准确率计算调试代码
This commit is contained in:
parent
36e26427a7
commit
98c24327ee
219
auptest.py
Normal file
219
auptest.py
Normal file
@ -0,0 +1,219 @@
|
||||
from fastapi import FastAPI, HTTPException, Body
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
import requests
|
||||
from requests_ntlm import HttpNtlmAuth
|
||||
import urllib3
|
||||
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
|
||||
|
||||
|
||||
'''
|
||||
sql:
|
||||
|
||||
-- 创建名为pims_api_log的表
|
||||
CREATE TABLE pims_api_log (
|
||||
-- 自增的唯一标识主键
|
||||
id INT AUTO_INCREMENT PRIMARY KEY,
|
||||
-- 请求时间,记录请求到达服务器的时间戳,使用DATETIME类型方便查看具体时间
|
||||
request_time DATETIME NOT NULL,
|
||||
-- 请求的IP地址,用于标识请求来源,VARCHAR类型根据实际IP长度设置合适的长度
|
||||
request_ip VARCHAR(15) NOT NULL,
|
||||
-- 请求的URL,记录具体是向哪个接口路径发起的请求,VARCHAR类型可根据预计最长路径长度来设置长度
|
||||
request_url VARCHAR(255) NOT NULL,
|
||||
-- 请求方法,如GET、POST等,使用VARCHAR类型存储简短的方法名称
|
||||
request_method VARCHAR(10) NOT NULL,
|
||||
-- 接收到的请求参数,以JSON格式的文本存储,方便应对复杂结构的参数情况,TEXT类型可存储较长的文本内容
|
||||
request_params TEXT,
|
||||
-- 响应状态码,记录接口返回给客户端的HTTP状态码,INT类型
|
||||
response_status_code INT NOT NULL,
|
||||
-- 响应内容,同样以JSON格式的文本存储,便于保存各种格式的数据返回情况,TEXT类型
|
||||
response_content TEXT,
|
||||
-- 响应时间,记录接口完成处理并返回响应的时间戳,DATETIME类型
|
||||
response_time DATETIME NOT NULL
|
||||
);
|
||||
'''
|
||||
|
||||
|
||||
import mysql.connector
|
||||
from datetime import datetime
|
||||
|
||||
# 配置数据库连接信息,根据实际情况修改
|
||||
config = {
|
||||
"user": "your_username",
|
||||
"password": "your_password",
|
||||
"host": "your_host",
|
||||
"database": "your_database"
|
||||
}
|
||||
|
||||
def insert_api_log(request_time, request_ip, request_url, request_method, request_params, response_status_code, response_content, response_time):
|
||||
try:
|
||||
# 建立数据库连接
|
||||
cnx = mysql.connector.connect(**config)
|
||||
cursor = cnx.cursor()
|
||||
# 插入数据的SQL语句
|
||||
insert_query = """
|
||||
INSERT INTO pims_api_log (request_time, request_ip, request_url, request_method, request_params, response_status_code, response_content, response_time)
|
||||
VALUES (%s, %s, %s, %s, %s, %s, %s, %s)
|
||||
"""
|
||||
# 准备要插入的数据,注意数据顺序要和SQL语句中的占位符顺序一致
|
||||
data = (request_time, request_ip, request_url, request_method, request_params, response_status_code, response_content, response_time)
|
||||
# 执行插入操作
|
||||
cursor.execute(insert_query, data)
|
||||
# 提交事务,使插入生效
|
||||
cnx.commit()
|
||||
except mysql.connector.Error as err:
|
||||
print(f"Error: {err}")
|
||||
finally:
|
||||
# 关闭游标和连接
|
||||
if cursor:
|
||||
cursor.close()
|
||||
if cnx:
|
||||
cnx.close()
|
||||
|
||||
|
||||
|
||||
|
||||
app = FastAPI(docs_url="/docs")
|
||||
|
||||
# 允许跨域请求
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
headers = {'content-type': 'application/json;charset=UTF-8'}
|
||||
|
||||
# 您的 GraphQL API eg: url = 'http://10.88.14.86/AspenTech/AspenUnified/api/v1/model/Chambroad20241205/graphql'
|
||||
