				
			||||||
        # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
 | 
					        # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
 | 
				
			||||||
        "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
 | 
					        "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",  # 123456
 | 
				
			||||||
        "tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
 | 
					        "tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
 | 
				
			||||||
        "terminal": "API"
 | 
					        "terminal": "API"
 | 
				
			||||||
    },
 | 
					    },
 | 
				
			||||||
@ -112,39 +110,39 @@ login_data = {
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
upload_data = {
 | 
					upload_data = {
 | 
				
			||||||
    "funcModule":'研究报告信息',
 | 
					    "funcModule": '研究报告信息',
 | 
				
			||||||
    "funcOperation":'上传原油价格预测报告',
 | 
					    "funcOperation": '上传原油价格预测报告',
 | 
				
			||||||
    "data":{
 | 
					    "data": {
 | 
				
			||||||
        "ownerAccount":'arui', #报告所属用户账号
 | 
					        "ownerAccount": 'arui',  # 报告所属用户账号
 | 
				
			||||||
        "reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
 | 
					        "reportType": 'OIL_PRICE_FORECAST',  # 报告类型,固定为OIL_PRICE_FORECAST
 | 
				
			||||||
        "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称 
 | 
					        "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf',  # 文件名称
 | 
				
			||||||
        "fileBase64": '' ,#文件内容base64
 | 
					        "fileBase64": '',  # 文件内容base64
 | 
				
			||||||
        "categoryNo":'yyjgycbg', # 研究报告分类编码
 | 
					        "categoryNo": 'yyjgycbg',  # 研究报告分类编码
 | 
				
			||||||
        "smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
 | 
					        "smartBusinessClassCode": 'YCJGYCBG',  # 分析报告分类编码
 | 
				
			||||||
        "reportEmployeeCode":"E40116", # 报告人
 | 
					        "reportEmployeeCode": "E40116",  # 报告人
 | 
				
			||||||
        "reportDeptCode" :"D0044" ,# 报告部门
 | 
					        "reportDeptCode": "D0044",  # 报告部门
 | 
				
			||||||
        "productGroupCode":"RAW_MATERIAL"  # 商品分类
 | 
					        "productGroupCode": "RAW_MATERIAL"  # 商品分类
 | 
				
			||||||
  }
 | 
					    }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
warning_data = {
 | 
					warning_data = {
 | 
				
			||||||
    "funcModule":'原油特征停更预警',
 | 
					    "funcModule": '原油特征停更预警',
 | 
				
			||||||
    "funcOperation":'原油特征停更预警',
 | 
					    "funcOperation": '原油特征停更预警',
 | 
				
			||||||
    "data":{
 | 
					    "data": {
 | 
				
			||||||
    'WARNING_TYPE_NAME':'特征数据停更预警',
 | 
					        'WARNING_TYPE_NAME': '特征数据停更预警',
 | 
				
			||||||
    'WARNING_CONTENT':'',
 | 
					        'WARNING_CONTENT': '',
 | 
				
			||||||
    'WARNING_DATE':''
 | 
					        'WARNING_DATE': ''
 | 
				
			||||||
  }
 | 
					    }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
query_data_list_item_nos_data = {
 | 
					query_data_list_item_nos_data = {
 | 
				
			||||||
   "funcModule": "数据项",
 | 
					    "funcModule": "数据项",
 | 
				
			||||||
   "funcOperation": "查询",
 | 
					    "funcOperation": "查询",
 | 
				
			||||||
    "data": {
 | 
					    "data": {
 | 
				
			||||||
        "dateStart":"20200101",
 | 
					        "dateStart": "20200101",
 | 
				
			||||||
        "dateEnd":"20241231",
 | 
					        "dateEnd": "20241231",
 | 
				
			||||||
        "dataItemNoList":["Brentzdj","Brentzgj"] # 数据项编码,代表 brent最低价和最高价
 | 
					        "dataItemNoList": ["Brentzdj", "Brentzgj"]  # 数据项编码,代表 brent最低价和最高价
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -152,96 +150,96 @@ query_data_list_item_nos_data = {
 | 
				
			|||||||
# 北京环境数据库
 | 
					# 北京环境数据库
 | 
				
			||||||
host = '192.168.101.27'
 | 
					host = '192.168.101.27'
 | 
				
			||||||
port = 3306
 | 
					port = 3306
 | 
				
			||||||
dbusername ='root'  
 | 
					dbusername = 'root'
 | 
				
			||||||
password = '123456'
 | 
					password = '123456'
 | 
				
			||||||
dbname = 'jingbo_test'
 | 
					dbname = 'jingbo_test'
 | 
				
			||||||
table_name = 'v_tbl_crude_oil_warning'
 | 
					table_name = 'v_tbl_crude_oil_warning'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 开关
 | 
					# 开关
 | 
				
			||||||
is_train = False # 是否训练
 | 
					is_train = False  # 是否训练
 | 
				
			||||||
is_debug = False # 是否调试
 | 
					is_debug = True  # 是否调试
 | 
				
			||||||
is_eta = False # 是否使用eta接口
 | 
					is_eta = False  # 是否使用eta接口
 | 
				
			||||||
is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
 | 
					is_market = True  # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
 | 
				
			||||||
is_timefurture = True # 是否使用时间特征
 | 
					is_timefurture = True  # 是否使用时间特征
 | 
				
			||||||
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
 | 
					is_fivemodels = False  # 是否使用之前保存的最佳的5个模型
 | 
				
			||||||
is_edbcode = False # 特征使用edbcoding列表中的
 | 
					is_edbcode = False  # 特征使用edbcoding列表中的
 | 
				
			||||||
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
 | 
					is_edbnamelist = False  # 自定义特征,对应上面的edbnamelist
 | 
				
			||||||
is_update_eta  = False  # 预测结果上传到eta
 | 
					is_update_eta = False  # 预测结果上传到eta
 | 
				
			||||||
is_update_report = False # 是否上传报告
 | 
					is_update_report = False  # 是否上传报告
 | 
				
			||||||
is_update_warning_data =  False # 是否上传预警数据
 | 
					is_update_warning_data = False  # 是否上传预警数据
 | 
				
			||||||
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
 | 
					is_del_corr = 0.6  # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
 | 
				
			||||||
is_del_tow_month = True # 是否删除两个月不更新的特征
 | 
					is_del_tow_month = True  # 是否删除两个月不更新的特征
 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# 连接到数据库
 | 
					# 连接到数据库
 | 
				
			||||||
db_mysql = MySQLDB(host=host, user=dbusername, password=password, database=dbname)
 | 
					db_mysql = MySQLDB(host=host, user=dbusername,
 | 
				
			||||||
 | 
					                   password=password, database=dbname)
 | 
				
			||||||
db_mysql.connect()
 | 
					db_mysql.connect()
 | 
				
			||||||
print("数据库连接成功",host,dbname,dbusername)
 | 
					print("数据库连接成功", host, dbname, dbusername)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# 数据截取日期
 | 
					# 数据截取日期
 | 
				
			||||||
start_year = 1993 # 数据开始年份
 | 
					start_year = 2005  # 数据开始年份
 | 
				
			||||||
end_time = '' # 数据截取日期
 | 
					end_time = ''  # 数据截取日期
 | 
				
			||||||
freq = 'M'  # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日
 | 
					freq = 'M'  # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日 "WW" 自定义周
 | 
				
			||||||
delweekenday = True if freq == 'B' else False # 是否删除周末数据
 | 
					delweekenday = True if freq == 'B' else False  # 是否删除周末数据
 | 
				
			||||||
is_corr = False # 特征是否参与滞后领先提升相关系数
 | 
					is_corr = False  # 特征是否参与滞后领先提升相关系数
 | 
				
			||||||
add_kdj = False # 是否添加kdj指标
 | 
					add_kdj = False  # 是否添加kdj指标
 | 
				
			||||||
if add_kdj and is_edbnamelist:
 | 
					if add_kdj and is_edbnamelist:
 | 
				
			||||||
    edbnamelist = edbnamelist+['K','D','J']
 | 
					    edbnamelist = edbnamelist+['K', 'D', 'J']
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 模型参数  
 | 
					# 模型参数
 | 
				
			||||||
y = 'Brent连1合约价格' # 原油指标数据的目标变量  Brent连1合约价格   Brent活跃合约
 | 
					y = 'Brent连1合约价格'  # 原油指标数据的目标变量  Brent连1合约价格   Brent活跃合约
 | 
				
			||||||
horizon =3 # 预测的步长
 | 
					horizon = 4  # 预测的步长
 | 
				
			||||||
input_size = 9  # 输入序列长度
 | 
					input_size = 16  # 输入序列长度
 | 
				
			||||||
train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数
 | 
					train_steps = 50 if is_debug else 1000  # 训练步数,用来限定epoch次数
 | 
				
