根据配置选择报告函数名称

This commit is contained in:
liurui 2024-11-12 18:26:20 +08:00
parent 704e49b29f
commit 8ebbeed7b6
3 changed files with 546 additions and 29 deletions

View File

@ -211,7 +211,7 @@ upload_data = {
### 开关
is_train = True # 是否训练
is_debug = False # 是否调试
is_eta = True # 是否使用eta接口
is_eta = False # 是否使用eta接口
is_timefurture = True # 是否使用时间特征
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
is_edbcode = False # 特征使用edbcoding列表中的

52
main.py
View File

@ -106,11 +106,6 @@ def predict_main():
sqlitedb.create_table('most_model',columns="ds datetime, most_common_model TEXT")
sqlitedb.insert_data('most_model',(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),most_common_model,),columns=('ds','most_common_model',))
if is_corr:
df = corr_feature(df=df)
@ -119,25 +114,25 @@ def predict_main():
row,col = df.shape
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
ex_Model(df,
horizon=horizon,
input_size=input_size,
train_steps=train_steps,
val_check_steps=val_check_steps,
early_stop_patience_steps=early_stop_patience_steps,
is_debug=is_debug,
dataset=dataset,
is_train=is_train,
is_fivemodels=is_fivemodels,
val_size=val_size,
test_size=test_size,
settings=settings,
now=now,
etadata = etadata,
modelsindex = modelsindex,
data = data,
is_eta=is_eta,
)
# ex_Model(df,
# horizon=horizon,
# input_size=input_size,
# train_steps=train_steps,
# val_check_steps=val_check_steps,
# early_stop_patience_steps=early_stop_patience_steps,
# is_debug=is_debug,
# dataset=dataset,
# is_train=is_train,
# is_fivemodels=is_fivemodels,
# val_size=val_size,
# test_size=test_size,
# settings=settings,
# now=now,
# etadata = etadata,
# modelsindex = modelsindex,
# data = data,
# is_eta=is_eta,
# )
logger.info('模型训练完成')
@ -151,10 +146,13 @@ def predict_main():
logger.info('制作报告ing')
title = f'{settings}--{now}-预测报告' # 报告标题
brent_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
if 'Brent' in y:
brent_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
reportname=reportname,sqlitedb=sqlitedb),
# pp_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
# reportname=reportname),
else:
pp_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
reportname=reportname,sqlitedb=sqlitedb),
logger.info('制作报告end')
logger.info('模型训练完成')

View File

@ -950,6 +950,7 @@ def brent_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inpu
content.append(Graphs.draw_little_title('一、预测结果:'))
# 添加历史走势及预测价格的走势图片
content.append(Graphs.draw_img(os.path.join(dataset,'历史价格-预测值.png')))
# 波动率画图逻辑
content.append(Graphs.draw_text('图示说明:'))
content.append(Graphs.draw_text('1. 确定波动率置信区间统计近60个交易日的真实价格波动率找出在 10% 90% 的分位值作为波动率置信区间;'))
content.append(Graphs.draw_text('2. 确定通道上界:在所有模型的预测结果中 <= 前一天真实价格 乘以 90%的置信波动分位数'))
@ -1393,8 +1394,526 @@ def brent_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inpu
print(f"请求超时: {e}")
def pp_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inputsize=5,dataset='dataset',time = '2024-07-30',reportname='report.pdf',sqlitedb='jbsh_yuanyou.db'):
global y
# 创建内容对应的空列表
content = list()
# 获取特征的近一月值
import pandas as pd
feature_data_df = pd.read_csv(f'dataset/指标数据添加时间特征.csv', parse_dates=['ds']).tail(20)
def draw_feature_trend(feature_data_df, features):
# 画特征近一周的趋势图
feature_df = feature_data_df[['ds','y']+features]
