沥青预测
This commit is contained in:
parent
50797d0121
commit
9abd7475ba
BIN
aisenzhecode/沥青/定性模型数据项12-11 - 2025年1月2日 备份.xls
Normal file
BIN
aisenzhecode/沥青/定性模型数据项12-11 - 2025年1月2日 备份.xls
Normal file
Binary file not shown.
Binary file not shown.
BIN
aisenzhecode/沥青/定性模型计算规则与权重.xls
Normal file
BIN
aisenzhecode/沥青/定性模型计算规则与权重.xls
Normal file
Binary file not shown.
Binary file not shown.
@ -2,7 +2,7 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@ -188,7 +188,6 @@
|
||||
" h = df1.loc[1,'订单结构']\n",
|
||||
" x = round(0.08*a+0*b+0.15*c+0.08*d +0.03*e +0.08*f +0.4*g+0.18*h+df1.loc[0,'京博指导价'],2)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" login_res1 = requests.post(url=login_push_url, json=login_push_data, timeout=(3, 5))\n",
|
||||
" text1 = json.loads(login_res1.text)\n",
|
||||
" token_push = text1[\"data\"][\"accessToken\"]\n",
|
||||
@ -207,7 +206,7 @@
|
||||
" ]\n",
|
||||
" }\n",
|
||||
" headers1 = {\"Authorization\": token_push}\n",
|
||||
" res = requests.post(url=upload_url, headers=headers1, json=data1, timeout=(3, 5))\n",
|
||||
" # res = requests.post(url=upload_url, headers=headers1, json=data1, timeout=(3, 5))\n",
|
||||
" \n",
|
||||
" \n",
|
||||
" \n",
|
||||
@ -471,27 +470,587 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"20230803\n",
|
||||
"20230804\n",
|
||||
"20230805\n",
|
||||
"20230806\n",
|
||||
"20230807\n",
|
||||
"20230808\n",
|
||||
"20230809\n",
|
||||
"20230810\n",
|
||||
"20230811\n",
|
||||
"20230812\n",
|
||||
"20230813\n",
|
||||
"20230814\n",
|
||||
"20230815\n",
|
||||
"20230816\n",
|
||||
"20230817\n",
|
||||
"20230818\n",
|
||||
"20230819\n",
|
||||
"20230820\n",
|
||||
"20230821\n",
|
||||
"20230822\n",
|
||||
"20230823\n",
|
||||
"20230824\n",
|
||||
"20230825\n",
|
||||
"20230826\n",
|
||||
"20230827\n",
|
||||
"20230828\n",
|
||||
"20230829\n",
|
||||
"20230830\n",
|
||||
"20230831\n",
|
||||
"20230901\n",
|
||||
"20230902\n",
|
||||
"20230903\n",
|
||||
"20230904\n",
|
||||
"20230905\n",
|
||||
"20230906\n",
|
||||
"20230907\n",
|
||||
"20230908\n",
|
||||
"20230909\n",
|
||||
"20230910\n",
|
||||
"20230911\n",
|
||||
"20230912\n",
|
||||
"20230913\n",
|
||||
"20230914\n",
|
||||
"20230915\n",
|
||||
"20230916\n",
|
||||
"20230917\n",
|
||||
"20230918\n",
|
||||
"20230919\n",
|
||||
"20230920\n",
|
||||
"20230921\n",
|
||||
"20230922\n",
|
||||
"20230923\n",
|
||||
"20230924\n",
|
||||
"20230925\n",
|
||||
"20230926\n",
|
||||
"20230927\n",
|
||||
"20230928\n",
|
||||
"20230929\n",
|
||||
"20230930\n",
|
||||
"20231001\n",
|
||||
"20231002\n",
|
||||
"20231003\n",
|
||||
"20231004\n",
|
||||
"20231005\n",
|
||||
"20231006\n",
|
||||
"20231007\n",
|
||||
"20231008\n",
|
||||
"20231009\n",
|
||||
"20231010\n",
|
||||
"20231011\n",
|
||||
"20231012\n",
|
||||
"20231013\n",
|
||||
"20231014\n",
|
||||
"20231015\n",
|
||||
"20231016\n",
|
||||
"20231017\n",
|
||||
"20231018\n",
|
||||