			||||||
val_check_steps = 30  # 评估频率
 | 
					val_check_steps = 30  # 评估频率
 | 
				
			||||||
early_stop_patience_steps = 5 # 早停的耐心步数   
 | 
					early_stop_patience_steps = 5  # 早停的耐心步数
 | 
				
			||||||
# --- 交叉验证用的参数
 | 
					# --- 交叉验证用的参数
 | 
				
			||||||
test_size = 100  # 测试集大小,定义100,后面使用的时候重新赋值
 | 
					test_size = 100  # 测试集大小,定义100,后面使用的时候重新赋值
 | 
				
			||||||
val_size = test_size # 验证集大小,同测试集大小
 | 
					val_size = test_size  # 验证集大小,同测试集大小
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 特征筛选用到的参数
 | 
					# 特征筛选用到的参数
 | 
				
			||||||
k = 100 # 特征筛选数量,如果是0或者值比特征数量大,代表全部特征
 | 
					k = 100  # 特征筛选数量,如果是0或者值比特征数量大,代表全部特征
 | 
				
			||||||
corr_threshold = 0.6 # 相关性大于0.6的特征
 | 
					corr_threshold = 0.6  # 相关性大于0.6的特征
 | 
				
			||||||
rote = 0.06 # 绘图上下界阈值
 | 
					rote = 0.06  # 绘图上下界阈值
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 计算准确率
 | 
					# 计算准确率
 | 
				
			||||||
weight_dict = [0.4,0.15,0.1,0.1,0.25] # 权重
 | 
					weight_dict = [0.4, 0.15, 0.1, 0.1, 0.25]  # 权重
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 文件
 | 
					# 文件
 | 
				
			||||||
data_set = '原油指标数据.xlsx' # 数据集文件  
 | 
					data_set = '原油指标数据.xlsx'  # 数据集文件
 | 
				
			||||||
dataset = 'yuanyouyuedudataset' # 数据集文件夹
 | 
					dataset = 'yuanyouyuedudataset'  # 数据集文件夹
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# 数据库名称
 | 
					# 数据库名称
 | 
				
			||||||
db_name = os.path.join(dataset,'jbsh_yuanyou_yuedu.db')
 | 
					db_name = os.path.join(dataset, 'jbsh_yuanyou_yuedu.db')
 | 
				
			||||||
sqlitedb = SQLiteHandler(db_name)
 | 
					sqlitedb = SQLiteHandler(db_name)
 | 
				
			||||||
sqlitedb.connect()
 | 
					sqlitedb.connect()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
settings = f'{input_size}-{horizon}-{train_steps}--{k}-{data_set}-{y}'
 | 
					settings = f'{input_size}-{horizon}-{train_steps}--{k}-{data_set}-{y}'
 | 
				
			||||||
# 获取日期时间
 | 
					# 获取日期时间
 | 
				
			||||||
# now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') # 获取当前日期时间
 | 
					# now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') # 获取当前日期时间
 | 
				
			||||||
now = datetime.datetime.now().strftime('%Y-%m-%d') # 获取当前日期时间
 | 
					now = datetime.datetime.now().strftime('%Y-%m-%d')  # 获取当前日期时间
 | 
				
			||||||
reportname = f'Brent原油大模型预测--{end_time}.pdf' # 报告文件名
 | 
					reportname = f'Brent原油大模型月度预测--{end_time}.pdf'  # 报告文件名
 | 
				
			||||||
reportname = reportname.replace(':', '-') # 替换冒号
 | 
					reportname = reportname.replace(':', '-')  # 替换冒号
 | 
				
			||||||
if end_time == '':
 | 
					if end_time == '':
 | 
				
			||||||
    end_time = now
 | 
					    end_time = now
 | 
				
			||||||
### 邮件配置
 | 
					# 邮件配置
 | 
				
			||||||
username='1321340118@qq.com'
 | 
					username = '1321340118@qq.com'
 | 
				
			||||||
passwd='wgczgyhtyyyyjghi'
 | 
					passwd = 'wgczgyhtyyyyjghi'
 | 
				
			||||||
# recv=['liurui_test@163.com','52585119@qq.com']
 | 
					# recv=['liurui_test@163.com','52585119@qq.com']
 | 
				
			||||||
recv=['liurui_test@163.com','jin.wang@chambroad.com']
 | 
					recv = ['liurui_test@163.com', 'jin.wang@chambroad.com']
 | 
				
			||||||
# recv=['liurui_test@163.com']
 | 
					# recv=['liurui_test@163.com']
 | 
				
			||||||
title='reportname'
 | 
					title = 'reportname'
 | 
				
			||||||
content='brent价格预测报告请看附件'
 | 
					content = 'brent价格预测报告请看附件'
 | 
				
			||||||
file=os.path.join(dataset,'reportname')
 | 
					file = os.path.join(dataset, 'reportname')
 | 
				
			||||||
# file=os.path.join(dataset,'14-7-50--100-原油指标数据.xlsx-Brent连1合约价格--20240731175936-预测报告.pdf')
 | 
					# file=os.path.join(dataset,'14-7-50--100-原油指标数据.xlsx-Brent连1合约价格--20240731175936-预测报告.pdf')
 | 
				
			||||||
ssl=True
 | 
					ssl = True
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 日志配置
 | 
					# 日志配置
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# 创建日志目录(如果不存在)
 | 
					# 创建日志目录(如果不存在)
 | 
				
			||||||
log_dir = 'logs'
 | 
					log_dir = 'logs'
 | 
				
			||||||
@ -253,8 +251,10 @@ logger = logging.getLogger('my_logger')
 | 
				
			|||||||
logger.setLevel(logging.INFO)
 | 
					logger.setLevel(logging.INFO)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# 配置文件处理器,将日志记录到文件
 | 
					# 配置文件处理器,将日志记录到文件
 | 
				
			||||||
file_handler = logging.handlers.RotatingFileHandler(os.path.join(log_dir, 'pricepredict.log'), maxBytes=1024 * 1024, backupCount=5)
 | 
					file_handler = logging.handlers.RotatingFileHandler(os.path.join(
 | 
				
			||||||
file_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
 | 
					    log_dir, 'pricepredict.log'), maxBytes=1024 * 1024, backupCount=5)
 | 
				
			||||||
 | 
					file_handler.setFormatter(logging.Formatter(
 | 
				
			||||||
 | 
					    '%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# 配置控制台处理器,将日志打印到控制台
 | 
					# 配置控制台处理器,将日志打印到控制台
 | 
				
			||||||
console_handler = logging.StreamHandler()
 | 
					console_handler = logging.StreamHandler()
 | 
				
			||||||
@ -265,4 +265,3 @@ logger.addHandler(file_handler)
 | 
				
			|||||||
logger.addHandler(console_handler)
 | 
					logger.addHandler(console_handler)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# logger.info('当前配置:'+settings)
 | 
					# logger.info('当前配置:'+settings)
 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
				
			|||||||
@ -838,7 +838,9 @@ def datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, datecol='date', end_time='', y
 | 
				
			|||||||
        df = df.resample('W', on='ds').mean().reset_index()
 | 
					        df = df.resample('W', on='ds').mean().reset_index()
 | 
				
			||||||
    elif config.freq == 'M':
 | 
					    elif config.freq == 'M':
 | 
				
			||||||
        # 按月取样
 | 
					        # 按月取样
 | 
				
			||||||
        df = df.resample('M', on='ds').mean().reset_index()
 | 
					        if 'yearmonthweeks' in df.columns:
 | 
				
			||||||
 | 
					            df.drop('yearmonthweeks', axis=1, inplace=True)
 | 
				
			||||||
 | 
					        df = df.resample('ME', on='ds').mean().reset_index()
 | 
				
			||||||
    # 删除预测列空值的行
 | 
					    # 删除预测列空值的行
 | 
				
			||||||
    '''  工作日缺失,如果删除,会影响预测结果,导致统计准确率出错 '''
 | 
					    '''  工作日缺失,如果删除,会影响预测结果,导致统计准确率出错 '''
 | 
				
			||||||
    # df = df.dropna(subset=['y'])
 | 
					    # df = df.dropna(subset=['y'])
 | 
				
			||||||
 | 
				
			|||||||
@ -1,12 +1,66 @@
 | 
				
			|||||||
# 读取配置
 | 
					# 读取配置
 | 
				
			||||||
from lib.dataread import *
 | 
					 | 
				
			||||||
from lib.tools import SendMail,exception_logger
 | 
					 | 
				
			||||||
from models.nerulforcastmodels import ex_Model,model_losss,model_losss_juxiting,brent_export_pdf,tansuanli_export_pdf,pp_export_pdf,model_losss_juxiting
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
import glob
 | 
					from lib.dataread import *
 | 
				
