石油焦日度预测调试
This commit is contained in:
		
							parent
							
								
									313e9e229d
								
							
						
					
					
						commit
						7cf3cda87a
					
				| @ -3,7 +3,7 @@ | ||||
| from lib.dataread import * | ||||
| from config_shiyoujiao_lvyong import * | ||||
| from lib.tools import SendMail, exception_logger | ||||
| from models.nerulforcastmodels import ex_Model, model_losss, model_losss_juxiting, brent_export_pdf, tansuanli_export_pdf, pp_export_pdf, model_losss_juxiting | ||||
| from models.nerulforcastmodels import  model_losss, shiyoujiao_lvyong_export_pdf | ||||
| import datetime | ||||
| import torch | ||||
| torch.set_float32_matmul_precision("high") | ||||
| @ -173,228 +173,228 @@ def predict_main(): | ||||
|     返回: | ||||
|         None | ||||
|     """ | ||||
|     end_time = global_config['end_time'] | ||||
|     # 获取数据 | ||||
|     if is_eta: | ||||
|         logger.info('从eta获取数据...') | ||||
|         signature = BinanceAPI(APPID, SECRET) | ||||
|         etadata = EtaReader(signature=signature, | ||||
|                             classifylisturl=global_config['classifylisturl'], | ||||
|                             classifyidlisturl=global_config['classifyidlisturl'], | ||||
|                             edbcodedataurl=global_config['edbcodedataurl'], | ||||
|                             edbcodelist=global_config['edbcodelist'], | ||||
|                             edbdatapushurl=global_config['edbdatapushurl'], | ||||
|                             edbdeleteurl=global_config['edbdeleteurl'], | ||||
|                             edbbusinessurl=global_config['edbbusinessurl'], | ||||
|                             classifyId=global_config['ClassifyId'], | ||||
|                             ) | ||||
|         df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_shiyoujiao_lvyong_data( | ||||
|             data_set=data_set, dataset=dataset)  # 原始数据,未处理 | ||||
|     # end_time = global_config['end_time'] | ||||
|     # # 获取数据 | ||||
|     # if is_eta: | ||||
|     #     logger.info('从eta获取数据...') | ||||
|     #     signature = BinanceAPI(APPID, SECRET) | ||||
|     #     etadata = EtaReader(signature=signature, | ||||
|     #                         classifylisturl=global_config['classifylisturl'], | ||||
|     #                         classifyidlisturl=global_config['classifyidlisturl'], | ||||
|     #                         edbcodedataurl=global_config['edbcodedataurl'], | ||||
|     #                         edbcodelist=global_config['edbcodelist'], | ||||
|     #                         edbdatapushurl=global_config['edbdatapushurl'], | ||||
|     #                         edbdeleteurl=global_config['edbdeleteurl'], | ||||
|     #                         edbbusinessurl=global_config['edbbusinessurl'], | ||||
|     #                         classifyId=global_config['ClassifyId'], | ||||
|     #                         ) | ||||
|     #     df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_shiyoujiao_lvyong_data( | ||||
|     #         data_set=data_set, dataset=dataset)  # 原始数据,未处理 | ||||
| 
 | ||||
|         if is_market: | ||||
|             logger.info('从市场信息平台获取数据...') | ||||
|             try: | ||||
|                 # 如果是测试环境,最高价最低价取excel文档 | ||||
|                 if server_host == '192.168.100.53': | ||||
|                     logger.info('从excel文档获取最高价最低价') | ||||
|                     df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju) | ||||
|                 else: | ||||
|                     logger.info('从市场信息平台获取数据') | ||||
|                     df_zhibiaoshuju = get_market_data( | ||||
|                         end_time, df_zhibiaoshuju) | ||||
| 
 | ||||
|             except: | ||||
|                 logger.info('最高最低价拼接失败') | ||||
| 
 | ||||
|         # 保存到xlsx文件的sheet表 | ||||
|         with pd.ExcelWriter(os.path.join(dataset, data_set)) as file: | ||||
|             df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False) | ||||
|             df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False) | ||||
| 
 | ||||
|         # 数据处理 | ||||
|         df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=global_config['y'], dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture, | ||||
|                        end_time=end_time) | ||||
| 
 | ||||
|     else: | ||||
|         # 读取数据 | ||||
|         logger.info('读取本地数据:' + os.path.join(dataset, data_set)) | ||||
|         df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj, | ||||
|                                         is_timefurture=is_timefurture, end_time=end_time)  # 原始数据,未处理 | ||||
| 
 | ||||
|     # 更改预测列名称 | ||||
|     df.rename(columns={y: 'y'}, inplace=True) | ||||
| 
 | ||||
|     if is_edbnamelist: | ||||
|         df = df[edbnamelist] | ||||
|     df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False) | ||||
|     # 保存最新日期的y值到数据库 | ||||
|     # 取第一行数据存储到数据库中 | ||||
|     first_row = df[['ds', 'y']].tail(1) | ||||
|     # 判断y的类型是否为float | ||||
|     if not isinstance(first_row['y'].values[0], float): | ||||
|         logger.info(f'{end_time}预测目标数据为空,跳过') | ||||
|         return None | ||||
| 
 | ||||
|     # 将最新真实值保存到数据库 | ||||
|     if not sqlitedb.check_table_exists('trueandpredict'): | ||||
|         first_row.to_sql('trueandpredict', sqlitedb.connection, index=False) | ||||
|     else: | ||||
|         for row in first_row.itertuples(index=False): | ||||
|             row_dict = row._asdict() | ||||
|             config.logger.info(f'要保存的真实值:{row_dict}') | ||||
|             # 判断ds是否为字符串类型,如果不是则转换为字符串类型 | ||||
|             if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)): | ||||
