原油绘图比例
This commit is contained in:
parent
ec18d536ac
commit
9532f96507
@ -132,49 +132,49 @@ warning_data = {
|
|||||||
|
|
||||||
|
|
||||||
# # 变量定义--测试环境
|
# # 变量定义--测试环境
|
||||||
login_pushreport_url = "http://192.168.100.53:8080/jingbo-dev/api/server/login"
|
# login_pushreport_url = "http://192.168.100.53:8080/jingbo-dev/api/server/login"
|
||||||
upload_url = "http://192.168.100.53:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
|
# upload_url = "http://192.168.100.53:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
|
||||||
# upload_url = "http://192.168.100.109:8080/jingbo/api/analysis/reportInfo/researchUploadReportSave" # zhaoqiwei
|
# # upload_url = "http://192.168.100.109:8080/jingbo/api/analysis/reportInfo/researchUploadReportSave" # zhaoqiwei
|
||||||
upload_warning_url = "http://192.168.100.53:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
|
# upload_warning_url = "http://192.168.100.53:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
|
||||||
|
|
||||||
|
|
||||||
login_data = {
|
# login_data = {
|
||||||
"data": {
|
# "data": {
|
||||||
"account": "api_test",
|
# "account": "api_test",
|
||||||
# "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
|
# # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
|
||||||
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
|
# "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
|
||||||
"tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
|
# "tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
|
||||||
"terminal": "API"
|
# "terminal": "API"
|
||||||
},
|
# },
|
||||||
"funcModule": "API",
|
# "funcModule": "API",
|
||||||
"funcOperation": "获取token"
|
# "funcOperation": "获取token"
|
||||||
}
|
# }
|
||||||
|
|
||||||
upload_data = {
|
# upload_data = {
|
||||||
"funcModule":'研究报告信息',
|
# "funcModule":'研究报告信息',
|
||||||
"funcOperation":'上传原油价格预测报告',
|
# "funcOperation":'上传原油价格预测报告',
|
||||||
"data":{
|
# "data":{
|
||||||
"ownerAccount":'arui', #报告所属用户账号
|
# "ownerAccount":'arui', #报告所属用户账号
|
||||||
"reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
# "reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
||||||
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
|
# "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
|
||||||
"fileBase64": '' ,#文件内容base64
|
# "fileBase64": '' ,#文件内容base64
|
||||||
"categoryNo":'yyjgycbg', # 研究报告分类编码
|
# "categoryNo":'yyjgycbg', # 研究报告分类编码
|
||||||
"smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
|
# "smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
|
||||||
"reportEmployeeCode":"E40116", # 报告人
|
# "reportEmployeeCode":"E40116", # 报告人
|
||||||
"reportDeptCode" :"D0044" ,# 报告部门
|
# "reportDeptCode" :"D0044" ,# 报告部门
|
||||||
"productGroupCode":"RAW_MATERIAL" # 商品分类
|
# "productGroupCode":"RAW_MATERIAL" # 商品分类
|
||||||
}
|
# }
|
||||||
}
|
# }
|
||||||
|
|
||||||
warning_data = {
|
# warning_data = {
|
||||||
"funcModule":'原油特征停更预警',
|
# "funcModule":'原油特征停更预警',
|
||||||
"funcOperation":'原油特征停更预警',
|
# "funcOperation":'原油特征停更预警',
|
||||||
"data":{
|
# "data":{
|
||||||
'WARNING_TYPE_NAME':'特征数据停更预警',