			||||||
 | 
					from config_jingbo_yuedu import *
 | 
				
			||||||
 | 
					from lib.tools import SendMail, exception_logger
 | 
				
			||||||
 | 
					from models.nerulforcastmodels import ex_Model, model_losss, model_losss_juxiting, brent_export_pdf, tansuanli_export_pdf, pp_export_pdf, model_losss_juxiting
 | 
				
			||||||
 | 
					import datetime
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
torch.set_float32_matmul_precision("high")
 | 
					torch.set_float32_matmul_precision("high")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					global_config.update({
 | 
				
			||||||
 | 
					    # 核心参数
 | 
				
			||||||
 | 
					    'logger': logger,
 | 
				
			||||||
 | 
					    'dataset': dataset,
 | 
				
			||||||
 | 
					    'y': y,
 | 
				
			||||||
 | 
					    'is_debug': is_debug,
 | 
				
			||||||
 | 
					    'is_train': is_train,
 | 
				
			||||||
 | 
					    'is_fivemodels': is_fivemodels,
 | 
				
			||||||
 | 
					    'settings': settings,
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 模型参数
 | 
				
			||||||
 | 
					    'data_set': data_set,
 | 
				
			||||||
 | 
					    'input_size': input_size,
 | 
				
			||||||
 | 
					    'horizon': horizon,
 | 
				
			||||||
 | 
					    'train_steps': train_steps,
 | 
				
			||||||
 | 
					    'val_check_steps': val_check_steps,
 | 
				
			||||||
 | 
					    'val_size': val_size,
 | 
				
			||||||
 | 
					    'test_size': test_size,
 | 
				
			||||||
 | 
					    'modelsindex': modelsindex,
 | 
				
			||||||
 | 
					    'rote': rote,
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 特征工程开关
 | 
				
			||||||
 | 
					    'is_del_corr': is_del_corr,
 | 
				
			||||||
 | 
					    'is_del_tow_month': is_del_tow_month,
 | 
				
			||||||
 | 
					    'is_eta': is_eta,
 | 
				
			||||||
 | 
					    'is_update_eta': is_update_eta,
 | 
				
			||||||
 | 
					    'early_stop_patience_steps': early_stop_patience_steps,
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 时间参数
 | 
				
			||||||
 | 
					    'start_year': start_year,
 | 
				
			||||||
 | 
					    'end_time': end_time or datetime.datetime.now().strftime("%Y-%m-%d"),
 | 
				
			||||||
 | 
					    'freq': freq,  # 保持列表结构
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 接口配置
 | 
				
			||||||
 | 
					    'login_pushreport_url': login_pushreport_url,
 | 
				
			||||||
 | 
					    'login_data': login_data,
 | 
				
			||||||
 | 
					    'upload_url': upload_url,
 | 
				
			||||||
 | 
					    'upload_warning_url': upload_warning_url,
 | 
				
			||||||
 | 
					    'warning_data': warning_data,
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 查询接口
 | 
				
			||||||
 | 
					    'query_data_list_item_nos_url': query_data_list_item_nos_url,
 | 
				
			||||||
 | 
					    'query_data_list_item_nos_data': query_data_list_item_nos_data,
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # eta 配置
 | 
				
			||||||
 | 
					    'APPID': APPID,
 | 
				
			||||||
 | 
					    'SECRET': SECRET,
 | 
				
			||||||
 | 
					    'etadata': data,
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 数据库配置
 | 
				
			||||||
 | 
					    'sqlitedb': sqlitedb,
 | 
				
			||||||
 | 
					})
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def predict_main():
 | 
					def predict_main():
 | 
				
			||||||
@ -72,7 +126,8 @@ def predict_main():
 | 
				
			|||||||
                            edbdeleteurl=edbdeleteurl,
 | 
					                            edbdeleteurl=edbdeleteurl,
 | 
				
			||||||
                            edbbusinessurl=edbbusinessurl,
 | 
					                            edbbusinessurl=edbbusinessurl,
 | 
				
			||||||
                            )
 | 
					                            )
 | 
				
			||||||
        df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(data_set=data_set, dataset=dataset)  # 原始数据,未处理
 | 
					        df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(
 | 
				
			||||||
 | 
					            data_set=data_set, dataset=dataset)  # 原始数据,未处理
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if is_market:
 | 
					        if is_market:
 | 
				
			||||||
            logger.info('从市场信息平台获取数据...')
 | 
					            logger.info('从市场信息平台获取数据...')
 | 
				
			||||||
@ -83,26 +138,26 @@ def predict_main():
 | 
				
			|||||||
                    df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
 | 
					                    df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
 | 
				
			||||||
                else:
 | 
					                else:
 | 
				
			||||||
                    logger.info('从市场信息平台获取数据')
 | 
					                    logger.info('从市场信息平台获取数据')
 | 
				
			||||||
                    df_zhibiaoshuju = get_market_data(end_time,df_zhibiaoshuju)
 | 
					                    df_zhibiaoshuju = get_market_data(
 | 
				
			||||||
 | 
					                        end_time, df_zhibiaoshuju)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            except :
 | 
					            except:
 | 
				
			||||||
                logger.info('最高最低价拼接失败')
 | 
					                logger.info('最高最低价拼接失败')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # 保存到xlsx文件的sheet表
 | 
					        # 保存到xlsx文件的sheet表
 | 
				
			||||||
        with pd.ExcelWriter(os.path.join(dataset,data_set)) as file:
 | 
					        with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
 | 
				
			||||||
            df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
 | 
					            df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
 | 
				
			||||||
            df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
 | 
					            df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        
 | 
					 | 
				
			||||||
        # 数据处理
 | 
					        # 数据处理
 | 
				
			||||||
        df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
 | 
					        df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
 | 
				
			||||||
                        end_time=end_time)
 | 
					                       end_time=end_time)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        # 读取数据
 | 
					        # 读取数据
 | 
				
			||||||
        logger.info('读取本地数据:' + os.path.join(dataset, data_set))
 | 
					        logger.info('读取本地数据:' + os.path.join(dataset, data_set))
 | 
				
			||||||
        df,df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
 | 
					        df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
 | 
				
			||||||
                     is_timefurture=is_timefurture, end_time=end_time)  # 原始数据,未处理
 | 
					                                        is_timefurture=is_timefurture, end_time=end_time)  # 原始数据,未处理
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # 更改预测列名称
 | 
					    # 更改预测列名称
 | 
				
			||||||
    df.rename(columns={y: 'y'}, inplace=True)
 | 
					    df.rename(columns={y: 'y'}, inplace=True)
 | 
				
			||||||
@ -124,48 +179,65 @@ def predict_main():
 | 
				
			|||||||
    else:
 | 
					    else:
 | 
				
			||||||
        for row in first_row.itertuples(index=False):
 | 
					        for row in first_row.itertuples(index=False):
 | 
				
			||||||
            row_dict = row._asdict()
 | 
					            row_dict = row._asdict()
 | 
				
			||||||
            row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
 | 
					            config.logger.info(f'要保存的真实值:{row_dict}')
 | 
				
			||||||
            check_query = sqlitedb.select_data('trueandpredict', where_condition=f"ds = '{row.ds}'")
 | 
					            # 判断ds是否为字符串类型,如果不是则转换为字符串类型
 | 
				
			||||||
 | 
					            if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)):
 | 
				
			||||||
 | 
					                row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
 | 
				
			||||||
 | 
					            elif not isinstance(row_dict['ds'], str):
 | 
				
			||||||
 | 
					                try:
 | 
				
			||||||
 | 
					                    row_dict['ds'] = pd.to_datetime(
 | 
				
			||||||
 | 
					                        row_dict['ds']).strftime('%Y-%m-%d')
 | 
				
			||||||
 | 
					                except:
 | 
				
			||||||
 | 
					                    logger.warning(f"无法解析的时间格式: {row_dict['ds']}")
 | 
				
			||||||
 | 
					            # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
 | 
				
			||||||
 | 
					            # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
 | 
				
			||||||
 | 
					            check_query = sqlitedb.select_data(
 | 
				
			||||||
 | 
					                'trueandpredict', where_condition=f"ds = '{row.ds}'")
 | 
				
			||||||
            if len(check_query) > 0:
 | 
					            if len(check_query) > 0:
 | 
				
			||||||
                set_clause = ", ".join([f"{key} = '{value}'" for key, value in row_dict.items()])
 | 
					                set_clause = ", ".join(
 | 
				