|                 row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') | ||||
|             elif not isinstance(row_dict['ds'], str): | ||||
|                 try: | ||||
|                     row_dict['ds'] = pd.to_datetime( | ||||
|                         row_dict['ds']).strftime('%Y-%m-%d') | ||||
|                 except: | ||||
|                     logger.warning(f"无法解析的时间格式: {row_dict['ds']}") | ||||
|             # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') | ||||
|             # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S') | ||||
|             check_query = sqlitedb.select_data( | ||||
|                 'trueandpredict', where_condition=f"ds = '{row.ds}'") | ||||
|             if len(check_query) > 0: | ||||
|                 set_clause = ", ".join( | ||||
|                     [f"{key} = '{value}'" for key, value in row_dict.items()]) | ||||
|                 sqlitedb.update_data( | ||||
|                     'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'") | ||||
|                 continue | ||||
|             sqlitedb.insert_data('trueandpredict', tuple( | ||||
|                 row_dict.values()), columns=row_dict.keys()) | ||||
| 
 | ||||
|     # 更新accuracy表的y值 | ||||
|     if not sqlitedb.check_table_exists('accuracy'): | ||||
|         pass | ||||
|     else: | ||||
|         update_y = sqlitedb.select_data( | ||||
|             'accuracy', where_condition="y is null") | ||||
|         if len(update_y) > 0: | ||||
|             logger.info('更新accuracy表的y值') | ||||
|             # 找到update_y 中ds且df中的y的行 | ||||
|             update_y = update_y[update_y['ds'] <= end_time] | ||||
|             logger.info(f'要更新y的信息:{update_y}') | ||||
|     #     if is_market: | ||||
|     #         logger.info('从市场信息平台获取数据...') | ||||
|     #         try: | ||||
|             for row in update_y.itertuples(index=False): | ||||
|                 try: | ||||
|                     row_dict = row._asdict() | ||||
|                     yy = df[df['ds'] == row_dict['ds']]['y'].values[0] | ||||
|                     LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0] | ||||
|                     HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0] | ||||
|                     sqlitedb.update_data( | ||||
|                         'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'") | ||||
|                 except: | ||||
|                     logger.info(f'更新accuracy表的y值失败:{row_dict}') | ||||
|             # except Exception as e: | ||||
|             #     logger.info(f'更新accuracy表的y值失败:{e}') | ||||
|     #             # 如果是测试环境,最高价最低价取excel文档 | ||||
|     #             if server_host == '192.168.100.53': | ||||
|     #                 logger.info('从excel文档获取最高价最低价') | ||||
|     #                 df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju) | ||||
|     #             else: | ||||
|     #                 logger.info('从市场信息平台获取数据') | ||||
|     #                 df_zhibiaoshuju = get_market_data( | ||||
|     #                     end_time, df_zhibiaoshuju) | ||||
| 
 | ||||
|     # 判断当前日期是不是周一 | ||||
|     is_weekday = datetime.datetime.now().weekday() == 0 | ||||
|     if is_weekday: | ||||
|         logger.info('今天是周一,更新预测模型') | ||||
|         # 计算最近60天预测残差最低的模型名称 | ||||
|         model_results = sqlitedb.select_data( | ||||
|             'trueandpredict', order_by="ds DESC", limit="60") | ||||
|         # 删除空值率为90%以上的列 | ||||
|         if len(model_results) > 10: | ||||
|             model_results = model_results.dropna( | ||||
|                 thresh=len(model_results)*0.1, axis=1) | ||||
|         # 删除空行 | ||||
|         model_results = model_results.dropna() | ||||
|         modelnames = model_results.columns.to_list()[2:-1] | ||||
|         for col in model_results[modelnames].select_dtypes(include=['object']).columns: | ||||
|             model_results[col] = model_results[col].astype(np.float32) | ||||
|         # 计算每个预测值与真实值之间的偏差率 | ||||
|         for model in modelnames: | ||||
|             model_results[f'{model}_abs_error_rate'] = abs( | ||||
|                 model_results['y'] - model_results[model]) / model_results['y'] | ||||
|         # 获取每行对应的最小偏差率值 | ||||
|         min_abs_error_rate_values = model_results.apply( | ||||
|             lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1) | ||||
|         # 获取每行对应的最小偏差率值对应的列名 | ||||
|         min_abs_error_rate_column_name = model_results.apply( | ||||
|             lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1) | ||||
|         # 将列名索引转换为列名 | ||||
|         min_abs_error_rate_column_name = min_abs_error_rate_column_name.map( | ||||
|             lambda x: x.split('_')[0]) | ||||
|         # 取出现次数最多的模型名称 | ||||
|         most_common_model = min_abs_error_rate_column_name.value_counts().idxmax() | ||||
|         logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}") | ||||
|         # 保存结果到数据库 | ||||
|         if not sqlitedb.check_table_exists('most_model'): | ||||
|             sqlitedb.create_table( | ||||
|                 'most_model', columns="ds datetime, most_common_model TEXT") | ||||
|         sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime( | ||||
|             '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) | ||||
|     #         except: | ||||
|     #             logger.info('最高最低价拼接失败') | ||||
| 
 | ||||
|     try: | ||||
|         if is_weekday: | ||||
|             # if True: | ||||
|             logger.info('今天是周一,发送特征预警') | ||||
|             # 上传预警信息到数据库 | ||||
|             warning_data_df = df_zhibiaoliebiao.copy() | ||||
|             warning_data_df = warning_data_df[warning_data_df['停更周期'] > 3][[ | ||||
|                 '指标名称', '指标id', '频度', '更新周期', '指标来源', '最后更新时间', '停更周期']] | ||||