# 遍历X每一列和yy画散点图
def pp_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inputsize=5,dataset='dataset',time = '2024-07-30',reportname='report.pdf'):
for i, col in enumerate(features):
# try:
print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
if col not in ['ds', 'y']:
fig, ax1 = plt.subplots(figsize=(10, 6))
# 在第一个坐标轴上绘制数据
sns.lineplot(data=feature_df, x='ds', y='y', ax=ax1, color='b')
ax1.set_xlabel('日期')
ax1.set_ylabel('y', color='b')
ax1.tick_params('y', colors='b')
# 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
for j in range(1, len(feature_df), 2):
value = feature_df['y'].iloc[j]
date = feature_df['ds'].iloc[j]
offset = 1.001
ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
# 创建第二个坐标轴
ax2 = ax1.twinx()
# 在第二个坐标轴上绘制数据
sns.lineplot(data=feature_df, x='ds', y=col, ax=ax2, color='r')
ax2.set_ylabel(col, color='r')
ax2.tick_params('y', colors='r')
# 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
for j in range(0, len(feature_df), 2):
value = feature_df[col].iloc[j]
date = feature_df['ds'].iloc[j]
offset = 1.0003
ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
# 添加标题
plt.title(col)
# 设置横坐标为日期格式并自动调整
locator = mdates.AutoDateLocator()
formatter = mdates.AutoDateFormatter(locator)
ax1.xaxis.set_major_locator(locator)
ax1.xaxis.set_major_formatter(formatter)
# 文件名特殊字符处理
col = col.replace('*', '-')
col = col.replace(':', '-')
col = col.replace(r'/', '-')
plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
plt.close()
# except Exception as e:
# print(f'绘制第{i+1}个特征{col}与价格散点图时出错:{e}')
### 添加标题
content.append(Graphs.draw_title(f'{y}{time}预测报告'))
### 预测结果
content.append(Graphs.draw_little_title('一、预测结果:'))
# 添加历史走势及预测价格的走势图片
content.append(Graphs.draw_img(os.path.join(dataset,'历史价格-预测值.png')))
# 根据真实值分组,去掉最高最小预测值画图逻辑
content.append(Graphs.draw_text('图示说明:'))
content.append(Graphs.draw_text('1. 将所有模型的预测结果进行分组,大于真实值的为一组,小于真实值的为一组,去掉最高的预测值,去掉最小的预测值'))
content.append(Graphs.draw_text('2. 确定通道上界:在大于真实值的分组中,取最大的预测值'))
content.append(Graphs.draw_text('3. 确定通道下界:在小于真实值的分组中,取第二小的预测值'))
content.append(Graphs.draw_text('4. 预测结果没有真实值作为参考依据通道上界取近20个交易日内预测在上界值的模型对应的预测值通道下界同理'))
content.append(Graphs.draw_text('5. 预测结果选用近20个交易日内最多接近真实值的模型的预测值对应的预测结果'))
content.append(Graphs.draw_text('6. 预测结果在通道外的,代表最接近真实值的预测结果不在置信波动范围内。'))
# 波动率画图逻辑
# content.append(Graphs.draw_text('图示说明:'))
# content.append(Graphs.draw_text('1. 确定波动率置信区间统计近60个交易日的真实价格波动率找出在 10% 90% 的分位值作为波动率置信区间;'))
# content.append(Graphs.draw_text('2. 确定通道上界:在所有模型的预测结果中 <= 前一天真实价格 乘以 90%的置信波动分位数'))
# content.append(Graphs.draw_text('3. 确定通道下界:在所有模型的预测结果中 >= 前一天真实价格 乘以 10%的置信波动分位数'))
# content.append(Graphs.draw_text('4. 预测结果没有真实值作为参考依据通道上界取近20个交易日内预测在上界值的模型对应的预测值通道下界同理'))
# content.append(Graphs.draw_text('5. 预测结果选用近20个交易日内最多接近真实值的模型的预测值对应的预测结果'))
# content.append(Graphs.draw_text('6. 预测结果在通道外的,代表最接近真实值的预测结果不在置信波动范围内。'))
# 取df中y列为空的行
import pandas as pd
df = pd.read_csv(os.path.join(dataset,'predict.csv'),encoding='gbk')
df_true = pd.read_csv(os.path.join(dataset,'指标数据添加时间特征.csv'),encoding='utf-8') # 获取预测日期对应的真实值
df_true = df_true[['ds','y']]
eval_df = pd.read_csv(os.path.join(dataset,'model_evaluation.csv'),encoding='utf-8')
# 按评估指标排序,取前五
fivemodels_list = eval_df['模型(Model)'].values # 列表形式,后面当作列名索引使用