|
# 'WARNING_TYPE_NAME':'特征数据停更预警',
|
||||||
'WARNING_CONTENT':'',
|
# 'WARNING_CONTENT':'',
|
||||||
'WARNING_DATE':''
|
# 'WARNING_DATE':''
|
||||||
}
|
# }
|
||||||
}
|
# }
|
||||||
|
|
||||||
### 线上开关
|
### 线上开关
|
||||||
# is_train = True # 是否训练
|
# is_train = True # 是否训练
|
||||||
@ -223,7 +223,7 @@ val_size = test_size # 验证集大小,同测试集大小
|
|||||||
### 特征筛选用到的参数
|
### 特征筛选用到的参数
|
||||||
k = 100 # 特征筛选数量,如果是0或者值比特征数量大,代表全部特征
|
k = 100 # 特征筛选数量,如果是0或者值比特征数量大,代表全部特征
|
||||||
|
|
||||||
|
rote = 0.06
|
||||||
|
|
||||||
### 文件
|
### 文件
|
||||||
data_set = '原油指标数据.xlsx' # 数据集文件
|
data_set = '原油指标数据.xlsx' # 数据集文件
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
from config_jingbo import *
|
|
||||||
# from config_juxiting import *
|
|
||||||
|
|
||||||
|
|
||||||
# 导入模块
|
# 导入模块
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
@ -43,6 +40,10 @@ pdfmetrics.registerFont(TTFont('SimSun', 'SimSun.ttf'))
|
|||||||
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
|
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
|
||||||
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
|
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
|
||||||
|
|
||||||
|
from config_jingbo import *
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# 定义函数
|
# 定义函数
|
||||||
def loadcsv(filename):
|
def loadcsv(filename):
|
||||||
# 读取csv文件
|
# 读取csv文件
|
||||||
|
File diff suppressed because it is too large
Load Diff
20042
logs/pricepredict.log.5
20042
logs/pricepredict.log.5
File diff suppressed because it is too large
Load Diff
@ -2,7 +2,7 @@
|
|||||||
from config_jingbo import *
|
from config_jingbo import *
|
||||||
from lib.dataread import *
|
from lib.dataread import *
|
||||||
from lib.tools import *
|
from lib.tools import *
|
||||||
from models.nerulforcastmodels import ex_Model,model_losss,brent_export_pdf,tansuanli_export_pdf,pp_export_pdf,model_losss_juxiting
|
from models.nerulforcastmodels import ex_Model,model_losss,model_losss_juxiting,brent_export_pdf,tansuanli_export_pdf,pp_export_pdf,model_losss_juxiting
|
||||||
|
|
||||||
import glob
|
import glob
|
||||||
import torch
|
import torch
|
||||||
@ -114,11 +114,12 @@ def predict_main():
|
|||||||
is_weekday = datetime.datetime.now().weekday() == 0
|
is_weekday = datetime.datetime.now().weekday() == 0
|
||||||
if is_weekday:
|
if is_weekday:
|
||||||
logger.info('今天是周一,更新预测模型')
|
logger.info('今天是周一,更新预测模型')
|
||||||
# 计算最近20天预测残差最低的模型名称
|
# 计算最近60天预测残差最低的模型名称
|
||||||
|
|
||||||
model_results = sqlitedb.select_data('trueandpredict', order_by="ds DESC", limit="60")
|
model_results = sqlitedb.select_data('trueandpredict', order_by="ds DESC", limit="60")
|
||||||
# 删除空值率为40%以上的列,删除空行
|
# 删除空值率为40%以上的列
|
||||||
model_results = model_results.dropna(thresh=len(model_results)*0.6,axis=1)
|
if len(model_results) > 10:
|
||||||
|
model_results = model_results.dropna(thresh=len(model_results)*0.6,axis=1)
|
||||||
|
# 删除空行
|
||||||
model_results = model_results.dropna()
|
model_results = model_results.dropna()
|
||||||
modelnames = model_results.columns.to_list()[2:]
|
modelnames = model_results.columns.to_list()[2:]