|             # 重命名列名 | ||||
|             warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY', | ||||
|                                                      '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'}) | ||||
|             from sqlalchemy import create_engine | ||||
|             import urllib | ||||
|             global password | ||||
|             if '@' in password: | ||||
|                 password = urllib.parse.quote_plus(password) | ||||
|     #     # 保存到xlsx文件的sheet表 | ||||
|     #     with pd.ExcelWriter(os.path.join(dataset, data_set)) as file: | ||||
|     #         df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False) | ||||
|     #         df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False) | ||||
| 
 | ||||
|             engine = create_engine( | ||||
|                 f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}') | ||||
|             warning_data_df['WARNING_DATE'] = datetime.date.today().strftime( | ||||
|                 "%Y-%m-%d %H:%M:%S") | ||||
|             warning_data_df['TENANT_CODE'] = 'T0004' | ||||
|             # 插入数据之前查询表数据然后新增id列 | ||||
|             existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine) | ||||
|             if not existing_data.empty: | ||||
|                 max_id = existing_data['ID'].astype(int).max() | ||||
|                 warning_data_df['ID'] = range( | ||||
|                     max_id + 1, max_id + 1 + len(warning_data_df)) | ||||
|             else: | ||||
|                 warning_data_df['ID'] = range(1, 1 + len(warning_data_df)) | ||||
|             warning_data_df.to_sql( | ||||
|                 table_name,  con=engine, if_exists='append', index=False) | ||||
|             if is_update_warning_data: | ||||
|                 upload_warning_info(len(warning_data_df)) | ||||
|     except: | ||||
|         logger.info('上传预警信息到数据库失败') | ||||
|     #     # 数据处理 | ||||
|     #     df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=global_config['y'], dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture, | ||||
|     #                    end_time=end_time) | ||||
| 
 | ||||
|     if is_corr: | ||||
|         df = corr_feature(df=df) | ||||
|     # else: | ||||
|     #     # 读取数据 | ||||
|     #     logger.info('读取本地数据:' + os.path.join(dataset, data_set)) | ||||
|     #     df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj, | ||||
|     #                                     is_timefurture=is_timefurture, end_time=end_time)  # 原始数据,未处理 | ||||
| 
 | ||||
|     df1 = df.copy()  # 备份一下,后面特征筛选完之后加入ds y 列用 | ||||
|     logger.info(f"开始训练模型...") | ||||
|     row, col = df.shape | ||||
|     # # 更改预测列名称 | ||||
|     # df.rename(columns={y: 'y'}, inplace=True) | ||||
| 
 | ||||
|     now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') | ||||
|     ex_Model(df, | ||||
|              horizon=global_config['horizon'], | ||||
|              input_size=global_config['input_size'], | ||||
|              train_steps=global_config['train_steps'], | ||||
|              val_check_steps=global_config['val_check_steps'], | ||||
|              early_stop_patience_steps=global_config['early_stop_patience_steps'], | ||||
|              is_debug=global_config['is_debug'], | ||||
|              dataset=global_config['dataset'], | ||||
|              is_train=global_config['is_train'], | ||||
|              is_fivemodels=global_config['is_fivemodels'], | ||||
|              val_size=global_config['val_size'], | ||||
|              test_size=global_config['test_size'], | ||||
|              settings=global_config['settings'], | ||||
|              now=now, | ||||
|              etadata=global_config['etadata'], | ||||
|              modelsindex=global_config['modelsindex'], | ||||
|              data=data, | ||||
|              is_eta=global_config['is_eta'], | ||||
|              end_time=global_config['end_time'], | ||||
|              ) | ||||
|     # if is_edbnamelist: | ||||
|     #     df = df[edbnamelist] | ||||
|     # df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False) | ||||
|     # # 保存最新日期的y值到数据库 | ||||
|     # # 取第一行数据存储到数据库中 | ||||
|     # first_row = df[['ds', 'y']].tail(1) | ||||
|     # # 判断y的类型是否为float | ||||
|     # if not isinstance(first_row['y'].values[0], float): | ||||
|     #     logger.info(f'{end_time}预测目标数据为空,跳过') | ||||
|     #     return None | ||||
| 
 | ||||
|     logger.info('模型训练完成') | ||||
|     # # 将最新真实值保存到数据库 | ||||
|     # if not sqlitedb.check_table_exists('trueandpredict'): | ||||
|     #     first_row.to_sql('trueandpredict', sqlitedb.connection, index=False) | ||||
|     # else: | ||||
|     #     for row in first_row.itertuples(index=False): | ||||
|     #         row_dict = row._asdict() | ||||
|     #         config.logger.info(f'要保存的真实值:{row_dict}') | ||||
|     #         # 判断ds是否为字符串类型,如果不是则转换为字符串类型 | ||||
|     #         if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)): | ||||
|     #             row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') | ||||
|     #         elif not isinstance(row_dict['ds'], str): | ||||
|     #             try: | ||||
|     #                 row_dict['ds'] = pd.to_datetime( | ||||
|     #                     row_dict['ds']).strftime('%Y-%m-%d') | ||||
|     #             except: | ||||
|     #                 logger.warning(f"无法解析的时间格式: {row_dict['ds']}") | ||||
|     #         # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') | ||||
|     #         # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S') | ||||
|     #         check_query = sqlitedb.select_data( | ||||
|     #             'trueandpredict', where_condition=f"ds = '{row.ds}'") | ||||