			||||||
                sqlitedb.update_data('trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
 | 
					                    [f"{key} = '{value}'" for key, value in row_dict.items()])
 | 
				
			||||||
 | 
					                sqlitedb.update_data(
 | 
				
			||||||
 | 
					                    'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
 | 
				
			||||||
                continue
 | 
					                continue
 | 
				
			||||||
            sqlitedb.insert_data('trueandpredict', tuple(row_dict.values()), columns=row_dict.keys())
 | 
					            sqlitedb.insert_data('trueandpredict', tuple(
 | 
				
			||||||
 | 
					                row_dict.values()), columns=row_dict.keys())
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # 更新accuracy表的y值
 | 
					    # 更新accuracy表的y值
 | 
				
			||||||
    if not sqlitedb.check_table_exists('accuracy'):
 | 
					    if not sqlitedb.check_table_exists('accuracy'):
 | 
				
			||||||
        pass
 | 
					        pass
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        update_y = sqlitedb.select_data('accuracy',where_condition="y is null")
 | 
					        update_y = sqlitedb.select_data(
 | 
				
			||||||
 | 
					            'accuracy', where_condition="y is null")
 | 
				
			||||||
        if len(update_y) > 0:
 | 
					        if len(update_y) > 0:
 | 
				
			||||||
            logger.info('更新accuracy表的y值')
 | 
					            logger.info('更新accuracy表的y值')
 | 
				
			||||||
            # 找到update_y 中ds且df中的y的行
 | 
					            # 找到update_y 中ds且df中的y的行
 | 
				
			||||||
            update_y = update_y[update_y['ds']<=end_time]
 | 
					            update_y = update_y[update_y['ds'] <= end_time]
 | 
				
			||||||
 | 
					 | 
				
			||||||
            logger.info(f'要更新y的信息:{update_y}')
 | 
					            logger.info(f'要更新y的信息:{update_y}')
 | 
				
			||||||
            # try:
 | 
					            # try:
 | 
				
			||||||
            for row in update_y.itertuples(index=False):
 | 
					            for row in update_y.itertuples(index=False):
 | 
				
			||||||
                try:
 | 
					                try:
 | 
				
			||||||
                    row_dict = row._asdict()
 | 
					                    row_dict = row._asdict()
 | 
				
			||||||
                    yy = df[df['ds']==row_dict['ds']]['y'].values[0]
 | 
					                    yy = df[df['ds'] == row_dict['ds']]['y'].values[0]
 | 
				
			||||||
                    LOW = df[df['ds']==row_dict['ds']]['Brentzdj'].values[0]
 | 
					                    LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0]
 | 
				
			||||||
                    HIGH = df[df['ds']==row_dict['ds']]['Brentzgj'].values[0]
 | 
					                    HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0]
 | 
				
			||||||
                    sqlitedb.update_data('accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
 | 
					                    sqlitedb.update_data(
 | 
				
			||||||
 | 
					                        'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
 | 
				
			||||||
                except:
 | 
					                except:
 | 
				
			||||||
                    logger.info(f'更新accuracy表的y值失败:{row_dict}')
 | 
					                    logger.info(f'更新accuracy表的y值失败:{row_dict}')
 | 
				
			||||||
            # except Exception as e:
 | 
					            # except Exception as e:
 | 
				
			||||||
            #     logger.info(f'更新accuracy表的y值失败:{e}')
 | 
					            #     logger.info(f'更新accuracy表的y值失败:{e}')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    import datetime
 | 
					 | 
				
			||||||
    # 判断当前日期是不是周一
 | 
					    # 判断当前日期是不是周一
 | 
				
			||||||
    is_weekday = datetime.datetime.now().weekday() == 0
 | 
					    is_weekday = datetime.datetime.now().weekday() == 0
 | 
				
			||||||
    if is_weekday:
 | 
					    if is_weekday:
 | 
				
			||||||
        logger.info('今天是周一,更新预测模型')
 | 
					        logger.info('今天是周一,更新预测模型')
 | 
				
			||||||
        # 计算最近60天预测残差最低的模型名称
 | 
					        # 计算最近60天预测残差最低的模型名称
 | 
				
			||||||
        model_results = sqlitedb.select_data('trueandpredict', order_by="ds DESC", limit="60")
 | 
					        model_results = sqlitedb.select_data(
 | 
				
			||||||
 | 
					            'trueandpredict', order_by="ds DESC", limit="60")
 | 
				
			||||||
        # 删除空值率为90%以上的列
 | 
					        # 删除空值率为90%以上的列
 | 
				
			||||||
        if len(model_results) > 10:
 | 
					        if len(model_results) > 10:
 | 
				
			||||||
            model_results = model_results.dropna(thresh=len(model_results)*0.1,axis=1)
 | 
					            model_results = model_results.dropna(
 | 
				
			||||||
 | 
					                thresh=len(model_results)*0.1, axis=1)
 | 
				
			||||||
        # 删除空行
 | 
					        # 删除空行
 | 
				
			||||||
        model_results = model_results.dropna()
 | 
					        model_results = model_results.dropna()
 | 
				
			||||||
        modelnames = model_results.columns.to_list()[2:-1]
 | 
					        modelnames = model_results.columns.to_list()[2:-1]
 | 
				
			||||||
@ -173,47 +245,59 @@ def predict_main():
 | 
				
			|||||||
            model_results[col] = model_results[col].astype(np.float32)
 | 
					            model_results[col] = model_results[col].astype(np.float32)
 | 
				
			||||||
        # 计算每个预测值与真实值之间的偏差率
 | 
					        # 计算每个预测值与真实值之间的偏差率
 | 
				
			||||||
        for model in modelnames:
 | 
					        for model in modelnames:
 | 
				
			||||||
            model_results[f'{model}_abs_error_rate'] = abs(model_results['y'] - model_results[model]) / model_results['y']
 | 
					            model_results[f'{model}_abs_error_rate'] = abs(
 | 
				
			||||||
 | 
					                model_results['y'] - model_results[model]) / model_results['y']
 | 
				
			||||||
        # 获取每行对应的最小偏差率值
 | 
					        # 获取每行对应的最小偏差率值
 | 
				
			||||||
        min_abs_error_rate_values = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
 | 
					        min_abs_error_rate_values = model_results.apply(
 | 
				
			||||||
 | 
					            lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
 | 
				
			||||||
        # 获取每行对应的最小偏差率值对应的列名
 | 
					        # 获取每行对应的最小偏差率值对应的列名
 | 
				
			||||||
        min_abs_error_rate_column_name = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
 | 
					        min_abs_error_rate_column_name = model_results.apply(
 | 
				
			||||||
 | 
					            lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
 | 
				
			||||||
        # 将列名索引转换为列名
 | 
					        # 将列名索引转换为列名
 | 
				
			||||||
        min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(lambda x: x.split('_')[0])
 | 
					        min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(
 | 
				
			||||||
 | 
					            lambda x: x.split('_')[0])
 | 
				
			||||||
        # 取出现次数最多的模型名称
 | 
					        # 取出现次数最多的模型名称
 | 
				
			||||||
        most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
 | 
					        most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
 | 
				
			||||||
        logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}")
 | 
					        logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}")
 | 
				
			||||||
        # 保存结果到数据库
 | 
					        # 保存结果到数据库
 | 
				
			||||||
        if not sqlitedb.check_table_exists('most_model'):
 | 
					        if not sqlitedb.check_table_exists('most_model'):
 | 
				
			||||||
            sqlitedb.create_table('most_model', columns="ds datetime, most_common_model TEXT")
 | 
					            sqlitedb.create_table(
 | 
				
			||||||
        sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
 | 
					                'most_model', columns="ds datetime, most_common_model TEXT")
 | 
				
			||||||
 | 
					        sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime(
 | 
				
			||||||
 | 
					            '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    try:
 | 
					    try:
 | 
				
			||||||
        if is_weekday:
 | 
					        if is_weekday:
 | 
				
			||||||
        # if True:
 | 
					            # if True:
 | 
				
			||||||
            logger.info('今天是周一,发送特征预警')
 | 
					            logger.info('今天是周一,发送特征预警')
 | 
				
			||||||
            # 上传预警信息到数据库
 | 
					            # 上传预警信息到数据库
 | 
				
			||||||
            warning_data_df = df_zhibiaoliebiao.copy()
 | 
					            warning_data_df = df_zhibiaoliebiao.copy()
 | 
				
			||||||
            warning_data_df = warning_data_df[warning_data_df['停更周期']> 3 ][['指标名称', '指标id', '频度','更新周期','指标来源','最后更新时间','停更周期']]
 | 
					            warning_data_df = warning_data_df[warning_data_df['停更周期'] > 3][[
 | 
				