graphql_host = '10.88.14.86'
|
||||
graphql_path = '/AspenTech/AspenUnified/api/v1/model/Chambroad20241205/graphql'
|
||||
|
||||
|
||||
query = """
|
||||
mutation{
|
||||
purchases{
|
||||
update(inputs:[%s
|
||||
]
|
||||
}])
|
||||
}
|
||||
caseExecution {
|
||||
submitCaseStack(
|
||||
input:{
|
||||
name: "Job2"
|
||||
cases: [
|
||||
{name: "11月度计划"}
|
||||
{name: "二催开工"}
|
||||
{name: "一焦化停工"}
|
||||
{name: "焦化加工油浆"}
|
||||
{name: "焦化加工低硫原油"}
|
||||
{name: "焦化加工低硫渣油"}
|
||||
]
|
||||
}
|
||||
)
|
||||
{id}
|
||||
waitForCaseStackJob(name: "Job2")
|
||||
{
|
||||
started
|
||||
submitted
|
||||
finished
|
||||
executionStatus
|
||||
cases{
|
||||
items{
|
||||
name
|
||||
objectiveValue
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
payload_json = {
|
||||
"query": query,
|
||||
"operationName": ""
|
||||
}
|
||||
|
||||
graphql_username = "bw19382"
|
||||
graphql_password = "Fudong3!"
|
||||
auth = HttpNtlmAuth(f'{graphql_username}', f'{graphql_password}')
|
||||
|
||||
example_query = '''
|
||||
'inputs':{
|
||||
name:"11月度计划"
|
||||
inputs:[
|
||||
{
|
||||
name:"CWT"
|
||||
inputs:[
|
||||
{
|
||||
field:Cost
|
||||
periodName:"1"
|
||||
value: 3100
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
name:"VRa"
|
||||
inputs:[
|
||||
{
|
||||
field:Cost
|
||||
periodName:"1"
|
||||
value: 3333
|
||||
}
|
||||
]
|
||||
},
|
||||
'''
|
||||
|
||||
@app.post("/graphql")
|
||||
async def execute_graphql_query(
|
||||
query: str = Body(..., example=example_query) # 使用Body和example参数添加示例
|
||||
):
|
||||
session = requests.Session()
|
||||
response = session.post(url=url, headers=headers, json=payload_json, auth=auth, verify=False)
|
||||
if response.status_code != 200:
|
||||
raise HTTPException(status_code=response.status_code, detail=response.text)
|
||||
return response.json()
|
||||
|
||||
query2 = '''
|
||||
query
|
||||
{
|
||||
cases
|
||||
{
|
||||
items
|
||||
{
|
||||
name
|
||||
}
|
||||
}
|
||||
}
|
||||
'''
|
||||
|
||||
payload_json2 = {
|
||||
"query": query2,
|
||||
"operationName": ""
|
||||
}
|
||||
|
||||
@app.get("/cases")
|
||||
async def get_cases_query_async():
|
||||
session = requests.Session()
|
||||
response = session.post(url=url, headers=headers, json=payload_json2, auth=auth, verify=False)
|
||||
insert_api_log(
|
||||
datetime.now(),
|
||||
'IP_ADDRESS '12
|
||||
'IP_ADDRESS',
|
||||
'URL_ADDRESS,
|
||||
'http://127.0.0.1:8000/cases',
|
||||
'GET',
|
||||
'',
|
||||
response.status_code,
|
||||
response.text,
|
||||
datetime.now()
|
||||
)
|
||||
if response.status_code!= 200:
|
||||
raise HTTPException(status_code=response.status_code, detail=response.text)
|
||||
|
||||
return response.json()
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
uvicorn.run(app, host="127.0.0.1", port=8000)
|
@ -2,7 +2,7 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 136,
|
||||
"execution_count": 2,
|
||||