|     #         if len(check_query) > 0: | ||||
|     #             set_clause = ", ".join( | ||||
|     #                 [f"{key} = '{value}'" for key, value in row_dict.items()]) | ||||
|     #             sqlitedb.update_data( | ||||
|     #                 'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'") | ||||
|     #             continue | ||||
|     #         sqlitedb.insert_data('trueandpredict', tuple( | ||||
|     #             row_dict.values()), columns=row_dict.keys()) | ||||
| 
 | ||||
|     # # 更新accuracy表的y值 | ||||
|     # if not sqlitedb.check_table_exists('accuracy'): | ||||
|     #     pass | ||||
|     # else: | ||||
|     #     update_y = sqlitedb.select_data( | ||||
|     #         'accuracy', where_condition="y is null") | ||||
|     #     if len(update_y) > 0: | ||||
|     #         logger.info('更新accuracy表的y值') | ||||
|     #         # 找到update_y 中ds且df中的y的行 | ||||
|     #         update_y = update_y[update_y['ds'] <= end_time] | ||||
|     #         logger.info(f'要更新y的信息:{update_y}') | ||||
|     #         # try: | ||||
|     #         for row in update_y.itertuples(index=False): | ||||
|     #             try: | ||||
|     #                 row_dict = row._asdict() | ||||
|     #                 yy = df[df['ds'] == row_dict['ds']]['y'].values[0] | ||||
|     #                 LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0] | ||||
|     #                 HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0] | ||||
|     #                 sqlitedb.update_data( | ||||
|     #                     'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'") | ||||
|     #             except: | ||||
|     #                 logger.info(f'更新accuracy表的y值失败:{row_dict}') | ||||
|     #         # except Exception as e: | ||||
|     #         #     logger.info(f'更新accuracy表的y值失败:{e}') | ||||
| 
 | ||||
|     # # 判断当前日期是不是周一 | ||||
|     # is_weekday = datetime.datetime.now().weekday() == 0 | ||||
|     # if is_weekday: | ||||
|     #     logger.info('今天是周一,更新预测模型') | ||||
|     #     # 计算最近60天预测残差最低的模型名称 | ||||
|     #     model_results = sqlitedb.select_data( | ||||
|     #         'trueandpredict', order_by="ds DESC", limit="60") | ||||
|     #     # 删除空值率为90%以上的列 | ||||
|     #     if len(model_results) > 10: | ||||
|     #         model_results = model_results.dropna( | ||||
|     #             thresh=len(model_results)*0.1, axis=1) | ||||
|     #     # 删除空行 | ||||
|     #     model_results = model_results.dropna() | ||||
|     #     modelnames = model_results.columns.to_list()[2:-1] | ||||
|     #     for col in model_results[modelnames].select_dtypes(include=['object']).columns: | ||||
|     #         model_results[col] = model_results[col].astype(np.float32) | ||||
|     #     # 计算每个预测值与真实值之间的偏差率 | ||||
|     #     for model in modelnames: | ||||
|     #         model_results[f'{model}_abs_error_rate'] = abs( | ||||
|     #             model_results['y'] - model_results[model]) / model_results['y'] | ||||
|     #     # 获取每行对应的最小偏差率值 | ||||
|     #     min_abs_error_rate_values = model_results.apply( | ||||
|     #         lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1) | ||||
|     #     # 获取每行对应的最小偏差率值对应的列名 | ||||
|     #     min_abs_error_rate_column_name = model_results.apply( | ||||
|     #         lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1) | ||||
|     #     # 将列名索引转换为列名 | ||||
|     #     min_abs_error_rate_column_name = min_abs_error_rate_column_name.map( | ||||
|     #         lambda x: x.split('_')[0]) | ||||
|     #     # 取出现次数最多的模型名称 | ||||
|     #     most_common_model = min_abs_error_rate_column_name.value_counts().idxmax() | ||||
|     #     logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}") | ||||
|     #     # 保存结果到数据库 | ||||
|     #     if not sqlitedb.check_table_exists('most_model'): | ||||
|     #         sqlitedb.create_table( | ||||
|     #             'most_model', columns="ds datetime, most_common_model TEXT") | ||||
|     #     sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime( | ||||
|     #         '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) | ||||
| 
 | ||||
|     # try: | ||||
|     #     if is_weekday: | ||||
|     #         # if True: | ||||
|     #         logger.info('今天是周一,发送特征预警') | ||||
|     #         # 上传预警信息到数据库 | ||||
|     #         warning_data_df = df_zhibiaoliebiao.copy() | ||||
|     #         warning_data_df = warning_data_df[warning_data_df['停更周期'] > 3][[ | ||||
|     #             '指标名称', '指标id', '频度', '更新周期', '指标来源', '最后更新时间', '停更周期']] | ||||
|     #         # 重命名列名 | ||||
|     #         warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY', | ||||
|     #                                                  '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'}) | ||||
|     #         from sqlalchemy import create_engine | ||||
|     #         import urllib | ||||
|     #         global password | ||||
|     #         if '@' in password: | ||||
|     #             password = urllib.parse.quote_plus(password) | ||||
| 
 | ||||
|     #         engine = create_engine( | ||||
|     #             f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}') | ||||
|     #         warning_data_df['WARNING_DATE'] = datetime.date.today().strftime( | ||||
|     #             "%Y-%m-%d %H:%M:%S") | ||||
|     #         warning_data_df['TENANT_CODE'] = 'T0004' | ||||
|     #         # 插入数据之前查询表数据然后新增id列 | ||||
|     #         existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine) | ||||
|     #         if not existing_data.empty: | ||||
|     #             max_id = existing_data['ID'].astype(int).max() | ||||