# 取 fivemodels_list 和 ds 列
df = df[['ds'] + fivemodels_list.tolist() ]
# 拼接预测日期对应的真实值
df = pd.merge(df, df_true, on='ds', how='left')
# 删除全部为nan的列
df = df.dropna(how='all', axis=1)
# 选择除 'ds' 列外的数值列,并进行类型转换和四舍五入
num_cols = [col for col in df.columns if col!= 'ds' and pd.api.types.is_numeric_dtype(df[col])]
for col in num_cols:
df[col] = df[col].astype(float).round(2)
# 添加最大值、最小值、平均值三列
df['平均值'] = df[num_cols].mean(axis=1).round(2)
df['最大值'] = df[num_cols].max(axis=1)
df['最小值'] = df[num_cols].min(axis=1)
# df转置
df = df.T
# df重置索引
df = df.reset_index()
# 添加预测值表格
data = df.values.tolist()
col_width = 500/len(df.columns)
content.append(Graphs.draw_table(col_width,*data))
content.append(Graphs.draw_little_title('二、上一预测周期偏差率分析:'))
df = pd.read_csv(os.path.join(dataset,'testandpredict_groupby.csv'),encoding='utf-8')
df4 = df.copy() # 计算偏差率使用
# 计算模型偏差率
#计算各列对于y列的差值百分比
df3 = pd.DataFrame() # 存储偏差率
# 删除有null的行
df4 = df4.dropna()
df3['ds'] = df4['ds']
for col in fivemodels_list:
df3[col] = round(abs(df4[col] - df4['y']) / df4['y'] * 100,2)
# 找出决定系数前五的偏差率
df3 = df3[['ds']+fivemodels_list.tolist()][-inputsize:]
# 找出上一预测区间的时间
stime = df3['ds'].iloc[0]
etime = df3['ds'].iloc[-1]
# 添加偏差率表格
fivemodels = ''.join(eval_df['模型(Model)'].values[:5]) # 字符串形式,后面写入字符串使用
content.append(Graphs.draw_text(f'预测使用了{num_models}个模型进行训练使用评估结果MAE前五的模型分别是 {fivemodels} ,模型上一预测区间 {stime} -- {etime}的偏差率(%)分别是:'))
# # 添加偏差率表格
df3 = df3.T
df3 = df3.reset_index()
data = df3.values.tolist()
col_width = 500/len(df3.columns)
content.append(Graphs.draw_table(col_width,*data))
content.append(Graphs.draw_little_title('三、预测过程解析:'))
### 特征、模型、参数配置
content.append(Graphs.draw_little_title('模型选择:'))
content.append(Graphs.draw_text(f'本次预测使用了一个专门收集时间序列的NeuralForecast库中的{num_models}个模型:'))
content.append(Graphs.draw_text(f'使用40天的数据预测未来{inputsize}天的数据。'))
content.append(Graphs.draw_little_title('指标情况:'))
with open(os.path.join(dataset,'特征频度统计.txt'),encoding='utf-8') as f:
for line in f.readlines():
content.append(Graphs.draw_text(line))
data = pd.read_csv(os.path.join(dataset,'指标数据添加时间特征.csv'),encoding='utf-8') # 计算相关系数用
df_zhibiaofenlei = loadcsv(os.path.join(dataset,'特征处理后的指标名称及分类.csv')) # 气泡图用
df_zhibiaoshuju = data.copy() # 气泡图用
# 绘制特征相关气泡图
grouped = df_zhibiaofenlei.groupby('指标分类')
grouped_corr = pd.DataFrame(columns=['指标分类', '指标数量', '相关性总和'])
content.append(Graphs.draw_little_title('按指标分类分别与预测目标进行皮尔逊相关系数分析:'))
content.append(Graphs.draw_text('''皮尔逊相关系数说明:'''))
content.append(Graphs.draw_text('''衡量两个特征之间的线性相关性。'''))
content.append(Graphs.draw_text('''
相关系数为1表示两个变量之间存在完全正向的线性关系即当一个变量增加时另一个变量也相应增加且变化是完全一致的'''))
content.append(Graphs.draw_text('''相关系数为-1表示两个变量之间存在完全负向的线性关系即当一个变量增加时另一个变量会相应减少且变化是完全相反的'''))
content.append(Graphs.draw_text('''相关系数接近0表示两个变量之间不存在线性关系即它们的变化不会随着对方的变化而变化。'''))
for name, group in grouped:
cols = group['指标名称'].tolist()
logger.info(f'开始绘制{name}类指标的相关性直方图')
cols_subset = cols
feature_names = ['y'] + cols_subset
correlation_matrix = df_zhibiaoshuju[feature_names].corr()['y']
# 绘制特征相关性直方分布图
plt.figure(figsize=(10,8))
sns.histplot(correlation_matrix.values.flatten(), bins=20, kde=True, color='skyblue')
plt.title(f'{name}类指标(共{len(cols_subset)}个)相关性直方分布图')
plt.xlabel('相关系数')
plt.ylabel('频数')
plt.savefig(os.path.join(dataset, f'{name}类指标相关性直方分布图.png'), bbox_inches='tight')