"id": "9daadf20-caa6-4b25-901c-6cc3ef563f58",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -10,35 +10,67 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"(75, 9)\n",
|
||||
"(85, 28)\n",
|
||||
"(20, 4)\n",
|
||||
"(75, 12)\n",
|
||||
" id PREDICT_DATE CREAT_DATE MIN_PRICE MAX_PRICE HIGH_PRICE_x LOW_PRICE_x \\\n",
|
||||
"0 1 2024-11-26 2024-11-25 71.071556 76.006900 \n",
|
||||
"1 2 2024-11-27 2024-11-25 71.003624 75.580560 \n",
|
||||
"2 3 2024-11-28 2024-11-25 72.083850 76.204260 \n",
|
||||
"3 4 2024-11-29 2024-11-25 71.329730 75.703950 \n",
|
||||
"4 5 2024-12-02 2024-11-25 71.720825 76.264275 \n",
|
||||
"(85, 31)\n",
|
||||
" ds NHITS Informer LSTM iTransformer TSMixer \\\n",
|
||||
"0 2024-11-25 75.714300 75.523370 73.614220 75.27068 75.03936 \n",
|
||||
"1 2024-11-26 76.039635 75.558270 73.692310 75.04110 74.60100 \n",
|
||||
"2 2024-11-27 77.375790 75.361885 73.826140 74.99121 74.37731 \n",
|
||||
"3 2024-11-28 78.872400 76.339920 73.883484 75.79425 74.04826 \n",
|
||||
"4 2024-11-29 79.576970 76.333170 73.876396 75.89008 74.07330 \n",
|
||||
"\n",
|
||||
" RIGHT_ROTE ds 序号 LOW_PRICE_y HIGH_PRICE_y \n",
|
||||
"0 2024-11-26 9.0 71.63 73.80 \n",
|
||||
"1 2024-11-27 8.0 71.71 72.85 \n",
|
||||
"2 2024-11-28 7.0 71.85 72.96 \n",
|
||||
"3 2024-11-29 6.0 71.75 73.34 \n",
|
||||
"4 2024-12-02 5.0 71.52 72.89 \n",
|
||||
" id PREDICT_DATE CREAT_DATE MIN_PRICE MAX_PRICE HIGH_PRICE_x \\\n",
|
||||
"70 71 2024-11-25 2024-11-22 74.53063 76.673140 \n",
|
||||
"71 72 2024-11-26 2024-11-22 74.44043 76.874565 \n",
|
||||
"72 73 2024-11-27 2024-11-22 74.66318 76.734130 \n",
|
||||
"73 74 2024-11-28 2024-11-22 74.70841 77.141050 \n",
|
||||
"74 75 2024-11-29 2024-11-22 74.70321 77.746170 \n",
|
||||
" TSMixerx PatchTST RNN GRU ... y \\\n",
|
||||
"0 74.581190 75.70277 74.721280 74.512060 ... 73.010002 \n",
|
||||
"1 73.496025 75.97611 74.588060 74.713425 ... 72.809998 \n",
|
||||
"2 73.522026 76.48628 74.486400 74.946010 ... 72.830002 \n",
|
||||
"3 73.416306 76.38267 75.195710 74.946014 ... 73.279999 \n",
|
||||
"4 73.521570 76.20661 75.089966 74.935165 ... 72.940002 \n",
|
||||
"\n",
|
||||
" LOW_PRICE_x RIGHT_ROTE ds 序号 LOW_PRICE_y HIGH_PRICE_y \n",
|
||||
"70 2024-11-25 10.0 72.30 74.83 \n",
|
||||
"71 2024-11-26 9.0 71.63 73.80 \n",
|
||||
"72 2024-11-27 8.0 71.71 72.85 \n",
|
||||
"73 2024-11-28 7.0 71.85 72.96 \n",
|
||||
"74 2024-11-29 6.0 71.75 73.34 \n"
|
||||
" min_within_quantile max_within_quantile id CREAT_DATE min_price \\\n",
|
||||
"0 74.41491 75.29100 1 2024-11-22 74.414910 \n",
|
||||
"1 74.11780 74.95678 2 2024-11-22 73.496025 \n",
|
||||
"2 73.93820 74.50395 3 2024-11-22 73.522026 \n",
|
||||
"3 73.85808 74.46382 4 2024-11-22 73.416306 \n",
|
||||
"4 73.96690 74.81860 5 2024-11-22 73.521570 \n",
|
||||
"\n",
|
||||
" max_price 序号 LOW_PRICE HIGH_PRICE \n",
|
||||
"0 75.959854 10.0 72.30 74.83 \n",
|
||||
"1 77.182580 9.0 71.63 73.80 \n",
|
||||
"2 78.378624 8.0 71.71 72.85 \n",