|     #             warning_data_df['ID'] = range( | ||||
|     #                 max_id + 1, max_id + 1 + len(warning_data_df)) | ||||
|     #         else: | ||||
|     #             warning_data_df['ID'] = range(1, 1 + len(warning_data_df)) | ||||
|     #         warning_data_df.to_sql( | ||||
|     #             table_name,  con=engine, if_exists='append', index=False) | ||||
|     #         if is_update_warning_data: | ||||
|     #             upload_warning_info(len(warning_data_df)) | ||||
|     # except: | ||||
|     #     logger.info('上传预警信息到数据库失败') | ||||
| 
 | ||||
|     # if is_corr: | ||||
|     #     df = corr_feature(df=df) | ||||
| 
 | ||||
|     # df1 = df.copy()  # 备份一下,后面特征筛选完之后加入ds y 列用 | ||||
|     # logger.info(f"开始训练模型...") | ||||
|     # row, col = df.shape | ||||
| 
 | ||||
|     # now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') | ||||
|     # ex_Model(df, | ||||
|     #          horizon=global_config['horizon'], | ||||
|     #          input_size=global_config['input_size'], | ||||
|     #          train_steps=global_config['train_steps'], | ||||
|     #          val_check_steps=global_config['val_check_steps'], | ||||
|     #          early_stop_patience_steps=global_config['early_stop_patience_steps'], | ||||
|     #          is_debug=global_config['is_debug'], | ||||
|     #          dataset=global_config['dataset'], | ||||
|     #          is_train=global_config['is_train'], | ||||
|     #          is_fivemodels=global_config['is_fivemodels'], | ||||
|     #          val_size=global_config['val_size'], | ||||
|     #          test_size=global_config['test_size'], | ||||
|     #          settings=global_config['settings'], | ||||
|     #          now=now, | ||||
|     #          etadata=global_config['etadata'], | ||||
|     #          modelsindex=global_config['modelsindex'], | ||||
|     #          data=data, | ||||
|     #          is_eta=global_config['is_eta'], | ||||
|     #          end_time=global_config['end_time'], | ||||
|     #          ) | ||||
| 
 | ||||
|     # logger.info('模型训练完成') | ||||
| 
 | ||||
|     logger.info('训练数据绘图ing') | ||||
|     model_results3 = model_losss(sqlitedb, end_time=end_time) | ||||
| @ -403,15 +403,15 @@ def predict_main(): | ||||
|     # 模型报告 | ||||
|     logger.info('制作报告ing') | ||||
|     title = f'{settings}--{end_time}-预测报告'  # 报告标题 | ||||
|     reportname = f'Brent原油大模型日度预测--{end_time}.pdf'  # 报告文件名 | ||||
|     reportname = f'石油焦铝用大模型日度预测--{end_time}.pdf'  # 报告文件名 | ||||
|     reportname = reportname.replace(':', '-')  # 替换冒号 | ||||
|     brent_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time, | ||||
|     shiyoujiao_lvyong_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time, | ||||
|                      reportname=reportname, sqlitedb=sqlitedb), | ||||
| 
 | ||||
|     logger.info('制作报告end') | ||||
|     logger.info('模型训练完成') | ||||
| 
 | ||||
|     push_market_value() | ||||
|     # push_market_value() | ||||
| 
 | ||||
|     # # LSTM 单变量模型 | ||||
|     # ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset) | ||||
|  | ||||
| @ -866,7 +866,7 @@ def model_losss_yongan(sqlitedb, end_time, table_name_prefix): | ||||
|             plt.text(i, j, str(j), ha='center', va='bottom') | ||||
| 
 | ||||
|         # 当前日期画竖虚线 | ||||
|         plt.axvline(x=df['ds'].iloc[-horizon], color='r', linestyle='--') | ||||
|         plt.axvline(x=df['ds'].iloc[-config.horizon], color='r', linestyle='--') | ||||
|         plt.legend() | ||||
|         plt.xlabel('日期') | ||||
|         plt.ylabel('价格') | ||||
| @ -881,8 +881,8 @@ def model_losss_yongan(sqlitedb, end_time, table_name_prefix): | ||||
|         ax.axis('off')  # 关闭坐标轴 | ||||
|         # 数值保留2位小数 | ||||
|         df = df.round(2) | ||||
|         df = df[-horizon:] | ||||
|         df['Day'] = [f'Day_{i}' for i in range(1, horizon+1)] | ||||
|         df = df[-config.horizon:] | ||||
|         df['Day'] = [f'Day_{i}' for i in range(1, config.horizon+1)] | ||||
|         # Day列放到最前面 | ||||
|         df = df[['Day'] + list(df.columns[:-1])] | ||||
|         table = ax.table(cellText=df.values, | ||||
| @ -1297,7 +1297,7 @@ def model_losss(sqlitedb, end_time): | ||||
|         #     plt.plot(df['ds'], df[model], label=model,marker='o') | ||||
|         plt.plot(df['ds'], df[most_model_name], label=model, marker='o') | ||||
|         # 当前日期画竖虚线 | ||||
|         plt.axvline(x=df['ds'].iloc[-horizon], color='r', linestyle='--') | ||||
|         plt.axvline(x=df['ds'].iloc[-config.horizon], color='r', linestyle='--') | ||||
|         plt.legend() | ||||
|         plt.xlabel('日期') | ||||
|         # 设置横轴日期格式为年-月-日 | ||||
| @ -1338,7 +1338,7 @@ def model_losss(sqlitedb, end_time): | ||||
|             plt.text(i, j, str(j), ha='center', va='bottom') | ||||
| 
 | ||||
|         # 当前日期画竖虚线 | ||||
|         plt.axvline(x=df['ds'].iloc[-horizon], color='r', linestyle='--') | ||||
|         plt.axvline(x=df['ds'].iloc[-config.horizon], color='r', linestyle='--') | ||||
|         plt.legend() | ||||
|         plt.xlabel('日期') | ||||
|         # 自动设置横轴日期显示 | ||||
| @ -1357,8 +1357,8 @@ def model_losss(sqlitedb, end_time): | ||||
|         ax.axis('off')  # 关闭坐标轴 | ||||
|         # 数值保留2位小数 | ||||
|         df = df.round(2) | ||||
|         df = df[-horizon:] | ||||
|         df['Day'] = [f'Day_{i}' for i in range(1, horizon+1)] | ||||
|         df = df[-config.horizon:] | ||||
|         df['Day'] = [f'Day_{i}' for i in range(1, config.horizon+1)] | ||||
|         # Day列放到最前面 | ||||
|         df = df[['Day'] + list(df.columns[:-1])] | ||||
|         table = ax.table(cellText=df.values, | ||||
| @ -1388,10 +1388,10 @@ def model_losss(sqlitedb, end_time): | ||||