plt.close()
content.append(Graphs.draw_img(os.path.join(dataset,f'{name}类指标相关性直方分布图.png')))
content.append(Graphs.draw_text(f'{name}类指标(共{len(cols_subset)}个)的相关性直方分布图如上所示。'))
# 相关性大于0的特征
positive_corr_features = correlation_matrix[correlation_matrix > 0].sort_values(ascending=False).index.tolist()[1:]
print(f'{name}下正相关的特征值有:',positive_corr_features)
if len(positive_corr_features) > 5:
positive_corr_features = positive_corr_features[0:5]
content.append(Graphs.draw_text(f'{name}类指标中与预测目标y正相关前五的特征有{positive_corr_features}'))
draw_feature_trend(feature_data_df, positive_corr_features)
elif len(positive_corr_features) == 0:
pass
else:
positive_corr_features = positive_corr_features
content.append(Graphs.draw_text(f'其中与预测目标y正相关的特征有{positive_corr_features}'))
draw_feature_trend(feature_data_df, positive_corr_features)
# 相关性小于0的特征
negative_corr_features = correlation_matrix[correlation_matrix < 0].sort_values(ascending=True).index.tolist()
print(f'{name}下负相关的特征值有:',negative_corr_features)
if len(negative_corr_features) > 5:
negative_corr_features = negative_corr_features[:5]
content.append(Graphs.draw_text(f'与预测目标y负相关前五的特征有{negative_corr_features}'))
draw_feature_trend(feature_data_df, negative_corr_features)
elif len(negative_corr_features) == 0:
pass
else:
content.append(Graphs.draw_text(f'{name}类指标中与预测目标y负相关的特征有{negative_corr_features}'))
draw_feature_trend(feature_data_df, negative_corr_features)
# 计算correlation_sum 第一行的相关性的绝对值的总和
correlation_sum = correlation_matrix.abs().sum()
logger.info(f'{name}类指标的相关性总和为:{correlation_sum}')
# 分组的相关性总和拼接到grouped_corr
goup_corr = pd.DataFrame({'指标分类': [name], '指标数量': [len(cols_subset)], '相关性总和': [correlation_sum]})
grouped_corr = pd.concat([grouped_corr, goup_corr], axis=0, ignore_index=True)
# 绘制相关性总和的气泡图
logger.info(f'开始绘制相关性总和的气泡图')
plt.figure(figsize=(10, 10))
sns.scatterplot(data=grouped_corr, x='相关性总和', y='指标数量', size='相关性总和', sizes=(grouped_corr['相关性总和'].min()*5, grouped_corr['相关性总和'].max()*5), hue='指标分类', palette='viridis')
plt.title('指标分类相关性总和的气泡图')
plt.ylabel('数量')
plt.savefig(os.path.join(dataset, '指标分类相关性总和的气泡图.png'), bbox_inches='tight')
plt.close()
content.append(Graphs.draw_img(os.path.join(dataset,'指标分类相关性总和的气泡图.png')))
content.append(Graphs.draw_text('气泡图中,横轴为指标分类,纵轴为指标分类下的特征数量,气泡的面积越大表示该分类中特征的相关系数和越大。'))
logger.info(f'绘制相关性总和的气泡图结束')
# # 计算特征相关性
# data.rename(columns={y: 'y'}, inplace=True)
# data['ds'] = pd.to_datetime(data['ds'])
# data.drop(columns=['ds'], inplace=True)
# # 创建一个空的 DataFrame 来保存相关系数
# correlation_df = pd.DataFrame(columns=['Feature', 'Correlation'])
# # 计算各特征与目标列的皮尔逊相关系数,并保存到新的 Data 中
# for col in data.columns:
# if col!= 'y':
# pearson_correlation = np.corrcoef(data[col], data['y'])[0, 1]
# spearman_correlation, _ = spearmanr(data[col], data['y'])
# new_row = {'Feature': col, 'Pearson_Correlation': round(pearson_correlation,3), 'Spearman_Correlation': round(spearman_correlation,2)}
# correlation_df = correlation_df._append(new_row, ignore_index=True)
# correlation_df.drop('Correlation', axis=1, inplace=True)
# correlation_df.dropna(inplace=True)
# correlation_df.to_csv(os.path.join(dataset,'指标相关性分析.csv'), index=False)
# data = correlation_df['Pearson_Correlation'].values.tolist()
# # 