"20231019\n",
|
||||
"20231020\n",
|
||||
"20231021\n",
|
||||
"20231022\n",
|
||||
"20231023\n",
|
||||
"20231024\n",
|
||||
"20231025\n",
|
||||
"20231026\n",
|
||||
"20231027\n",
|
||||
"20231028\n",
|
||||
"20231029\n",
|
||||
"20231030\n",
|
||||
"20231031\n",
|
||||
"20231101\n",
|
||||
"20231102\n",
|
||||
"20231103\n",
|
||||
"20231104\n",
|
||||
"20231105\n",
|
||||
"20231106\n",
|
||||
"20231107\n",
|
||||
"20231108\n",
|
||||
"20231109\n",
|
||||
"20231110\n",
|
||||
"20231111\n",
|
||||
"20231112\n",
|
||||
"20231113\n",
|
||||
"20231114\n",
|
||||
"20231115\n",
|
||||
"20231116\n",
|
||||
"20231117\n",
|
||||
"20231118\n",
|
||||
"20231119\n",
|
||||
"20231120\n",
|
||||
"20231121\n",
|
||||
"20231122\n",
|
||||
"20231123\n",
|
||||
"20231124\n",
|
||||
"20231125\n",
|
||||
"20231126\n",
|
||||
"20231127\n",
|
||||
"20231128\n",
|
||||
"20231129\n",
|
||||
"20231130\n",
|
||||
"20231201\n",
|
||||
"20231202\n",
|
||||
"20231203\n",
|
||||
"20231204\n",
|
||||
"20231205\n",
|
||||
"20231206\n",
|
||||
"20231207\n",
|
||||
"20231208\n",
|
||||
"20231209\n",
|
||||
"20231210\n",
|
||||
"20231211\n",
|
||||
"20231212\n",
|
||||
"20231213\n",
|
||||
"{'dataDate': '20231213', 'dataItemNo': 'SDHYDDJG'}\n",
|
||||
"{'dataDate': '20231213', 'dataItemNo': 'SDHYSCQK'}\n",
|
||||
"{'dataDate': '20231213', 'dataItemNo': 'SDHYZJYS'}\n",
|
||||
"20231214\n",
|
||||
"20231215\n",
|
||||
"20231216\n",
|
||||
"20231217\n",
|
||||
"20231218\n",
|
||||
"20231219\n",
|
||||
"20231220\n",
|
||||
"{'dataDate': '20231220', 'dataItemNo': 'SDHYDDJG'}\n",
|
||||
"{'dataDate': '20231220', 'dataItemNo': 'SDHYSCQK'}\n",
|
||||
"{'dataDate': '20231220', 'dataItemNo': 'SDHYZJYS'}\n",
|
||||
"20231221\n",
|
||||
"20231222\n",
|
||||
"20231223\n",
|
||||
"20231224\n",
|
||||
"20231225\n",
|
||||
"20231226\n",
|
||||
"20231227\n",
|
||||
"{'dataDate': '20231227', 'dataItemNo': 'SDHYDDJG'}\n",
|
||||
"{'dataDate': '20231227', 'dataItemNo': 'SDHYSCQK'}\n",
|
||||
"{'dataDate': '20231227', 'dataItemNo': 'SDHYZJYS'}\n",
|
||||
"20231228\n",
|
||||
"20231229\n",
|
||||
"20231230\n",
|
||||
"20231231\n",
|
||||
"20240101\n",
|
||||
"20240102\n",
|
||||
"20240103\n",
|
||||
"{'dataDate': '20240103', 'dataItemNo': 'SDHYDDJG'}\n",
|
||||
"{'dataDate': '20240103', 'dataItemNo': 'SDHYSCQK'}\n",
|
||||
"{'dataDate': '20240103', 'dataItemNo': 'SDHYZJYS'}\n",
|
||||
"20240104\n",
|
||||
"20240105\n",
|
||||
"20240106\n",
|
||||
"20240107\n",
|
||||
"20240108\n",
|
||||
"20240109\n",
|
||||
"20240110\n",
|
||||
"{'dataDate': '20240110', 'dataItemNo': 'SDHYDDJG'}\n",
|
||||
"20240111\n",
|
||||
"20240112\n",
|
||||
"20240113\n",
|
||||
"20240114\n",
|
||||
"20240115\n",
|
||||
"20240116\n",
|
||||
"20240117\n",
|
||||
"{'dataDate': '20240117', 'dataItemNo': 'SDHYDDJG'}\n",
|
||||
"{'dataDate': '20240117', 'dataItemNo': 'SDHYSCQK'}\n",
|
||||
"20240118\n",
|
||||
"20240119\n",