|                     bbox_inches='tight') | ||||
|         plt.close() | ||||
| 
 | ||||
|     # _plt_predict_ture(df_combined3) | ||||
|     _plt_predict_ture(df_combined3) | ||||
|     # _plt_modeltopten_predict_ture(df_combined4) | ||||
|     # _plt_predict_table(df_combined3) | ||||
|     # _plt_model_results3() | ||||
|     _plt_predict_table(df_combined3) | ||||
|     _plt_model_results3() | ||||
| 
 | ||||
|     return model_results3 | ||||
| 
 | ||||
| @ -2461,6 +2461,319 @@ def brent_export_pdf(num_indicators=475, num_models=21, num_dayindicator=202, in | ||||
|         print(f"请求超时: {e}") | ||||
| 
 | ||||
| 
 | ||||
| @exception_logger | ||||
| def shiyoujiao_lvyong_export_pdf(num_indicators=475, num_models=21, num_dayindicator=202, inputsize=5, dataset='dataset', time='2024-07-30', reportname='report.pdf', sqlitedb='jbsh_yuanyou.db'): | ||||
|     global y | ||||
|     # 创建内容对应的空列表 | ||||
|     content = list() | ||||
|     # 获取特征的近一月值 | ||||
|     import pandas as pd | ||||
|     feature_data_df = pd.read_csv(os.path.join( | ||||
|     config.dataset,'指标数据添加时间特征.csv'), parse_dates=['ds']).tail(60) | ||||
| 
 | ||||
|     def draw_feature_trend(feature_data_df, features): | ||||
|         # 画特征近60天的趋势图 | ||||
|         feature_df = feature_data_df[['ds', 'y']+features] | ||||
|         # 遍历X每一列,和yy画散点图 , | ||||
| 
 | ||||
|         for i, col in enumerate(features): | ||||
|             # try: | ||||
|             print(f'正在绘制第{i+1}个特征{col}与价格散点图...') | ||||
|             if col not in ['ds', 'y']: | ||||
|                 fig, ax1 = plt.subplots(figsize=(10, 6)) | ||||
|                 # 在第一个坐标轴上绘制数据 | ||||
|                 sns.lineplot(data=feature_df, x='ds', y='y', ax=ax1, color='b') | ||||
|                 ax1.set_xlabel('日期') | ||||
|                 ax1.set_ylabel('y', color='b') | ||||
|                 ax1.tick_params('y', colors='b') | ||||
|                 # 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠 | ||||
|                 for j in range(1, len(feature_df), 2): | ||||
|                     value = feature_df['y'].iloc[j] | ||||
|                     date = feature_df['ds'].iloc[j] | ||||
|                     offset = 1.001 | ||||
|                     ax1.text(date, value * offset, str(round(value, 2)), | ||||
|                              ha='center', va='bottom', color='b', fontsize=10) | ||||
|                 # 创建第二个坐标轴 | ||||
|                 ax2 = ax1.twinx() | ||||
|                 # 在第二个坐标轴上绘制数据 | ||||
|                 sns.lineplot(data=feature_df, x='ds', y=col, ax=ax2, color='r') | ||||
|                 ax2.set_ylabel(col, color='r') | ||||
|                 ax2.tick_params('y', colors='r') | ||||
|                 # 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠 | ||||
|                 for j in range(0, len(feature_df), 2): | ||||
|                     value = feature_df[col].iloc[j] | ||||
|                     date = feature_df['ds'].iloc[j] | ||||
|                     offset = 1.0003 | ||||
|                     ax2.text(date, value * offset, str(round(value, 2)), | ||||
|                              ha='center', va='bottom', color='r', fontsize=10) | ||||
|                 # 添加标题 | ||||
|                 plt.title(col) | ||||
|                 # 设置横坐标为日期格式并自动调整 | ||||
|                 locator = mdates.AutoDateLocator() | ||||
|                 formatter = mdates.AutoDateFormatter(locator) | ||||
|                 ax1.xaxis.set_major_locator(locator) | ||||
|                 ax1.xaxis.set_major_formatter(formatter) | ||||
|                 # 文件名特殊字符处理 | ||||
|                 col = col.replace('*', '-') | ||||
|                 col = col.replace(':', '-') | ||||
|                 col = col.replace(r'/', '-') | ||||
|                 plt.savefig(os.path.join(config.dataset, f'{col}与价格散点图.png')) | ||||
|                 content.append(Graphs.draw_img( | ||||
|                     os.path.join(config.dataset, f'{col}与价格散点图.png'))) | ||||
|                 plt.close() | ||||
|             # except Exception as e: | ||||
|             #     print(f'绘制第{i+1}个特征{col}与价格散点图时出错:{e}') | ||||
| 
 | ||||
|     # 添加标题 | ||||
|     content.append(Graphs.draw_title(f'{config.y}{time}预测报告')) | ||||
| 
 | ||||
|     # 预测结果 | ||||
|     content.append(Graphs.draw_little_title('一、预测结果:')) | ||||
|     # 添加历史走势及预测价格的走势图片 | ||||
|     content.append(Graphs.draw_img(os.path.join(config.dataset, '历史价格-预测值.png'))) | ||||
|     # 波动率画图逻辑 | ||||
|     content.append(Graphs.draw_text('图示说明:')) | ||||
|     content.append(Graphs.draw_text( | ||||
|         '    确定置信区间:设置残差置信阈值,以每周最佳模型为基准,选取在置信区间的预测值作为置信区间;')) | ||||
| 
 | ||||
| 
 | ||||
|     # 取df中y列为空的行 | ||||
|     import pandas as pd | ||||
|     df = pd.read_csv(os.path.join(config.dataset, 'predict.csv'), encoding='gbk') | ||||
|     df_true = pd.read_csv(os.path.join( | ||||
|     config.dataset,'指标数据添加时间特征.csv'), encoding='utf-8')  # 获取预测日期对应的真实值 | ||||
|     df_true = df_true[['ds', 'y']] | ||||
|     eval_df = pd.read_csv(os.path.join( | ||||
|     config.dataset,'model_evaluation.csv'), encoding='utf-8') | ||||
|     # 按评估指标排序,取前五 | ||||
|     fivemodels_list = eval_df['模型(Model)'].values  # 列表形式,后面当作列名索引使用 | ||||
|     # 取 fivemodels_list 和 ds 列 | ||||
|     df = df[['ds'] + fivemodels_list.tolist()] | ||||
|     # 拼接预测日期对应的真实值 | ||||
|     df = pd.merge(df, df_true, on='ds', how='left') | ||||
|     # 删除全部为nan的列 | ||||
|     df = df.dropna(how='all', axis=1) | ||||
|     # 选择除 'ds' 列外的数值列,并进行类型转换和四舍五入 | ||||
|     num_cols = [col for col in df.columns if col != | ||||
|                 'ds' and pd.api.types.is_numeric_dtype(df[col])] | ||||
|     for col in num_cols: | ||||