|
||||
"3 79.415400 7.0 71.85 72.96 \n",
|
||||
"4 79.576970 6.0 71.75 73.34 \n",
|
||||
"\n",
|
||||
"[5 rows x 31 columns]\n",
|
||||
" ds NHITS Informer LSTM iTransformer TSMixer \\\n",
|
||||
"80 2024-12-16 74.53431 73.944080 71.68200 74.022340 74.295820 \n",
|
||||
"81 2024-12-17 74.81450 73.830450 71.95232 74.314950 74.167290 \n",
|
||||
"82 2024-12-18 75.55861 73.525100 72.00824 74.441380 74.212180 \n",
|
||||
"83 2024-12-19 75.36518 74.012215 72.20199 74.397190 74.330130 \n",
|
||||
"84 2024-12-20 74.78187 73.929596 72.23908 74.510895 74.208084 \n",
|
||||
"\n",
|
||||
" TSMixerx PatchTST RNN GRU ... y min_within_quantile \\\n",
|
||||
"80 74.41700 74.587390 73.607780 73.747700 ... NaN 74.231680 \n",
|
||||
"81 74.36576 74.363060 73.688736 73.833950 ... NaN 73.735420 \n",
|
||||
"82 74.29719 74.073555 73.456700 74.146034 ... NaN 74.073555 \n",
|
||||
"83 73.79145 74.529945 74.230125 74.144520 ... NaN 74.330130 \n",
|
||||
"84 74.59672 74.231255 74.201860 73.996100 ... NaN 74.083810 \n",
|
||||
"\n",
|
||||
" max_within_quantile id CREAT_DATE min_price max_price 序号 LOW_PRICE \\\n",
|
||||
"80 74.621160 81 2024-12-16 72.75007 74.62116 NaN NaN \n",
|
||||
"81 74.682365 82 2024-12-16 72.72196 74.81450 NaN NaN \n",
|
||||
"82 75.157074 83 2024-12-16 73.12483 75.55861 NaN NaN \n",
|
||||
"83 75.339240 84 2024-12-16 73.07359 75.36518 NaN NaN \n",
|
||||
"84 74.604610 85 2024-12-16 72.93583 74.78187 NaN NaN \n",
|
||||
"\n",
|
||||
" HIGH_PRICE \n",
|
||||
"80 NaN \n",
|
||||
"81 NaN \n",
|
||||
"82 NaN \n",
|
||||
"83 NaN \n",
|
||||
"84 NaN \n",
|
||||
"\n",
|
||||
"[5 rows x 31 columns]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@ -48,17 +80,19 @@
|
||||
"import pandas as pd\n",
|
||||
"\n",
|
||||
"# 预测价格数据\n",
|
||||
"dbfilename = os.path.join(r'D:\\code\\PriceForecast\\yuanyoudataset','jbsh_yuanyou.db')\n",
|
||||
"conn = sqlite3.connect(dbfilename)\n",
|
||||
"query = 'SELECT * FROM accuracy'\n",
|
||||
"df1 = pd.read_sql_query(query, conn)\n",
|
||||
"df1['ds'] = df1['PREDICT_DATE']\n",
|
||||
"conn.close()\n",
|
||||
"# dbfilename = os.path.join(r'D:\\code\\PriceForecast\\yuanyoudataset','jbsh_yuanyou.db')\n",
|
||||
"# conn = sqlite3.connect(dbfilename)\n",
|
||||
"# query = 'SELECT * FROM accuracy'\n",
|
||||
"# df1 = pd.read_sql_query(query, conn)\n",
|
||||
"# df1['ds'] = df1['PREDICT_DATE']\n",
|
||||
"# conn.close()\n",
|
||||
"# print(df1.shape)\n",
|
||||
"\n",
|
||||
"# 预测价格数据\n",
|
||||
"dfcsvfilename = os.path.join(r'D:\\code\\PriceForecast\\yuanyoudataset','accuracy_ten.csv')\n",
|
||||
"df1 = pd.read_csv(dfcsvfilename)\n",
|
||||
"print(df1.shape)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# 最高最低价\n",
|
||||
"xlsfilename = os.path.join(r'D:\\code\\PriceForecast\\yuanyoudataset','数据项下载.xls')\n",
|
||||
"df2 = pd.read_excel(xlsfilename)[5:]\n",
|
||||
@ -70,7 +104,7 @@
|
||||
"df = pd.merge(df1,df2,on=['ds'],how='left')\n",