|
||||||
for col in model_results[modelnames].select_dtypes(include=['object']).columns:
|
for col in model_results[modelnames].select_dtypes(include=['object']).columns:
|
||||||
@ -126,7 +127,6 @@ def predict_main():
|
|||||||
# 计算每个预测值与真实值之间的偏差率
|
# 计算每个预测值与真实值之间的偏差率
|
||||||
for model in modelnames:
|
for model in modelnames:
|
||||||
model_results[f'{model}_abs_error_rate'] = abs(model_results['y'] - model_results[model]) / model_results['y']
|
model_results[f'{model}_abs_error_rate'] = abs(model_results['y'] - model_results[model]) / model_results['y']
|
||||||
|
|
||||||
# 获取每行对应的最小偏差率值
|
# 获取每行对应的最小偏差率值
|
||||||
min_abs_error_rate_values = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
|
min_abs_error_rate_values = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
|
||||||
# 获取每行对应的最小偏差率值对应的列名
|
# 获取每行对应的最小偏差率值对应的列名
|
||||||
@ -136,9 +136,7 @@ def predict_main():
|
|||||||
# 取出现次数最多的模型名称
|
# 取出现次数最多的模型名称
|
||||||
most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
|
most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
|
||||||
logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}")
|
logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}")
|
||||||
|
|
||||||
# 保存结果到数据库
|
# 保存结果到数据库
|
||||||
|
|
||||||
if not sqlitedb.check_table_exists('most_model'):
|
if not sqlitedb.check_table_exists('most_model'):
|
||||||
sqlitedb.create_table('most_model', columns="ds datetime, most_common_model TEXT")
|
sqlitedb.create_table('most_model', columns="ds datetime, most_common_model TEXT")
|
||||||
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
|
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
|
||||||
@ -175,7 +173,8 @@ def predict_main():
|
|||||||
logger.info('模型训练完成')
|
logger.info('模型训练完成')
|
||||||
|
|
||||||
logger.info('训练数据绘图ing')
|
logger.info('训练数据绘图ing')
|
||||||
model_results3 = model_losss(sqlitedb)
|
# model_results3 = model_losss(sqlitedb)
|
||||||
|
model_results3 = model_losss_juxiting(sqlitedb)
|
||||||
logger.info('训练数据绘图end')
|
logger.info('训练数据绘图end')
|
||||||
|
|
||||||
# 模型报告
|
# 模型报告
|
||||||
|
@ -365,21 +365,15 @@ def model_losss(sqlitedb):
|
|||||||
sqlitedb.update_data('trueandpredict',set_clause,where_condition = f"ds = '{row.ds}'")
|
sqlitedb.update_data('trueandpredict',set_clause,where_condition = f"ds = '{row.ds}'")
|
||||||
continue
|
continue
|
||||||
sqlitedb.insert_data('trueandpredict',tuple(row_dict.values()),columns=columns)
|
sqlitedb.insert_data('trueandpredict',tuple(row_dict.values()),columns=columns)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# 最多频率的模型名称
|
# 最多频率的模型名称
|
||||||
min_model_max_frequency_model = df_combined3['min_model'][-50:].value_counts().idxmax()
|
min_model_max_frequency_model = df_combined3['min_model'][-60:].value_counts().idxmax()
|
||||||
max_model_max_frequency_model = df_combined3['max_model'][-50:].value_counts().idxmax()
|
max_model_max_frequency_model = df_combined3['max_model'][-60:].value_counts().idxmax()
|
||||||
df_predict['min_model'] = min_model_max_frequency_model
|
df_predict['min_model'] = min_model_max_frequency_model