|         df[col] = df[col].astype(float).round(2) | ||||
|     # 添加最大值、最小值、平均值三列 | ||||
|     df['平均值'] = df[num_cols].mean(axis=1).round(2) | ||||
|     df['最大值'] = df[num_cols].max(axis=1) | ||||
|     df['最小值'] = df[num_cols].min(axis=1) | ||||
|     # df转置 | ||||
|     df = df.T | ||||
|     # df重置索引 | ||||
|     df = df.reset_index() | ||||
|     # 添加预测值表格 | ||||
|     data = df.values.tolist() | ||||
|     col_width = 500/len(df.columns) | ||||
|     content.append(Graphs.draw_table(col_width, *data)) | ||||
|     content.append(Graphs.draw_little_title('二、上一预测周期偏差率分析:')) | ||||
|     df = pd.read_csv(os.path.join( | ||||
|     config.dataset,'testandpredict_groupby.csv'), encoding='utf-8') | ||||
|     df4 = df.copy()  # 计算偏差率使用 | ||||
|     # 去掉created_dt 列 | ||||
|     df4 = df4.drop(columns=['created_dt']) | ||||
|     # 计算模型偏差率 | ||||
|     # 计算各列对于y列的差值百分比 | ||||
|     df3 = pd.DataFrame()  # 存储偏差率 | ||||
| 
 | ||||
|     # 删除有null的行 | ||||
|     df4 = df4.dropna() | ||||
|     df3['ds'] = df4['ds'] | ||||
|     for col in fivemodels_list: | ||||
|         df3[col] = round(abs(df4[col] - df4['y']) / df4['y'] * 100, 2) | ||||
|     # 找出决定系数前五的偏差率 | ||||
|     df3 = df3[['ds']+fivemodels_list.tolist()][-inputsize:] | ||||
|     # 找出上一预测区间的时间 | ||||
|     stime = df3['ds'].iloc[0] | ||||
|     etime = df3['ds'].iloc[-1] | ||||
|     # 添加偏差率表格 | ||||
|     fivemodels = '、'.join(eval_df['模型(Model)'].values[:5])  # 字符串形式,后面写入字符串使用 | ||||
|     content.append(Graphs.draw_text( | ||||
|         f'预测使用了{num_models}个模型进行训练,使用评估结果MAE前五的模型分别是 {fivemodels} ,模型上一预测区间 {stime} -- {etime}的偏差率(%)分别是:')) | ||||
|     # # 添加偏差率表格 | ||||
|     df3 = df3.T | ||||
|     df3 = df3.reset_index() | ||||
|     data = df3.values.tolist() | ||||
|     col_width = 500/len(df3.columns) | ||||
|     content.append(Graphs.draw_table(col_width, *data)) | ||||
| 
 | ||||
|     content.append(Graphs.draw_little_title('上一周预测准确率:')) | ||||
|     df4 = sqlitedb.select_data('accuracy_rote', order_by='结束日期 desc', limit=1) | ||||
|     df4 = df4.T | ||||
|     df4 = df4.reset_index() | ||||
|     df4 = df4.T | ||||
|     data = df4.values.tolist() | ||||
|     col_width = 500/len(df4.columns) | ||||
|     content.append(Graphs.draw_table(col_width, *data)) | ||||
| 
 | ||||
|     content.append(Graphs.draw_little_title('三、预测过程解析:')) | ||||
|     # 特征、模型、参数配置 | ||||
|     content.append(Graphs.draw_little_title('模型选择:')) | ||||
|     content.append(Graphs.draw_text( | ||||
|         f'本次预测使用了一个专门收集时间序列的NeuralForecast库中的{num_models}个模型:')) | ||||
|     content.append(Graphs.draw_text(f'使用40天的数据预测未来{inputsize}天的数据。')) | ||||
|     content.append(Graphs.draw_little_title('指标情况:')) | ||||
|     with open(os.path.join(config.dataset, '特征频度统计.txt'), encoding='utf-8') as f: | ||||
|         for line in f.readlines(): | ||||
|             content.append(Graphs.draw_text(line)) | ||||
| 
 | ||||
|     data = pd.read_csv(os.path.join(config.dataset, '指标数据添加时间特征.csv'), | ||||
|                        encoding='utf-8')  # 计算相关系数用 | ||||
|     df_zhibiaofenlei = loadcsv(os.path.join( | ||||
|     config.dataset,'特征处理后的指标名称及分类.csv'))  # 气泡图用 | ||||
|     df_zhibiaoshuju = data.copy()  # 气泡图用 | ||||
| 
 | ||||
|     # 绘制特征相关气泡图 | ||||
| 
 | ||||
|     grouped = df_zhibiaofenlei.groupby('指标分类') | ||||
|     grouped_corr = pd.DataFrame(columns=['指标分类', '指标数量', '相关性总和']) | ||||
| 
 | ||||
|     content.append(Graphs.draw_little_title('按指标分类分别与预测目标进行皮尔逊相关系数分析:')) | ||||
|     content.append(Graphs.draw_text('''皮尔逊相关系数说明:''')) | ||||
|     content.append(Graphs.draw_text('''衡量两个特征之间的线性相关性。''')) | ||||
|     content.append(Graphs.draw_text(''' | ||||
|     相关系数为1:表示两个变量之间存在完全正向的线性关系,即当一个变量增加时,另一个变量也相应增加,且变化是完全一致的。''')) | ||||
|     content.append(Graphs.draw_text( | ||||
|         '''相关系数为-1:表示两个变量之间存在完全负向的线性关系,即当一个变量增加时,另一个变量会相应减少,且变化是完全相反的''')) | ||||
|     content.append(Graphs.draw_text( | ||||
|         '''相关系数接近0:表示两个变量之间不存在线性关系,即它们的变化不会随着对方的变化而变化。''')) | ||||
|     for name, group in grouped: | ||||
|         cols = group['指标名称'].tolist() | ||||
|         config.logger.info(f'开始绘制{name}类指标的相关性直方图') | ||||
|         cols_subset = cols | ||||
|         feature_names = ['y'] + cols_subset | ||||
|         correlation_matrix = df_zhibiaoshuju[feature_names].corr()['y'] | ||||
| 
 | ||||
|         # 绘制特征相关性直方分布图 | ||||
|         plt.figure(figsize=(10, 8)) | ||||
|         sns.histplot(correlation_matrix.values.flatten(), | ||||
|                      bins=20, kde=True, color='skyblue') | ||||
|         plt.title(f'{name}类指标(共{len(cols_subset)}个)相关性直方分布图') | ||||
|         plt.xlabel('相关系数') | ||||
|         plt.ylabel('频数') | ||||
|         plt.savefig(os.path.join( | ||||
|         config.dataset,f'{name}类指标相关性直方分布图.png'), bbox_inches='tight') | ||||
|         plt.close() | ||||
|         content.append(Graphs.draw_img( | ||||
|             os.path.join(config.dataset, f'{name}类指标相关性直方分布图.png'))) | ||||
|         content.append(Graphs.draw_text( | ||||
|             f'{name}类指标(共{len(cols_subset)}个)的相关性直方分布图如上所示。')) | ||||
|         # 相关性大于0的特征 | ||||
|         positive_corr_features = correlation_matrix[correlation_matrix > 0].sort_values( | ||||
|             ascending=False).index.tolist()[1:] | ||||
| 
 | ||||
|         print(f'{name}下正相关的特征值有:', positive_corr_features) | ||||
|         if len(positive_corr_features) > 5: | ||||
|             positive_corr_features = positive_corr_features[0:5] | ||||
|             content.append(Graphs.draw_text( | ||||
|                 f'{name}类指标中,与预测目标y正相关前五的特征有:{positive_corr_features}')) | ||||
|             draw_feature_trend(feature_data_df, positive_corr_features) | ||||
|         elif len(positive_corr_features) == 0: | ||||