|
||||
"\n",
|
||||
"df['ds'] = pd.to_datetime(df['ds'])\n",
|
||||
"df['PREDICT_DATE'] = pd.to_datetime(df['PREDICT_DATE'])\n",
|
||||
"# df['PREDICT_DATE'] = pd.to_datetime(df['PREDICT_DATE'])\n",
|
||||
"df = df.reindex()\n",
|
||||
"\n",
|
||||
"print(df.shape)\n",
|
||||
@ -87,28 +121,22 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 137,
|
||||
"execution_count": 3,
|
||||
"id": "e51c3fd0-6bff-45de-b8b6-971e7986c7a7",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" ds ACCURACY HIGH_PRICE_y LOW_PRICE_y MIN_PRICE MAX_PRICE\n",
|
||||
"0 2024-11-26 1.000000 73.80 71.63 71.071556 76.006900\n",
|
||||
"1 2024-11-27 1.000000 72.85 71.71 71.003624 75.580560\n",
|
||||
"2 2024-11-28 0.789324 72.96 71.85 72.083850 76.204260\n",
|
||||
"3 2024-11-29 1.000000 73.34 71.75 71.329730 75.703950\n",
|
||||
"4 2024-12-02 0.853412 72.89 71.52 71.720825 76.264275\n",
|
||||
".. ... ... ... ... ... ...\n",
|
||||
"70 2024-11-25 0.118328 74.83 72.30 74.530630 76.673140\n",
|
||||
"71 2024-11-26 0.000000 73.80 71.63 74.440430 76.874565\n",
|
||||
"72 2024-11-27 0.000000 72.85 71.71 74.663180 76.734130\n",
|
||||
"73 2024-11-28 0.000000 72.96 71.85 74.708410 77.141050\n",
|
||||
"74 2024-11-29 0.000000 73.34 71.75 74.703210 77.746170\n",
|
||||
"\n",
|
||||
"[75 rows x 6 columns]\n"
|
||||
"ename": "KeyError",
|
||||
"evalue": "\"None of [Index(['HIGH_PRICE_y', 'LOW_PRICE_y', 'MIN_PRICE', 'MAX_PRICE'], dtype='object')] are in the [columns]\"",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)",
|
||||
"Cell \u001b[1;32mIn[3], line 15\u001b[0m\n\u001b[0;32m 12\u001b[0m \u001b[38;5;66;03m# 使用 apply 函数来应用计算准确率的函数\u001b[39;00m\n\u001b[0;32m 14\u001b[0m columns \u001b[38;5;241m=\u001b[39m [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mHIGH_PRICE_y\u001b[39m\u001b[38;5;124m'\u001b[39m,\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mLOW_PRICE_y\u001b[39m\u001b[38;5;124m'\u001b[39m,\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mMIN_PRICE\u001b[39m\u001b[38;5;124m'\u001b[39m,\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mMAX_PRICE\u001b[39m\u001b[38;5;124m'\u001b[39m]\n\u001b[1;32m---> 15\u001b[0m df[columns] \u001b[38;5;241m=\u001b[39m df[columns]\u001b[38;5;241m.\u001b[39mastype(\u001b[38;5;28mfloat\u001b[39m)\n\u001b[0;32m 16\u001b[0m df[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mACCURACY\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m df\u001b[38;5;241m.\u001b[39mapply(calculate_accuracy, axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[0;32m 19\u001b[0m \u001b[38;5;66;03m# 打印结果\u001b[39;00m\n",
|
||||