生成 -1 到 1 的 20 个区间
# bins = np.linspace(-1, 1, 21)
# # 计算每个区间的统计数(这里是区间内数据的数量)
# hist_values = [np.sum((data >= bins[i]) & (data < bins[i + 1])) for i in range(len(bins) - 1)]
# #设置画布大小
# plt.figure(figsize=(10, 6))
# # 绘制直方图
# plt.bar(bins[:-1], hist_values, width=(bins[1] - bins[0]))
# # 添加标题和坐标轴标签
# plt.title('皮尔逊相关系数分布图')
# plt.xlabel('区间')
# plt.ylabel('统计数')
# plt.savefig(os.path.join(dataset, '皮尔逊相关性系数.png'))
# plt.close()
# #设置画布大小
# plt.figure(figsize=(10, 6))
# data = correlation_df['Spearman_Correlation'].values.tolist()
# # 计算每个区间的统计数(这里是区间内数据的数量)
# hist_values = [np.sum((data >= bins[i]) & (data < bins[i + 1])) for i in range(len(bins) - 1)]
# # 绘制直方图
# plt.bar(bins[:-1], hist_values, width=(bins[1] - bins[0]))
# # 添加标题和坐标轴标签
# plt.title('斯皮尔曼相关系数分布图')
# plt.xlabel('区间')
# plt.ylabel('统计数')
# plt.savefig(os.path.join(dataset, '斯皮尔曼相关性系数.png'))
# plt.close()
# content.append(Graphs.draw_text(f'指标相关性分析--皮尔逊相关系数:'))
# # 皮尔逊正相关 不相关 负相关 的表格
# content.append(Graphs.draw_img(os.path.join(dataset,'皮尔逊相关性系数.png')))
# content.append(Graphs.draw_text('''皮尔逊相关系数说明:'''))
# content.append(Graphs.draw_text('''衡量两个特征之间的线性相关性。'''))
# content.append(Graphs.draw_text('''
# 相关系数为1表示两个变量之间存在完全正向的线性关系即当一个变量增加时另一个变量也相应增加且变化是完全一致的。'''))
# content.append(Graphs.draw_text('''当前特征中正相关前十的有:'''))
# top10_columns = correlation_df.sort_values(by='Pearson_Correlation',ascending=False).head(10)['Feature'].to_list()
# top10 = ','.join(top10_columns)
# content.append(Graphs.draw_text(f'''{top10}'''))
# feature_df = feature_data_df[['ds','y']+top10_columns]
# # 遍历X每一列和yy画散点图
# for i, col in enumerate(feature_df.columns):
# print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
# if col not in ['ds', 'y']:
# fig, ax1 = plt.subplots(figsize=(10, 6))
# # 在第一个坐标轴上绘制数据
# ax1.plot(feature_df['ds'], feature_df['y'], 'b-')
# ax1.set_xlabel('日期')
# ax1.set_ylabel('y', color='b')
# ax1.tick_params('y', colors='b')
# # 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
# for j in range(1,len(feature_df),2):
# value = feature_df['y'].iloc[j]
# date = feature_df['ds'].iloc[j]
# offset = 1.001
# ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
# # 创建第二个坐标轴
# ax2 = ax1.twinx()
# # 在第二个坐标轴上绘制数据
# line2 = ax2.plot(feature_df['ds'], feature_df[col], 'r-')
# ax2.set_ylabel(col, color='r')
# ax2.tick_params('y', colors='r')
# # 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
# for j in range(0,len(feature_df),2):
# value = feature_df[col].iloc[j]
# date = feature_df['ds'].iloc[j]
# offset = 1.001
# ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
# # 添加标题
# plt.title(col)
# # 设置横坐标为日期格式并自动调整
# locator = mdates.AutoDateLocator()
# formatter = mdates.AutoDateFormatter(locator)
# ax1.xaxis.set_major_locator(locator)
# ax1.xaxis.set_major_formatter(formatter)
# # 文件名特殊字符处理
# col = col.replace('*', '-')
# col = col.replace(':', '-')
# plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
# content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
# plt.close()
# content.append(Graphs.draw_text(f'指标相关性分析--斯皮尔曼相关系数:'))
# # 皮尔逊正相关 不相关 负相关 的表格
# content.append(Graphs.draw_img(os.path.join(dataset,'斯皮尔曼相关性系数.png')))
# content.append(Graphs.draw_text('斯皮尔曼相关系数Spearmans rank correlation coefficient是一种用于衡量两个变量之间的单调关系不一定是线性关系的统计指标。'))