|
||||||
df_predict['max_model'] = max_model_max_frequency_model
|
df_predict['max_model'] = max_model_max_frequency_model
|
||||||
df_predict['min_within_quantile'] = df_predict[min_model_max_frequency_model]
|
df_predict['min_within_quantile'] = df_predict[min_model_max_frequency_model]
|
||||||
df_predict['max_within_quantile'] = df_predict[max_model_max_frequency_model]
|
df_predict['max_within_quantile'] = df_predict[max_model_max_frequency_model]
|
||||||
|
|
||||||
df_predict2 = df_predict.copy()
|
df_predict2 = df_predict.copy()
|
||||||
df_predict2['ds'] = df_predict2['ds'].dt.strftime('%Y-%m-%d 00:00:00')
|
df_predict2['ds'] = df_predict2['ds'].dt.strftime('%Y-%m-%d 00:00:00')
|
||||||
|
|
||||||
|
|
||||||
# 将预测结果保存到数据库
|
# 将预测结果保存到数据库
|
||||||
# 判断表存在
|
# 判断表存在
|
||||||
if not sqlitedb.check_table_exists('testandpredict_groupby'):
|
if not sqlitedb.check_table_exists('testandpredict_groupby'):
|
||||||
@ -393,9 +387,6 @@ def model_losss(sqlitedb):
|
|||||||
sqlitedb.update_data('testandpredict_groupby',set_clause,where_condition = f"ds = '{row.ds}'")
|
sqlitedb.update_data('testandpredict_groupby',set_clause,where_condition = f"ds = '{row.ds}'")
|
||||||
continue
|
continue
|
||||||
sqlitedb.insert_data('testandpredict_groupby',tuple(row_dict.values()),columns=row_dict.keys())
|
sqlitedb.insert_data('testandpredict_groupby',tuple(row_dict.values()),columns=row_dict.keys())
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# 计算每个预测值与真实值之间的偏差率
|
# 计算每个预测值与真实值之间的偏差率
|
||||||
for model in allmodelnames:
|
for model in allmodelnames:
|
||||||
df_combined3[f'{model}_abs_error_rate'] = abs(df_combined3['y'] - df_combined3[model]) / df_combined3['y']
|
df_combined3[f'{model}_abs_error_rate'] = abs(df_combined3['y'] - df_combined3[model]) / df_combined3['y']
|
||||||
@ -612,8 +603,8 @@ def model_losss_juxiting(sqlitedb):
|
|||||||
upper_bound = df_combined3.loc[row.name,row['columns']].max()
|
upper_bound = df_combined3.loc[row.name,row['columns']].max()
|
||||||
# 计算下边界值
|
# 计算下边界值
|
||||||
lower_bound = df_combined3.loc[row.name,row['columns']].min()
|
lower_bound = df_combined3.loc[row.name,row['columns']].min()
|
||||||
return pd.Series([lower_bound, upper_bound], index=['lower_bound', 'upper_bound'])
|
return pd.Series([lower_bound, upper_bound], index=['min_within_quantile', 'max_within_quantile'])
|
||||||
df_combined3[['upper_bound','lower_bound']] = names_df.apply(add_upper_lower_bound, axis=1)
|
df_combined3[['min_within_quantile','max_within_quantile']] = names_df.apply(add_upper_lower_bound, axis=1)
|
||||||
|
|
||||||
|
|
||||||
def find_most_common_model():
|
def find_most_common_model():
|
||||||
@ -689,7 +680,12 @@ def model_losss_juxiting(sqlitedb):
|
|||||||
plt.figure(figsize=(20, 10))
|
plt.figure(figsize=(20, 10))
|
||||||
plt.plot(df['ds'], df['y'], label='真实值')
|
plt.plot(df['ds'], df['y'], label='真实值')
|
||||||
# 颜色填充
|
# 颜色填充
|
||||||
plt.fill_between(df['ds'], df['upper_bound'], df['lower_bound'], alpha=0.2)
|
plt.fill_between(df['ds'], df['max_within_quantile'], df['min_within_quantile'], alpha=0.2)
|