			||||||
 | 
					                '指标名称', '指标id', '频度', '更新周期', '指标来源', '最后更新时间', '停更周期']]
 | 
				
			||||||
            # 重命名列名
 | 
					            # 重命名列名
 | 
				
			||||||
            warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY', '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
 | 
					            warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY',
 | 
				
			||||||
 | 
					                                                     '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
 | 
				
			||||||
            from sqlalchemy import create_engine
 | 
					            from sqlalchemy import create_engine
 | 
				
			||||||
            import urllib
 | 
					            import urllib
 | 
				
			||||||
            global password
 | 
					            global password
 | 
				
			||||||
            if '@' in password:
 | 
					            if '@' in password:
 | 
				
			||||||
                password = urllib.parse.quote_plus(password)
 | 
					                password = urllib.parse.quote_plus(password)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            engine = create_engine(f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
 | 
					            engine = create_engine(
 | 
				
			||||||
            warning_data_df['WARNING_DATE'] =  datetime.date.today().strftime("%Y-%m-%d %H:%M:%S")
 | 
					                f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
 | 
				
			||||||
            warning_data_df['TENANT_CODE'] =  'T0004'
 | 
					            warning_data_df['WARNING_DATE'] = datetime.date.today().strftime(
 | 
				
			||||||
 | 
					                "%Y-%m-%d %H:%M:%S")
 | 
				
			||||||
 | 
					            warning_data_df['TENANT_CODE'] = 'T0004'
 | 
				
			||||||
            # 插入数据之前查询表数据然后新增id列
 | 
					            # 插入数据之前查询表数据然后新增id列
 | 
				
			||||||
            existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
 | 
					            existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
 | 
				
			||||||
            if not existing_data.empty:
 | 
					            if not existing_data.empty:
 | 
				
			||||||
                max_id = existing_data['ID'].astype(int).max()
 | 
					                max_id = existing_data['ID'].astype(int).max()
 | 
				
			||||||
                warning_data_df['ID'] = range(max_id + 1, max_id + 1 + len(warning_data_df))
 | 
					                warning_data_df['ID'] = range(
 | 
				
			||||||
 | 
					                    max_id + 1, max_id + 1 + len(warning_data_df))
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
                warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
 | 
					                warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
 | 
				
			||||||
            warning_data_df.to_sql(table_name,  con=engine, if_exists='append', index=False)
 | 
					            warning_data_df.to_sql(
 | 
				
			||||||
 | 
					                table_name,  con=engine, if_exists='append', index=False)
 | 
				
			||||||
            if is_update_warning_data:
 | 
					            if is_update_warning_data:
 | 
				
			||||||
                upload_warning_info(len(warning_data_df))
 | 
					                upload_warning_info(len(warning_data_df))
 | 
				
			||||||
    except:
 | 
					    except:
 | 
				
			||||||
@ -228,43 +312,42 @@ def predict_main():
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
 | 
					    now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
 | 
				
			||||||
    ex_Model(df,
 | 
					    ex_Model(df,
 | 
				
			||||||
             horizon=horizon,
 | 
					             horizon=global_config['horizon'],
 | 
				
			||||||
             input_size=input_size,
 | 
					             input_size=global_config['input_size'],
 | 
				
			||||||
             train_steps=train_steps,
 | 
					             train_steps=global_config['train_steps'],
 | 
				
			||||||
             val_check_steps=val_check_steps,
 | 
					             val_check_steps=global_config['val_check_steps'],
 | 
				
			||||||
             early_stop_patience_steps=early_stop_patience_steps,
 | 
					             early_stop_patience_steps=global_config['early_stop_patience_steps'],
 | 
				
			||||||
             is_debug=is_debug,
 | 
					             is_debug=global_config['is_debug'],
 | 
				
			||||||
             dataset=dataset,
 | 
					             dataset=global_config['dataset'],
 | 
				
			||||||
             is_train=is_train,
 | 
					             is_train=global_config['is_train'],
 | 
				
			||||||
             is_fivemodels=is_fivemodels,
 | 
					             is_fivemodels=global_config['is_fivemodels'],
 | 
				
			||||||
             val_size=val_size,
 | 
					             val_size=global_config['val_size'],
 | 
				
			||||||
             test_size=test_size,
 | 
					             test_size=global_config['test_size'],
 | 
				
			||||||
             settings=settings,
 | 
					             settings=global_config['settings'],
 | 
				
			||||||
             now=now,
 | 
					             now=now,
 | 
				
			||||||
             etadata=etadata,
 | 
					             etadata=global_config['etadata'],
 | 
				
			||||||
             modelsindex=modelsindex,
 | 
					             modelsindex=global_config['modelsindex'],
 | 
				
			||||||
             data=data,
 | 
					             data=data,
 | 
				
			||||||
             is_eta=is_eta,
 | 
					             is_eta=global_config['is_eta'],
 | 
				
			||||||
             end_time=end_time,
 | 
					             end_time=global_config['end_time'],
 | 
				
			||||||
             )
 | 
					             )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # logger.info('模型训练完成')
 | 
				
			||||||
    logger.info('模型训练完成')
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    logger.info('训练数据绘图ing')
 | 
					    logger.info('训练数据绘图ing')
 | 
				
			||||||
    model_results3 = model_losss(sqlitedb,end_time=end_time)
 | 
					    model_results3 = model_losss(sqlitedb, end_time=end_time)
 | 
				
			||||||
    logger.info('训练数据绘图end')
 | 
					    logger.info('训练数据绘图end')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # 模型报告
 | 
					    # # 模型报告
 | 
				
			||||||
    # logger.info('制作报告ing')
 | 
					    logger.info('制作报告ing')
 | 
				
			||||||
    # title = f'{settings}--{end_time}-预测报告' # 报告标题
 | 
					    title = f'{settings}--{end_time}-预测报告'  # 报告标题
 | 
				
			||||||
    # reportname = f'Brent原油大模型月度预测--{end_time}.pdf' # 报告文件名
 | 
					    reportname = f'Brent原油大模型周度预测--{end_time}.pdf'  # 报告文件名
 | 
				
			||||||
    # reportname = reportname.replace(':', '-') # 替换冒号
 | 
					    reportname = reportname.replace(':', '-')  # 替换冒号
 | 
				
			||||||
    # brent_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
 | 
					    brent_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time,
 | 
				
			||||||
    #             reportname=reportname,sqlitedb=sqlitedb),
 | 
					                     reportname=reportname, sqlitedb=sqlitedb),
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # logger.info('制作报告end')
 | 
					    logger.info('制作报告end')
 | 
				
			||||||
    # logger.info('模型训练完成')
 | 
					    logger.info('模型训练完成')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # # LSTM 单变量模型
 | 
					    # # LSTM 单变量模型
 | 
				
			||||||
    # ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset)
 | 
					    # ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset)
 | 
				
			||||||
@ -276,24 +359,23 @@ def predict_main():
 | 
				
			|||||||
    # # ex_GRU(df)
 | 
					    # # ex_GRU(df)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # 发送邮件
 | 
					    # 发送邮件
 | 
				
			||||||
    m = SendMail(
 | 
					    # m = SendMail(
 | 
				
			||||||
        username=username,
 | 
					    #     username=username,
 | 
				
			||||||
        passwd=passwd,
 | 
					    #     passwd=passwd,
 | 
				
			||||||
        recv=recv,
 | 
					    #     recv=recv,
 | 
				
			||||||
        title=title,
 | 
					    #     title=title,
 | 
				
			||||||
        content=content,
 | 
					    #     content=content,
 | 
				
			||||||
        file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
 | 
					    #     file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
 | 
				
			||||||
        ssl=ssl,
 | 
					    #     ssl=ssl,
 | 
				
			||||||
    )
 | 
					    # )
 | 
				
			||||||
    # m.send_mail()
 | 
					    # m.send_mail()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__ == '__main__':
 | 
					if __name__ == '__main__':
 | 
				
			||||||
    global end_time
 | 
					    # global end_time
 | 
				
			||||||
    is_on = True
 | 
					    # # 遍历2024-11-25 到 2024-12-3 之间的工作日日期
 | 
				
			||||||
    # 遍历2024-11-25 到 2024-12-3 之间的工作日日期
 | 
					    # for i_time in pd.date_range('2024-12-1', '2025-2-26', freq='W'):
 | 
				
			||||||
    for i_time in pd.date_range('2022-6-1', '2025-3-1', freq='ME'):
 | 
					    #     end_time = i_time.strftime('%Y-%m-%d')
 | 
				