|
||||
"20240120\n",
|
||||
"20240121\n",
|
||||
"20240122\n",
|
||||
"20240123\n",
|
||||
"20240124\n",
|
||||
"{'dataDate': '20240124', 'dataItemNo': 'SDHYDDJG'}\n",
|
||||
"{'dataDate': '20240124', 'dataItemNo': 'SDHYSCQK'}\n",
|
||||
"20240125\n",
|
||||
"20240126\n",
|
||||
"20240127\n",
|
||||
"20240128\n",
|
||||
"20240129\n",
|
||||
"20240130\n",
|
||||
"20240131\n",
|
||||
"{'dataDate': '20240131', 'dataItemNo': 'SDHYDDJG'}\n",
|
||||
"{'dataDate': '20240131', 'dataItemNo': 'SDHYSCQK'}\n",
|
||||
"20240201\n",
|
||||
"20240202\n",
|
||||
"20240203\n",
|
||||
"20240204\n",
|
||||
"20240205\n",
|
||||
"20240206\n",
|
||||
"20240207\n",
|
||||
"{'dataDate': '20240207', 'dataItemNo': 'SDHYDDJG'}\n",
|
||||
"{'dataDate': '20240207', 'dataItemNo': 'SDHYSCQK'}\n",
|
||||
"20240208\n",
|
||||
"20240209\n",
|
||||
"20240210\n",
|
||||
"20240211\n",
|
||||
"20240212\n",
|
||||
"20240213\n",
|
||||
"20240214\n",
|
||||
"{'dataDate': '20240214', 'dataItemNo': 'SDHYDDJG'}\n",
|
||||
"{'dataDate': '20240214', 'dataItemNo': 'SDHYSCQK'}\n",
|
||||
"20240215\n",
|
||||
"20240216\n",
|
||||
"20240217\n",
|
||||
"20240218\n",
|
||||
"20240219\n",
|
||||
"20240220\n",
|
||||
"20240221\n",
|
||||
"20240222\n",
|
||||
"20240223\n",
|
||||
"20240224\n",
|
||||
"20240225\n",
|
||||
"20240226\n",
|
||||
"20240227\n",
|
||||
"20240228\n",
|
||||
"20240229\n",
|
||||
"20240301\n",
|
||||
"20240302\n",
|
||||
"20240303\n",
|
||||
"20240304\n",
|
||||
"20240305\n",
|
||||
"20240306\n",
|
||||
"{'dataDate': '20240306', 'dataItemNo': 'SDHYDDJG'}\n",
|
||||
"{'dataDate': '20240306', 'dataItemNo': 'SDHYSCQK'}\n",
|
||||
"20240307\n",
|
||||
"20240308\n",
|
||||
"20240309\n",
|
||||
"20240310\n",
|
||||
"20240311\n",
|
||||
"20240312\n",
|
||||
"20240313\n",
|
||||
"{'dataDate': '20240313', 'dataItemNo': 'SDHYDDJG'}\n",
|
||||
"{'dataDate': '20240313', 'dataItemNo': 'SDHYSCQK'}\n",
|
||||
"20240314\n",
|
||||
"20240315\n",
|
||||
"20240316\n",
|
||||
"20240317\n",
|
||||
"20240318\n",
|
||||
"20240319\n",
|
||||
"20240320\n",
|
||||
"{'dataDate': '20240320', 'dataItemNo': 'SDHYDDJG'}\n",
|
||||
"{'dataDate': '20240320', 'dataItemNo': 'SDHYSCQK'}\n",
|
||||
"20240321\n",
|
||||
"20240322\n",
|
||||
"20240323\n",
|
||||
"20240324\n",
|
||||
"20240325\n",
|
||||
"20240326\n",
|
||||
"20240327\n",
|
||||
"{'dataDate': '20240327', 'dataItemNo': 'SDHYDDJG'}\n",
|
||||
"{'dataDate': '20240327', 'dataItemNo': 'SDHYSCQK'}\n",
|
||||
"20240328\n",
|
||||
"20240329\n",
|
||||
"20240330\n",
|
||||
"20240331\n",
|
||||
"20240401\n",
|
||||
"20240402\n",
|
||||
"20240403\n",
|
||||
"{'dataDate': '20240403', 'dataItemNo': 'SDHYDDJG'}\n",
|
||||
"{'dataDate': '20240403', 'dataItemNo': 'SDHYSCQK'}\n",
|
||||
"20240404\n",
|
||||
"20240405\n",
|
||||
"20240406\n",
|
||||
"20240407\n",
|
||||
"20240408\n",
|
||||
"20240409\n",
|
||||
"20240410\n",
|
||||
"{'dataDate': '20240410', 'dataItemNo': 'SDHYDDJG'}\n",