||||||
|
# markers = ['o', 's', '^', 'D', 'v', '*', 'p', 'h', 'H', '+', 'x', 'd']
|
||||||
|
# random_marker = random.choice(markers)
|
||||||
|
# for model in allmodelnames:
|
||||||
|
# for model in ['BiTCN','RNN']:
|
||||||
|
# plt.plot(df['ds'], df[model], label=model,marker=random_marker)
|
||||||
# plt.plot(df_combined3['ds'], df_combined3['min_abs_error_rate_prediction'], label='最小绝对误差', linestyle='--', color='orange')
|
# plt.plot(df_combined3['ds'], df_combined3['min_abs_error_rate_prediction'], label='最小绝对误差', linestyle='--', color='orange')
|
||||||
# 网格
|
# 网格
|
||||||
plt.grid(True)
|
plt.grid(True)
|
||||||
@ -758,7 +754,7 @@ def brent_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inpu
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
feature_data_df = pd.read_csv(os.path.join(dataset,'指标数据添加时间特征.csv'), parse_dates=['ds']).tail(60)
|
feature_data_df = pd.read_csv(os.path.join(dataset,'指标数据添加时间特征.csv'), parse_dates=['ds']).tail(60)
|
||||||
def draw_feature_trend(feature_data_df, features):
|
def draw_feature_trend(feature_data_df, features):
|
||||||
# 画特征近一周的趋势图
|
# 画特征近60天的趋势图
|
||||||
feature_df = feature_data_df[['ds','y']+features]
|
feature_df = feature_data_df[['ds','y']+features]
|
||||||
# 遍历X每一列,和yy画散点图 ,
|
# 遍历X每一列,和yy画散点图 ,
|
||||||
|
|
||||||
@ -821,7 +817,7 @@ def brent_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inpu
|
|||||||
content.append(Graphs.draw_text('1. 确定波动率置信区间:统计近60个交易日的真实价格波动率,找出在 10% ,90% 的分位值作为波动率置信区间;'))
|
content.append(Graphs.draw_text('1. 确定波动率置信区间:统计近60个交易日的真实价格波动率,找出在 10% ,90% 的分位值作为波动率置信区间;'))
|
||||||
content.append(Graphs.draw_text('2. 确定通道上界:在所有模型的预测结果中 <= 前一天真实价格 乘以 90%的置信波动分位数'))
|
content.append(Graphs.draw_text('2. 确定通道上界:在所有模型的预测结果中 <= 前一天真实价格 乘以 90%的置信波动分位数'))
|
||||||
content.append(Graphs.draw_text('3. 确定通道下界:在所有模型的预测结果中 >= 前一天真实价格 乘以 10%的置信波动分位数'))
|
content.append(Graphs.draw_text('3. 确定通道下界:在所有模型的预测结果中 >= 前一天真实价格 乘以 10%的置信波动分位数'))
|
||||||
content.append(Graphs.draw_text('4. 预测结果没有真实值作为参考依据,通道上界取近20个交易日内预测在上界值的模型对应的预测值,通道下界同理;'))
|
content.append(Graphs.draw_text('4. 预测结果没有真实值作为参考依据,通道上界取近60个交易日内预测在上界值的模型对应的预测值,通道下界同理;'))
|
||||||
content.append(Graphs.draw_text('5. 预测结果选用近20个交易日内,最多接近真实值的模型的预测值对应的预测结果;'))
|
content.append(Graphs.draw_text('5. 预测结果选用近20个交易日内,最多接近真实值的模型的预测值对应的预测结果;'))
|
||||||
content.append(Graphs.draw_text('6. 预测结果在通道外的,代表最接近真实值的预测结果不在置信波动范围内。'))
|
content.append(Graphs.draw_text('6. 预测结果在通道外的,代表最接近真实值的预测结果不在置信波动范围内。'))
|
||||||
|
|
||||||
@ -955,8 +951,6 @@ def brent_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inpu
|
|||||||
else:
|
else:
|
||||||
content.append(Graphs.draw_text(f'{name}类指标中,与预测目标y负相关的特征有:{negative_corr_features}'))
|
content.append(Graphs.draw_text(f'{name}类指标中,与预测目标y负相关的特征有:{negative_corr_features}'))
|
||||||
draw_feature_trend(feature_data_df, negative_corr_features)
|
draw_feature_trend(feature_data_df, negative_corr_features)
|
||||||
|
|
||||||
|
|
||||||
# 计算correlation_sum 第一行的相关性的绝对值的总和
|
# 计算correlation_sum 第一行的相关性的绝对值的总和
|
||||||
correlation_sum = correlation_matrix.abs().sum()
|
correlation_sum = correlation_matrix.abs().sum()