			||||||
        end_time = i_time.strftime('%Y-%m-%d')
 | 
					    #     predict_main()
 | 
				
			||||||
        predict_main()
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # predict_main()
 | 
					    predict_main()
 | 
				
			||||||
 | 
				
			|||||||
@ -102,235 +102,235 @@ def predict_main():
 | 
				
			|||||||
    返回:
 | 
					    返回:
 | 
				
			||||||
        None
 | 
					        None
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
    # global end_time
 | 
					    global end_time
 | 
				
			||||||
    # signature = BinanceAPI(APPID, SECRET)
 | 
					    signature = BinanceAPI(APPID, SECRET)
 | 
				
			||||||
    # etadata = EtaReader(signature=signature,
 | 
					    etadata = EtaReader(signature=signature,
 | 
				
			||||||
    #                     classifylisturl=classifylisturl,
 | 
					                        classifylisturl=classifylisturl,
 | 
				
			||||||
    #                     classifyidlisturl=classifyidlisturl,
 | 
					                        classifyidlisturl=classifyidlisturl,
 | 
				
			||||||
    #                     edbcodedataurl=edbcodedataurl,
 | 
					                        edbcodedataurl=edbcodedataurl,
 | 
				
			||||||
    #                     edbcodelist=edbcodelist,
 | 
					                        edbcodelist=edbcodelist,
 | 
				
			||||||
    #                     edbdatapushurl=edbdatapushurl,
 | 
					                        edbdatapushurl=edbdatapushurl,
 | 
				
			||||||
    #                     edbdeleteurl=edbdeleteurl,
 | 
					                        edbdeleteurl=edbdeleteurl,
 | 
				
			||||||
    #                     edbbusinessurl=edbbusinessurl
 | 
					                        edbbusinessurl=edbbusinessurl
 | 
				
			||||||
    #                     )
 | 
					                        )
 | 
				
			||||||
    # # 获取数据
 | 
					    # 获取数据
 | 
				
			||||||
    # if is_eta:
 | 
					    if is_eta:
 | 
				
			||||||
    #     logger.info('从eta获取数据...')
 | 
					        logger.info('从eta获取数据...')
 | 
				
			||||||
    #     signature = BinanceAPI(APPID, SECRET)
 | 
					        signature = BinanceAPI(APPID, SECRET)
 | 
				
			||||||
    #     etadata = EtaReader(signature=signature,
 | 
					        etadata = EtaReader(signature=signature,
 | 
				
			||||||
    #                         classifylisturl=classifylisturl,
 | 
					                            classifylisturl=classifylisturl,
 | 
				
			||||||
    #                         classifyidlisturl=classifyidlisturl,
 | 
					                            classifyidlisturl=classifyidlisturl,
 | 
				
			||||||
    #                         edbcodedataurl=edbcodedataurl,
 | 
					                            edbcodedataurl=edbcodedataurl,
 | 
				
			||||||
    #                         edbcodelist=edbcodelist,
 | 
					                            edbcodelist=edbcodelist,
 | 
				
			||||||
    #                         edbdatapushurl=edbdatapushurl,
 | 
					                            edbdatapushurl=edbdatapushurl,
 | 
				
			||||||
    #                         edbdeleteurl=edbdeleteurl,
 | 
					                            edbdeleteurl=edbdeleteurl,
 | 
				
			||||||
    #                         edbbusinessurl=edbbusinessurl,
 | 
					                            edbbusinessurl=edbbusinessurl,
 | 
				
			||||||
    #                         )
 | 
					                            )
 | 
				
			||||||
    #     df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(
 | 
					        df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(
 | 
				
			||||||
    #         data_set=data_set, dataset=dataset)  # 原始数据,未处理
 | 
					            data_set=data_set, dataset=dataset)  # 原始数据,未处理
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    #     if is_market:
 | 
					        if is_market:
 | 
				
			||||||
    #         logger.info('从市场信息平台获取数据...')
 | 
					            logger.info('从市场信息平台获取数据...')
 | 
				
			||||||
    #         try:
 | 
					            try:
 | 
				
			||||||
    #             # 如果是测试环境,最高价最低价取excel文档
 | 
					                # 如果是测试环境,最高价最低价取excel文档
 | 
				
			||||||
    #             if server_host == '192.168.100.53':
 | 
					                if server_host == '192.168.100.53':
 | 
				
			||||||
    #                 logger.info('从excel文档获取最高价最低价')
 | 
					                    logger.info('从excel文档获取最高价最低价')
 | 
				
			||||||
    #                 df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
 | 
					                    df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
 | 
				
			||||||
    #             else:
 | 
					                else:
 | 
				
			||||||
    #                 logger.info('从市场信息平台获取数据')
 | 
					                    logger.info('从市场信息平台获取数据')
 | 
				
			||||||
    #                 df_zhibiaoshuju = get_market_data(
 | 
					                    df_zhibiaoshuju = get_market_data(
 | 
				
			||||||
    #                     end_time, df_zhibiaoshuju)
 | 
					                        end_time, df_zhibiaoshuju)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    #         except:
 | 
					            except:
 | 
				
			||||||
    #             logger.info('最高最低价拼接失败')
 | 
					                logger.info('最高最低价拼接失败')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    #     # 保存到xlsx文件的sheet表
 | 
					        # 保存到xlsx文件的sheet表
 | 
				
			||||||
    #     with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
 | 
					        with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
 | 
				
			||||||
    #         df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
 | 
					            df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
 | 
				
			||||||
    #         df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
 | 
					            df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    #     # 数据处理
 | 
					        # 数据处理
 | 
				
			||||||
    #     df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
 | 
					        df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
 | 
				
			||||||
    #                    end_time=end_time)
 | 
					                       end_time=end_time)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # else:
 | 
					    else:
 | 
				
			||||||
    #     # 读取数据
 | 
					        # 读取数据
 | 
				
			||||||
    #     logger.info('读取本地数据:' + os.path.join(dataset, data_set))
 | 
					        logger.info('读取本地数据:' + os.path.join(dataset, data_set))
 | 
				
			||||||
    #     df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
 | 
					        df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
 | 
				
			||||||
    #                                     is_timefurture=is_timefurture, end_time=end_time)  # 原始数据,未处理
 | 
					                                        is_timefurture=is_timefurture, end_time=end_time)  # 原始数据,未处理
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # # 更改预测列名称
 | 
					    # 更改预测列名称
 | 
				
			||||||
    # df.rename(columns={y: 'y'}, inplace=True)
 | 
					    df.rename(columns={y: 'y'}, inplace=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # if is_edbnamelist:
 | 
					    if is_edbnamelist:
 | 
				
			||||||
    #     df = df[edbnamelist]
 | 
					        df = df[edbnamelist]
 | 
				
			||||||
    # df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False)
 | 
					    df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False)
 | 
				
			||||||
    # # 保存最新日期的y值到数据库
 | 
					    # 保存最新日期的y值到数据库
 | 
				
			||||||
    # # 取第一行数据存储到数据库中
 | 
					    # 取第一行数据存储到数据库中
 | 
				
			||||||
    # first_row = df[['ds', 'y']].tail(1)
 | 
					    first_row = df[['ds', 'y']].tail(1)
 | 
				
			||||||
    # # 判断y的类型是否为float
 | 
					    # 判断y的类型是否为float
 | 
				
			||||||
    # if not isinstance(first_row['y'].values[0], float):
 | 
					    if not isinstance(first_row['y'].values[0], float):
 | 
				
			||||||
    #     logger.info(f'{end_time}预测目标数据为空,跳过')
 | 
					        logger.info(f'{end_time}预测目标数据为空,跳过')
 | 
				
			||||||
    #     return None
 | 
					        return None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # # 将最新真实值保存到数据库
 | 
					    # 将最新真实值保存到数据库
 | 
				
			||||||
    # if not sqlitedb.check_table_exists('trueandpredict'):
 | 
					    if not sqlitedb.check_table_exists('trueandpredict'):
 | 
				
			||||||
    #     first_row.to_sql('trueandpredict', sqlitedb.connection, index=False)
 | 
					        first_row.to_sql('trueandpredict', sqlitedb.connection, index=False)
 | 
				
			||||||
    # else:
 | 
					    else:
 | 
				
			||||||
    #     for row in first_row.itertuples(index=False):
 | 
					        for row in first_row.itertuples(index=False):
 | 
				
			||||||
    #         row_dict = row._asdict()
 | 
					            row_dict = row._asdict()
 | 
				
			||||||
    #         config.logger.info(f'要保存的真实值:{row_dict}')
 | 
					            config.logger.info(f'要保存的真实值:{row_dict}')
 | 
				