# content.append(Graphs.draw_text('它的计算基于变量的秩次(即变量值的排序位置)而非变量的原始值。'))
# content.append(Graphs.draw_text('斯皮尔曼相关系数的取值范围在 -1 到 1 之间。'))
# content.append(Graphs.draw_text('当系数为 1 时,表示两个变量之间存在完全正的单调关系;'))
# content.append(Graphs.draw_text('''当前特征中正单调关系前十的有:'''))
# top10_columns = correlation_df.sort_values(by='Spearman_Correlation',ascending=False).head(10)['Feature'].to_list()
# top10 = ','.join(top10_columns)
# content.append(Graphs.draw_text(f'''{top10}'''))
# feature_df = feature_data_df[['ds','y']+top10_columns]
# # 遍历X每一列和yy画散点图
# for i, col in enumerate(feature_df.columns):
# print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
# if col not in ['ds', 'y']:
# fig, ax1 = plt.subplots(figsize=(10, 6))
# # 在第一个坐标轴上绘制数据
# ax1.plot(feature_df['ds'], feature_df['y'], 'b-')
# ax1.set_xlabel('日期')
# ax1.set_ylabel('y', color='b')
# ax1.tick_params('y', colors='b')
# # 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
# for j in range(1,len(feature_df),2):
# value = feature_df['y'].iloc[j]
# date = feature_df['ds'].iloc[j]
# offset = 1.001
# ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
# # 创建第二个坐标轴
# ax2 = ax1.twinx()
# # 在第二个坐标轴上绘制数据
# line2 = ax2.plot(feature_df['ds'], feature_df[col], 'r-')
# ax2.set_ylabel(col, color='r')
# ax2.tick_params('y', colors='r')
# # 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
# for j in range(0,len(feature_df),2):
# value = feature_df[col].iloc[j]
# date = feature_df['ds'].iloc[j]
# offset = 1.001
# ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
# # 添加标题
# plt.title(col)
# # 设置横坐标为日期格式并自动调整
# locator = mdates.AutoDateLocator()
# formatter = mdates.AutoDateFormatter(locator)
# ax1.xaxis.set_major_locator(locator)
# ax1.xaxis.set_major_formatter(formatter)
# # 文件名特殊字符处理
# col = col.replace('*', '-')
# col = col.replace(':', '-')
# plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
# content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
# plt.close()
# content.append(Graphs.draw_text('当系数为 -1 时,表示存在完全负的单调关系;'))
# content.append(Graphs.draw_text('''当前特征中负单调关系前十的有:'''))
# tail10_columns = correlation_df.sort_values(by='Spearman_Correlation',ascending=True).head(10)['Feature'].to_list()
# top10 = ','.join(tail10_columns)
# content.append(Graphs.draw_text(f'''{top10}'''))
# # 获取特征的近一周值
# feature_df = feature_data_df[['ds','y']+tail10_columns]
# # 遍历X每一列和yy画散点图
# for i, col in enumerate(feature_df.columns):
# print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
# if col not in ['ds', 'y']:
# fig, ax1 = plt.subplots(figsize=(10, 6))
# # 在第一个坐标轴上绘制数据
# ax1.plot(feature_df['ds'], feature_df['y'], 'b-')
# ax1.set_xlabel('日期')
# ax1.set_ylabel('y', color='b')
# ax1.tick_params('y', colors='b')
# # 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
# for j in range(len(feature_df)):
# if j%2 == 1:
# value = feature_df['y'].iloc[j]
# date = feature_df['ds'].iloc[j]
# offset = 1.001
# ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
# # 创建第二个坐标轴
# ax2 = ax1.twinx()
# # 在第二个坐标轴上绘制数据
# line2 = ax2.plot(feature_df['ds'], feature_df[col], 'r-')
# ax2.set_ylabel(col, color='r')
# ax2.tick_params('y', colors='r')
# # 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
# for j in range(1,len(feature_df),2):
# value = feature_df[col].iloc[j]
# date = feature_df['ds'].iloc[j]
# offset = 1.001
# ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
# # 添加标题
# plt.title(col)
# # 设置横坐标为日期格式并自动调整
# locator = mdates.AutoDateLocator()
# formatter = mdates.AutoDateFormatter(locator)
# ax1.xaxis.set_major_locator(locator)
# ax1.xaxis.set_major_formatter(formatter)
# # 文件名特殊字符处理
# col = col.replace('*', '-')
# col = col.replace(':', '-')
# plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
# content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
# plt.close()
# content.append(Graphs.draw_text('当系数为 0 时,表示两个变量之间不存在单调关系。'))
# content.append(Graphs.draw_text('与皮尔逊相关系数相比,斯皮尔曼相关系数对于数据中的异常值不敏感,更适用于处理非线性关系或存在极端值的数据。'))
content.append(Graphs.draw_little_title('模型选择:'))
content.append(Graphs.draw_text(f'预测使用了{num_models}个模型进行训练拟合通过评估指标MAE从小到大排列前5个模型的简介如下'))
### 读取模型简介
with open(os.path.join(dataset,'model_introduction.txt'), 'r', encoding='utf-8') as f:
for line in f:
line_split = line.strip().split('--')
if line_split[0] in fivemodels_list:
for introduction in line_split:
content.append(Graphs.draw_text(introduction))
content.append(Graphs.draw_little_title('模型评估:'))
df = pd.read_csv(os.path.join(dataset,'model_evaluation.csv'),encoding='utf-8')
# 判断 df 的数值列转为float
for col in eval_df.columns:
if col not in ['模型(Model)']:
eval_df[col] = eval_df[col].astype(float)
eval_df[col] = eval_df[col].round(3)
# 筛选 fivemodels_list.tolist() 的行
eval_df = eval_df[eval_df['模型(Model)'].isin(fivemodels_list)]
# df转置
eval_df = eval_df.T
# df重置索引
eval_df = eval_df.reset_index()
eval_df = eval_df.T
# # 添加表格
data = eval_df.values.tolist()
col_width = 500/len(eval_df.columns)
content.append(Graphs.draw_table(col_width,*data))
content.append(Graphs.draw_text('评估指标释义:'))
content.append(Graphs.draw_text('1. 均方根误差(RMSE):均方根误差是衡量预测值与实际值之间误差的一种方法,取值越小,误差越小,预测效果越好。'))
content.append(Graphs.draw_text('2. 平均绝对误差(MAE):平均绝对误差是衡量预测值与实际值之间误差的一种方法,取值越小,误差越小,预测效果越好。'))
content.append(Graphs.draw_text('3. 平均平方误差(MSE):平均平方误差是衡量预测值与实际值之间误差的一种方法,取值越小,误差越小,预测效果越好。'))
content.append(Graphs.draw_text('模型拟合:'))
# 添加图片
content.append(Graphs.draw_img(os.path.join(dataset,'预测值与真实值对比图.png')))
# 附1特征列表
content.append(Graphs.draw_little_title('附1、特征列表'))
df_fuyi = pd.read_csv(os.path.join(dataset,'特征频度统计.csv'),encoding='utf-8')
for col in df_fuyi.columns:
fuyi = df_fuyi[col]
fuyi = fuyi.dropna()
content.append(Graphs.draw_text(f'{col}'))
for i in range(len(fuyi)):
content.append(Graphs.draw_text(f'{i+1}{fuyi[i]}'))
### 生成pdf文件
doc = SimpleDocTemplate(os.path.join(dataset,reportname), pagesize=letter)
# doc = SimpleDocTemplate(os.path.join(dataset,'reportname.pdf'), pagesize=letter)
doc.build(content)
# pdf 上传到数字化信息平台
# 读取pdf并转为base64
try:
if is_update_report:
with open(os.path.join(dataset,reportname), 'rb') as f:
base64_data = base64.b64encode(f.read()).decode('utf-8')
upload_data["data"]["fileBase64"] = base64_data
upload_data["data"]["fileName"] = reportname
token = get_head_auth_report()
upload_report_data(token, upload_data)
except TimeoutError as e:
print(f"请求超时: {e}")
def pp_export_pdf_v1(num_indicators=475,num_models=21, num_dayindicator=202,inputsize=5,dataset='dataset',time = '2024-07-30',reportname='report.pdf'):
global y
# 创建内容对应的空列表
content = list()