|
||||||
logger.info(f'{name}类指标的相关性总和为:{correlation_sum}')
|
logger.info(f'{name}类指标的相关性总和为:{correlation_sum}')
|
||||||
@ -975,10 +969,8 @@ def brent_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inpu
|
|||||||
content.append(Graphs.draw_img(os.path.join(dataset,'指标分类相关性总和的气泡图.png')))
|
content.append(Graphs.draw_img(os.path.join(dataset,'指标分类相关性总和的气泡图.png')))
|
||||||
content.append(Graphs.draw_text('气泡图中,横轴为指标分类,纵轴为指标分类下的特征数量,气泡的面积越大表示该分类中特征的相关系数和越大。'))
|
content.append(Graphs.draw_text('气泡图中,横轴为指标分类,纵轴为指标分类下的特征数量,气泡的面积越大表示该分类中特征的相关系数和越大。'))
|
||||||
logger.info(f'绘制相关性总和的气泡图结束')
|
logger.info(f'绘制相关性总和的气泡图结束')
|
||||||
|
|
||||||
content.append(Graphs.draw_little_title('模型选择:'))
|
content.append(Graphs.draw_little_title('模型选择:'))
|
||||||
content.append(Graphs.draw_text(f'预测使用了{num_models}个模型进行训练拟合,通过评估指标MAE从小到大排列,前5个模型的简介如下:'))
|
content.append(Graphs.draw_text(f'预测使用了{num_models}个模型进行训练拟合,通过评估指标MAE从小到大排列,前5个模型的简介如下:'))
|
||||||
|
|
||||||
### 读取模型简介
|
### 读取模型简介
|
||||||
with open(os.path.join(dataset,'model_introduction.txt'), 'r', encoding='utf-8') as f:
|
with open(os.path.join(dataset,'model_introduction.txt'), 'r', encoding='utf-8') as f:
|
||||||
for line in f:
|
for line in f:
|
||||||
@ -986,9 +978,7 @@ def brent_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inpu
|
|||||||
if line_split[0] in fivemodels_list:
|
if line_split[0] in fivemodels_list:
|
||||||
for introduction in line_split:
|
for introduction in line_split:
|
||||||
content.append(Graphs.draw_text(introduction))
|
content.append(Graphs.draw_text(introduction))
|
||||||
|
|
||||||
content.append(Graphs.draw_little_title('模型评估:'))
|
content.append(Graphs.draw_little_title('模型评估:'))
|
||||||
|
|
||||||
df = pd.read_csv(os.path.join(dataset,'model_evaluation.csv'),encoding='utf-8')
|
df = pd.read_csv(os.path.join(dataset,'model_evaluation.csv'),encoding='utf-8')
|
||||||
# 判断 df 的数值列转为float
|
# 判断 df 的数值列转为float
|
||||||
for col in eval_df.columns:
|
for col in eval_df.columns:
|
||||||
@ -1013,16 +1003,10 @@ def brent_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inpu
|
|||||||
content.append(Graphs.draw_text('模型拟合:'))
|
content.append(Graphs.draw_text('模型拟合:'))
|
||||||
# 添加图片
|
# 添加图片
|
||||||
content.append(Graphs.draw_img(os.path.join(dataset,'预测值与真实值对比图.png')))
|
content.append(Graphs.draw_img(os.path.join(dataset,'预测值与真实值对比图.png')))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
### 生成pdf文件
|
### 生成pdf文件
|
||||||
doc = SimpleDocTemplate(os.path.join(dataset,reportname), pagesize=letter)
|
doc = SimpleDocTemplate(os.path.join(dataset,reportname), pagesize=letter)
|
||||||
# doc = SimpleDocTemplate(os.path.join(dataset,'reportname.pdf'), pagesize=letter)
|
|
||||||
doc.build(content)
|
doc.build(content)
|
||||||
# pdf 上传到数字化信息平台
|
# pdf 上传到数字化信息平台
|
||||||
# 读取pdf并转为base64
|
|
||||||
try:
|
try:
|
||||||
if is_update_report:
|
if is_update_report:
|
||||||
with open(os.path.join(dataset,reportname), 'rb') as f:
|
with open(os.path.join(dataset,reportname), 'rb') as f:
|
||||||
|
Loading…
Reference in New Issue
Block a user