			||||||
    #         # 判断ds是否为字符串类型,如果不是则转换为字符串类型
 | 
					            # 判断ds是否为字符串类型,如果不是则转换为字符串类型
 | 
				
			||||||
    #         if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)):
 | 
					            if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)):
 | 
				
			||||||
    #             row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
 | 
					                row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
 | 
				
			||||||
    #         elif not isinstance(row_dict['ds'], str):
 | 
					            elif not isinstance(row_dict['ds'], str):
 | 
				
			||||||
    #             try:
 | 
					                try:
 | 
				
			||||||
    #                 row_dict['ds'] = pd.to_datetime(
 | 
					                    row_dict['ds'] = pd.to_datetime(
 | 
				
			||||||
    #                     row_dict['ds']).strftime('%Y-%m-%d')
 | 
					                        row_dict['ds']).strftime('%Y-%m-%d')
 | 
				
			||||||
    #             except:
 | 
					                except:
 | 
				
			||||||
    #                 logger.warning(f"无法解析的时间格式: {row_dict['ds']}")
 | 
					                    logger.warning(f"无法解析的时间格式: {row_dict['ds']}")
 | 
				
			||||||
    #         # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
 | 
					            # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
 | 
				
			||||||
    #         # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
 | 
					            # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
 | 
				
			||||||
    #         check_query = sqlitedb.select_data(
 | 
					            check_query = sqlitedb.select_data(
 | 
				
			||||||
    #             'trueandpredict', where_condition=f"ds = '{row.ds}'")
 | 
					                'trueandpredict', where_condition=f"ds = '{row.ds}'")
 | 
				
			||||||
    #         if len(check_query) > 0:
 | 
					            if len(check_query) > 0:
 | 
				
			||||||
    #             set_clause = ", ".join(
 | 
					                set_clause = ", ".join(
 | 
				
			||||||
    #                 [f"{key} = '{value}'" for key, value in row_dict.items()])
 | 
					                    [f"{key} = '{value}'" for key, value in row_dict.items()])
 | 
				
			||||||
    #             sqlitedb.update_data(
 | 
					                sqlitedb.update_data(
 | 
				
			||||||
    #                 'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
 | 
					                    'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
 | 
				
			||||||
    #             continue
 | 
					                continue
 | 
				
			||||||
    #         sqlitedb.insert_data('trueandpredict', tuple(
 | 
					            sqlitedb.insert_data('trueandpredict', tuple(
 | 
				
			||||||
    #             row_dict.values()), columns=row_dict.keys())
 | 
					                row_dict.values()), columns=row_dict.keys())
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # # 更新accuracy表的y值
 | 
					    # 更新accuracy表的y值
 | 
				
			||||||
    # if not sqlitedb.check_table_exists('accuracy'):
 | 
					    if not sqlitedb.check_table_exists('accuracy'):
 | 
				
			||||||
    #     pass
 | 
					        pass
 | 
				
			||||||
    # else:
 | 
					    else:
 | 
				
			||||||
    #     update_y = sqlitedb.select_data(
 | 
					        update_y = sqlitedb.select_data(
 | 
				
			||||||
    #         'accuracy', where_condition="y is null")
 | 
					            'accuracy', where_condition="y is null")
 | 
				
			||||||
    #     if len(update_y) > 0:
 | 
					        if len(update_y) > 0:
 | 
				
			||||||
    #         logger.info('更新accuracy表的y值')
 | 
					            logger.info('更新accuracy表的y值')
 | 
				
			||||||
    #         # 找到update_y 中ds且df中的y的行
 | 
					            # 找到update_y 中ds且df中的y的行
 | 
				
			||||||
    #         update_y = update_y[update_y['ds'] <= end_time]
 | 
					            update_y = update_y[update_y['ds'] <= end_time]
 | 
				
			||||||
    #         logger.info(f'要更新y的信息:{update_y}')
 | 
					            logger.info(f'要更新y的信息:{update_y}')
 | 
				
			||||||
    #         # try:
 | 
					            # try:
 | 
				
			||||||
    #         for row in update_y.itertuples(index=False):
 | 
					            for row in update_y.itertuples(index=False):
 | 
				
			||||||
    #             try:
 | 
					                try:
 | 
				
			||||||
    #                 row_dict = row._asdict()
 | 
					                    row_dict = row._asdict()
 | 
				
			||||||
    #                 yy = df[df['ds'] == row_dict['ds']]['y'].values[0]
 | 
					                    yy = df[df['ds'] == row_dict['ds']]['y'].values[0]
 | 
				
			||||||
    #                 LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0]
 | 
					                    LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0]
 | 
				
			||||||
    #                 HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0]
 | 
					                    HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0]
 | 
				
			||||||
    #                 sqlitedb.update_data(
 | 
					                    sqlitedb.update_data(
 | 
				
			||||||
    #                     'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
 | 
					                        'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
 | 
				
			||||||
    #             except:
 | 
					                except:
 | 
				
			||||||
    #                 logger.info(f'更新accuracy表的y值失败:{row_dict}')
 | 
					                    logger.info(f'更新accuracy表的y值失败:{row_dict}')
 | 
				
			||||||
    #         # except Exception as e:
 | 
					            # except Exception as e:
 | 
				
			||||||
    #         #     logger.info(f'更新accuracy表的y值失败:{e}')
 | 
					            #     logger.info(f'更新accuracy表的y值失败:{e}')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # # 判断当前日期是不是周一
 | 
					    # 判断当前日期是不是周一
 | 
				
			||||||
    # is_weekday = datetime.datetime.now().weekday() == 0
 | 
					    is_weekday = datetime.datetime.now().weekday() == 0
 | 
				
			||||||
    # if is_weekday:
 | 
					    if is_weekday:
 | 
				
			||||||
    #     logger.info('今天是周一,更新预测模型')
 | 
					        logger.info('今天是周一,更新预测模型')
 | 
				
			||||||
    #     # 计算最近60天预测残差最低的模型名称
 | 
					        # 计算最近60天预测残差最低的模型名称
 | 
				
			||||||
    #     model_results = sqlitedb.select_data(
 | 
					        model_results = sqlitedb.select_data(
 | 
				
			||||||
    #         'trueandpredict', order_by="ds DESC", limit="60")
 | 
					            'trueandpredict', order_by="ds DESC", limit="60")
 | 
				
			||||||
    #     # 删除空值率为90%以上的列
 | 
					        # 删除空值率为90%以上的列
 | 
				
			||||||
    #     if len(model_results) > 10:
 | 
					        if len(model_results) > 10:
 | 
				
			||||||
    #         model_results = model_results.dropna(
 | 
					            model_results = model_results.dropna(
 | 
				
			||||||
    #             thresh=len(model_results)*0.1, axis=1)
 | 
					                thresh=len(model_results)*0.1, axis=1)
 | 
				
			||||||
    #     # 删除空行
 | 
					        # 删除空行
 | 
				
			||||||
    #     model_results = model_results.dropna()
 | 
					        model_results = model_results.dropna()
 | 
				
			||||||
    #     modelnames = model_results.columns.to_list()[2:-1]
 | 
					        modelnames = model_results.columns.to_list()[2:-1]
 | 
				
			||||||
    #     for col in model_results[modelnames].select_dtypes(include=['object']).columns:
 | 
					        for col in model_results[modelnames].select_dtypes(include=['object']).columns:
 | 
				
			||||||
    #         model_results[col] = model_results[col].astype(np.float32)
 | 
					            model_results[col] = model_results[col].astype(np.float32)
 | 
				
			||||||
    #     # 计算每个预测值与真实值之间的偏差率
 | 
					        # 计算每个预测值与真实值之间的偏差率
 | 
				
			||||||
    #     for model in modelnames:
 | 
					        for model in modelnames:
 | 
				
			||||||
    #         model_results[f'{model}_abs_error_rate'] = abs(
 | 
					            model_results[f'{model}_abs_error_rate'] = abs(
 | 
				
			||||||
    #             model_results['y'] - model_results[model]) / model_results['y']
 | 
					                model_results['y'] - model_results[model]) / model_results['y']
 | 
				
			||||||
    #     # 获取每行对应的最小偏差率值
 | 
					        # 获取每行对应的最小偏差率值
 | 
				
			||||||
    #     min_abs_error_rate_values = model_results.apply(
 | 
					        min_abs_error_rate_values = model_results.apply(
 | 
				
			||||||
    #         lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
 | 
					            lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
 | 
				
			||||||
    #     # 获取每行对应的最小偏差率值对应的列名
 | 
					        # 获取每行对应的最小偏差率值对应的列名
 | 
				
			||||||
    #     min_abs_error_rate_column_name = model_results.apply(
 | 
					        min_abs_error_rate_column_name = model_results.apply(
 | 
				