"File \u001b[1;32md:\\ProgramData\\anaconda3\\Lib\\site-packages\\pandas\\core\\frame.py:3899\u001b[0m, in \u001b[0;36mDataFrame.__getitem__\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 3897\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_iterator(key):\n\u001b[0;32m 3898\u001b[0m key \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(key)\n\u001b[1;32m-> 3899\u001b[0m indexer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcolumns\u001b[38;5;241m.\u001b[39m_get_indexer_strict(key, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcolumns\u001b[39m\u001b[38;5;124m\"\u001b[39m)[\u001b[38;5;241m1\u001b[39m]\n\u001b[0;32m 3901\u001b[0m \u001b[38;5;66;03m# take() does not accept boolean indexers\u001b[39;00m\n\u001b[0;32m 3902\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(indexer, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdtype\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m) \u001b[38;5;241m==\u001b[39m \u001b[38;5;28mbool\u001b[39m:\n",
|
||||
"File \u001b[1;32md:\\ProgramData\\anaconda3\\Lib\\site-packages\\pandas\\core\\indexes\\base.py:6115\u001b[0m, in \u001b[0;36mIndex._get_indexer_strict\u001b[1;34m(self, key, axis_name)\u001b[0m\n\u001b[0;32m 6112\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 6113\u001b[0m keyarr, indexer, new_indexer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_reindex_non_unique(keyarr)\n\u001b[1;32m-> 6115\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_raise_if_missing(keyarr, indexer, axis_name)\n\u001b[0;32m 6117\u001b[0m keyarr \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtake(indexer)\n\u001b[0;32m 6118\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(key, Index):\n\u001b[0;32m 6119\u001b[0m \u001b[38;5;66;03m# GH 42790 - Preserve name from an Index\u001b[39;00m\n",
|
||||
"File \u001b[1;32md:\\ProgramData\\anaconda3\\Lib\\site-packages\\pandas\\core\\indexes\\base.py:6176\u001b[0m, in \u001b[0;36mIndex._raise_if_missing\u001b[1;34m(self, key, indexer, axis_name)\u001b[0m\n\u001b[0;32m 6174\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m use_interval_msg:\n\u001b[0;32m 6175\u001b[0m key \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(key)\n\u001b[1;32m-> 6176\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNone of [\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkey\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m] are in the [\u001b[39m\u001b[38;5;132;01m{\u001b[39;00maxis_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m]\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 6178\u001b[0m not_found \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(ensure_index(key)[missing_mask\u001b[38;5;241m.\u001b[39mnonzero()[\u001b[38;5;241m0\u001b[39m]]\u001b[38;5;241m.\u001b[39munique())\n\u001b[0;32m 6179\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnot_found\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m not in index\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
|
||||
"\u001b[1;31mKeyError\u001b[0m: \"None of [Index(['HIGH_PRICE_y', 'LOW_PRICE_y', 'MIN_PRICE', 'MAX_PRICE'], dtype='object')] are in the [columns]\""
|
||||
]
|
||||
}
|
||||
],
|
||||
|
Loading…
Reference in New Issue
Block a user