|             pass | ||||
|         else: | ||||
|             positive_corr_features = positive_corr_features | ||||
|             content.append(Graphs.draw_text( | ||||
|                 f'其中,与预测目标y正相关的特征有:{positive_corr_features}')) | ||||
|             draw_feature_trend(feature_data_df, positive_corr_features) | ||||
| 
 | ||||
|         # 相关性小于0的特征 | ||||
|         negative_corr_features = correlation_matrix[correlation_matrix < 0].sort_values( | ||||
|             ascending=True).index.tolist() | ||||
| 
 | ||||
|         print(f'{name}下负相关的特征值有:', negative_corr_features) | ||||
|         if len(negative_corr_features) > 5: | ||||
|             negative_corr_features = negative_corr_features[:5] | ||||
|             content.append(Graphs.draw_text( | ||||
|                 f'与预测目标y负相关前五的特征有:{negative_corr_features}')) | ||||
|             draw_feature_trend(feature_data_df, negative_corr_features) | ||||
|         elif len(negative_corr_features) == 0: | ||||
|             pass | ||||
|         else: | ||||
|             content.append(Graphs.draw_text( | ||||
|                 f'{name}类指标中,与预测目标y负相关的特征有:{negative_corr_features}')) | ||||
|             draw_feature_trend(feature_data_df, negative_corr_features) | ||||
|         # 计算correlation_sum 第一行的相关性的绝对值的总和 | ||||
|         correlation_sum = correlation_matrix.abs().sum() | ||||
|         config.logger.info(f'{name}类指标的相关性总和为:{correlation_sum}') | ||||
|         # 分组的相关性总和拼接到grouped_corr | ||||
|         goup_corr = pd.DataFrame( | ||||
|             {'指标分类': [name], '指标数量': [len(cols_subset)], '相关性总和': [correlation_sum]}) | ||||
|         grouped_corr = pd.concat( | ||||
|             [grouped_corr, goup_corr], axis=0, ignore_index=True) | ||||
| 
 | ||||
|     # 绘制相关性总和的气泡图 | ||||
|     config.logger.info(f'开始绘制相关性总和的气泡图') | ||||
|     plt.figure(figsize=(10, 10)) | ||||
|     sns.scatterplot(data=grouped_corr, x='相关性总和', y='指标数量', size='相关性总和', sizes=( | ||||
|         grouped_corr['相关性总和'].min()*5, grouped_corr['相关性总和'].max()*5), hue='指标分类', palette='viridis') | ||||
|     plt.title('指标分类相关性总和的气泡图') | ||||
|     plt.ylabel('数量') | ||||
|     plt.savefig(os.path.join(config.dataset, '指标分类相关性总和的气泡图.png'), | ||||
|                 bbox_inches='tight') | ||||
|     plt.close() | ||||
|     content.append(Graphs.draw_img(os.path.join(config.dataset, '指标分类相关性总和的气泡图.png'))) | ||||
|     content.append(Graphs.draw_text( | ||||
|         '气泡图中,横轴为指标分类,纵轴为指标分类下的特征数量,气泡的面积越大表示该分类中特征的相关系数和越大。')) | ||||
|     config.logger.info(f'绘制相关性总和的气泡图结束') | ||||
|     content.append(Graphs.draw_little_title('模型选择:')) | ||||
|     content.append(Graphs.draw_text( | ||||
|         f'预测使用了{num_models}个模型进行训练拟合,通过评估指标MAE从小到大排列,前5个模型的简介如下:')) | ||||
|     # 读取模型简介 | ||||
|     with open(os.path.join(config.dataset, 'model_introduction.txt'), 'r', encoding='utf-8') as f: | ||||
|         for line in f: | ||||
|             line_split = line.strip().split('--') | ||||
|             if line_split[0] in fivemodels_list: | ||||
|                 for introduction in line_split: | ||||
|                     content.append(Graphs.draw_text(introduction)) | ||||
|     content.append(Graphs.draw_little_title('模型评估:')) | ||||
|     df = pd.read_csv(os.path.join( | ||||
|     config.dataset,'model_evaluation.csv'), encoding='utf-8') | ||||
|     # 判断 df 的数值列转为float | ||||
|     for col in eval_df.columns: | ||||
|         if col not in ['模型(Model)']: | ||||
|             eval_df[col] = eval_df[col].astype(float) | ||||
|             eval_df[col] = eval_df[col].round(3) | ||||
|     # 筛选 fivemodels_list.tolist()  的行 | ||||
|     eval_df = eval_df[eval_df['模型(Model)'].isin(fivemodels_list)] | ||||
|     # df转置 | ||||
|     eval_df = eval_df.T | ||||
|     # df重置索引 | ||||
|     eval_df = eval_df.reset_index() | ||||
|     eval_df = eval_df.T | ||||
|     # # 添加表格 | ||||
|     data = eval_df.values.tolist() | ||||
|     col_width = 500/len(eval_df.columns) | ||||
|     content.append(Graphs.draw_table(col_width, *data)) | ||||
|     content.append(Graphs.draw_text('评估指标释义:')) | ||||
|     content.append(Graphs.draw_text( | ||||
|         '1. 均方根误差(RMSE):均方根误差是衡量预测值与实际值之间误差的一种方法,取值越小,误差越小,预测效果越好。')) | ||||
|     content.append(Graphs.draw_text( | ||||
|         '2. 平均绝对误差(MAE):平均绝对误差是衡量预测值与实际值之间误差的一种方法,取值越小,误差越小,预测效果越好。')) | ||||
|     content.append(Graphs.draw_text( | ||||
|         '3. 平均平方误差(MSE):平均平方误差是衡量预测值与实际值之间误差的一种方法,取值越小,误差越小,预测效果越好。')) | ||||
|     content.append(Graphs.draw_text('模型拟合:')) | ||||
|     # 添加图片 | ||||
|     content.append(Graphs.draw_img(os.path.join(config.dataset, '预测值与真实值对比图.png'))) | ||||
|     # 生成pdf文件 | ||||
|     doc = SimpleDocTemplate(os.path.join(config.dataset, reportname), pagesize=letter) | ||||
|     doc.build(content) | ||||
|     # pdf 上传到数字化信息平台 | ||||
|     try: | ||||
|         if config.is_update_report: | ||||
|             with open(os.path.join(config.dataset, reportname), 'rb') as f: | ||||
|                 base64_data = base64.b64encode(f.read()).decode('utf-8') | ||||
|                 upload_data["data"]["fileBase64"] = base64_data | ||||
|             upload_data["data"]["fileName"] = reportname | ||||
|             token = get_head_auth_report() | ||||
|             upload_report_data(token, upload_data) | ||||
|     except TimeoutError as e: | ||||
|         print(f"请求超时: {e}") | ||||
| 
 | ||||
| 
 | ||||
| @exception_logger | ||||
| def pp_export_pdf(num_indicators=475, num_models=21, num_dayindicator=202, inputsize=5, dataset='dataset', time='2024-07-30', reportname='report.pdf', sqlitedb='jbsh_yuanyou.db'): | ||||
|     # 创建内容对应的空列表 | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user