			||||||
    #         lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
 | 
					            lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
 | 
				
			||||||
    #     # 将列名索引转换为列名
 | 
					        # 将列名索引转换为列名
 | 
				
			||||||
    #     min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(
 | 
					        min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(
 | 
				
			||||||
    #         lambda x: x.split('_')[0])
 | 
					            lambda x: x.split('_')[0])
 | 
				
			||||||
    #     # 取出现次数最多的模型名称
 | 
					        # 取出现次数最多的模型名称
 | 
				
			||||||
    #     most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
 | 
					        most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
 | 
				
			||||||
    #     logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}")
 | 
					        logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}")
 | 
				
			||||||
    #     # 保存结果到数据库
 | 
					        # 保存结果到数据库
 | 
				
			||||||
    #     if not sqlitedb.check_table_exists('most_model'):
 | 
					        if not sqlitedb.check_table_exists('most_model'):
 | 
				
			||||||
    #         sqlitedb.create_table(
 | 
					            sqlitedb.create_table(
 | 
				
			||||||
    #             'most_model', columns="ds datetime, most_common_model TEXT")
 | 
					                'most_model', columns="ds datetime, most_common_model TEXT")
 | 
				
			||||||
    #     sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime(
 | 
					        sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime(
 | 
				
			||||||
    #         '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
 | 
					            '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # try:
 | 
					    try:
 | 
				
			||||||
    #     if is_weekday:
 | 
					        if is_weekday:
 | 
				
			||||||
    #         # if True:
 | 
					            # if True:
 | 
				
			||||||
    #         logger.info('今天是周一,发送特征预警')
 | 
					            logger.info('今天是周一,发送特征预警')
 | 
				
			||||||
    #         # 上传预警信息到数据库
 | 
					            # 上传预警信息到数据库
 | 
				
			||||||
    #         warning_data_df = df_zhibiaoliebiao.copy()
 | 
					            warning_data_df = df_zhibiaoliebiao.copy()
 | 
				
			||||||
    #         warning_data_df = warning_data_df[warning_data_df['停更周期'] > 3][[
 | 
					            warning_data_df = warning_data_df[warning_data_df['停更周期'] > 3][[
 | 
				
			||||||
    #             '指标名称', '指标id', '频度', '更新周期', '指标来源', '最后更新时间', '停更周期']]
 | 
					                '指标名称', '指标id', '频度', '更新周期', '指标来源', '最后更新时间', '停更周期']]
 | 
				
			||||||
    #         # 重命名列名
 | 
					            # 重命名列名
 | 
				
			||||||
    #         warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY',
 | 
					            warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY',
 | 
				
			||||||
    #                                                  '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
 | 
					                                                     '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
 | 
				
			||||||
    #         from sqlalchemy import create_engine
 | 
					            from sqlalchemy import create_engine
 | 
				
			||||||
    #         import urllib
 | 
					            import urllib
 | 
				
			||||||
    #         global password
 | 
					            global password
 | 
				
			||||||
    #         if '@' in password:
 | 
					            if '@' in password:
 | 
				
			||||||
    #             password = urllib.parse.quote_plus(password)
 | 
					                password = urllib.parse.quote_plus(password)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    #         engine = create_engine(
 | 
					            engine = create_engine(
 | 
				
			||||||
    #             f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
 | 
					                f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
 | 
				
			||||||
    #         warning_data_df['WARNING_DATE'] = datetime.date.today().strftime(
 | 
					            warning_data_df['WARNING_DATE'] = datetime.date.today().strftime(
 | 
				
			||||||
    #             "%Y-%m-%d %H:%M:%S")
 | 
					                "%Y-%m-%d %H:%M:%S")
 | 
				
			||||||
    #         warning_data_df['TENANT_CODE'] = 'T0004'
 | 
					            warning_data_df['TENANT_CODE'] = 'T0004'
 | 
				
			||||||
    #         # 插入数据之前查询表数据然后新增id列
 | 
					            # 插入数据之前查询表数据然后新增id列
 | 
				
			||||||
    #         existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
 | 
					            existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
 | 
				
			||||||
    #         if not existing_data.empty:
 | 
					            if not existing_data.empty:
 | 
				
			||||||
    #             max_id = existing_data['ID'].astype(int).max()
 | 
					                max_id = existing_data['ID'].astype(int).max()
 | 
				
			||||||
    #             warning_data_df['ID'] = range(
 | 
					                warning_data_df['ID'] = range(
 | 
				
			||||||
    #                 max_id + 1, max_id + 1 + len(warning_data_df))
 | 
					                    max_id + 1, max_id + 1 + len(warning_data_df))
 | 
				
			||||||
    #         else:
 | 
					            else:
 | 
				
			||||||
    #             warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
 | 
					                warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
 | 
				
			||||||
    #         warning_data_df.to_sql(
 | 
					            warning_data_df.to_sql(
 | 
				
			||||||
    #             table_name,  con=engine, if_exists='append', index=False)
 | 
					                table_name,  con=engine, if_exists='append', index=False)
 | 
				
			||||||
    #         if is_update_warning_data:
 | 
					            if is_update_warning_data:
 | 
				
			||||||
    #             upload_warning_info(len(warning_data_df))
 | 
					                upload_warning_info(len(warning_data_df))
 | 
				
			||||||
    # except:
 | 
					    except:
 | 
				
			||||||
    #     logger.info('上传预警信息到数据库失败')
 | 
					        logger.info('上传预警信息到数据库失败')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # if is_corr:
 | 
					    if is_corr:
 | 
				
			||||||
    #     df = corr_feature(df=df)
 | 
					        df = corr_feature(df=df)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # df1 = df.copy()  # 备份一下,后面特征筛选完之后加入ds y 列用
 | 
					    df1 = df.copy()  # 备份一下,后面特征筛选完之后加入ds y 列用
 | 
				
			||||||
    # logger.info(f"开始训练模型...")
 | 
					    logger.info(f"开始训练模型...")
 | 
				
			||||||
    # row, col = df.shape
 | 
					    row, col = df.shape
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
 | 
					    now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
 | 
				
			||||||
    # ex_Model(df,
 | 
					    ex_Model(df,
 | 
				
			||||||
    #          horizon=global_config['horizon'],
 | 
					             horizon=global_config['horizon'],
 | 
				
			||||||
    #          input_size=global_config['input_size'],
 | 
					             input_size=global_config['input_size'],
 | 
				
			||||||
    #          train_steps=global_config['train_steps'],
 | 
					             train_steps=global_config['train_steps'],
 | 
				
			||||||
    #          val_check_steps=global_config['val_check_steps'],
 | 
					             val_check_steps=global_config['val_check_steps'],
 | 
				
			||||||
    #          early_stop_patience_steps=global_config['early_stop_patience_steps'],
 | 
					             early_stop_patience_steps=global_config['early_stop_patience_steps'],
 | 
				
			||||||
    #          is_debug=global_config['is_debug'],
 | 
					             is_debug=global_config['is_debug'],
 | 
				
			||||||
    #          dataset=global_config['dataset'],
 | 
					             dataset=global_config['dataset'],
 | 
				
			||||||
    #          is_train=global_config['is_train'],
 | 
					             is_train=global_config['is_train'],
 | 
				
			||||||
    #          is_fivemodels=global_config['is_fivemodels'],
 | 
					             is_fivemodels=global_config['is_fivemodels'],
 | 
				
			||||||
    #          val_size=global_config['val_size'],
 | 
					             val_size=global_config['val_size'],
 | 
				
			||||||
    #          test_size=global_config['test_size'],
 | 
					             test_size=global_config['test_size'],
 | 
				
			||||||
    #          settings=global_config['settings'],
 | 
					             settings=global_config['settings'],
 | 
				
			||||||
    #          now=now,
 | 
					             now=now,
 | 
				
			||||||
    #          etadata=global_config['etadata'],
 | 
					             etadata=global_config['etadata'],
 | 
				
			||||||
    #          modelsindex=global_config['modelsindex'],
 | 
					             modelsindex=global_config['modelsindex'],
 | 
				
			||||||
    #          data=data,
 | 
					             data=data,
 | 
				
			||||||
    #          is_eta=global_config['is_eta'],
 | 
					             is_eta=global_config['is_eta'],
 | 
				
			||||||
    #          end_time=global_config['end_time'],
 | 
					             end_time=global_config['end_time'],
 | 
				
			||||||
    #          )
 | 
					             )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # logger.info('模型训练完成')
 | 
					    # logger.info('模型训练完成')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
		Reference in New Issue
	
	Block a user