|
||||
"{'dataDate': '20240410', 'dataItemNo': 'SDHYSCQK'}\n",
|
||||
"20240411\n",
|
||||
"20240412\n",
|
||||
"20240413\n",
|
||||
"20240414\n",
|
||||
"20240415\n",
|
||||
"20240416\n",
|
||||
"20240417\n",
|
||||
"{'dataDate': '20240417', 'dataItemNo': 'SDHYDDJG'}\n",
|
||||
"{'dataDate': '20240417', 'dataItemNo': 'SDHYSCQK'}\n",
|
||||
"20240418\n",
|
||||
"20240419\n",
|
||||
"20240420\n",
|
||||
"20240421\n",
|
||||
"20240422\n",
|
||||
"20240423\n",
|
||||
"20240424\n",
|
||||
"{'dataDate': '20240424', 'dataItemNo': 'SDHYDDJG'}\n",
|
||||
"{'dataDate': '20240424', 'dataItemNo': 'SDHYSCQK'}\n",
|
||||
"20240425\n",
|
||||
"20240426\n",
|
||||
"20240427\n",
|
||||
"20240428\n",
|
||||
"20240429\n",
|
||||
"20240430\n",
|
||||
"20240501\n",
|
||||
"{'dataDate': '20240501', 'dataItemNo': 'SDHYDDJG'}\n",
|
||||
"{'dataDate': '20240501', 'dataItemNo': 'SDHYSCQK'}\n",
|
||||
"20240502\n",
|
||||
"20240503\n",
|
||||
"20240504\n",
|
||||
"20240505\n",
|
||||
"20240506\n",
|
||||
"20240507\n",
|
||||
"20240508\n",
|
||||
"20240509\n",
|
||||
"20240510\n",
|
||||
"20240511\n",
|
||||
"20240512\n",
|
||||
"20240513\n",
|
||||
"20240514\n",
|
||||
"20240515\n",
|
||||
"20240516\n",
|
||||
"20240517\n",
|
||||
"20240518\n",
|
||||
"20240519\n",
|
||||
"20240520\n",
|
||||
"20240521\n",
|
||||
"20240522\n",
|
||||
"20240523\n",
|
||||
"20240524\n",
|
||||
"20240525\n",
|
||||
"20240526\n",
|
||||
"20240527\n",
|
||||
"20240528\n",
|
||||
"20240529\n",
|
||||
"20240530\n",
|
||||
"20240531\n",
|
||||
"20240601\n",
|
||||
"20240602\n",
|
||||
"20240603\n",
|
||||
"20240604\n",
|
||||
"20240605\n",
|
||||
"{'dataDate': '20240605', 'dataItemNo': 'SDHYDDJG'}\n",
|
||||
"{'dataDate': '20240605', 'dataItemNo': 'SDHYSCQK'}\n",
|
||||
"20240606\n",
|
||||
"20240607\n",
|
||||
"20240608\n",
|
||||
"20240609\n",
|
||||
"20240610\n",
|
||||
"20240611\n",
|
||||
"20240612\n",
|
||||
"20240613\n",
|
||||
"20240614\n",
|
||||
"20240615\n",
|
||||
"20240616\n",
|
||||
"20240617\n",
|
||||
"20240618\n",
|
||||
"20240619\n",
|
||||
"20240620\n",
|
||||
"20240621\n",
|
||||
"20240622\n",
|
||||
"20240623\n",
|
||||
"20240624\n",
|
||||
"20240625\n",
|
||||
"20240626\n",
|
||||
"20240627\n",
|
||||
"20240628\n",
|
||||
"20240629\n",
|
||||
"20240630\n",
|
||||
"20240701\n",
|
||||
"20240702\n",
|
||||
"20240703\n",
|
||||
"20240704\n",
|
||||
"20240705\n",
|
||||
"20240706\n",
|
||||
"20240707\n",
|
||||
"20240708\n",
|
||||
"20240709\n",
|
||||
"20240710\n",
|
||||
"20240711\n",
|
||||
"20240712\n",
|
||||
"20240713\n",
|
||||
"20240714\n",
|
||||
"20240715\n",
|
||||
"20240716\n",
|
||||
"20240717\n",
|
||||
"20240718\n",
|
||||
"20240719\n",
|
||||
"20240720\n",
|
||||
"20240721\n",
|
||||
"20240722\n",
|
||||
"20240723\n",
|
||||
"20240724\n",
|
||||
"20240725\n",
|
||||
"20240726\n",
|
||||
"20240727\n",
|
||||
"20240728\n",
|
||||
"20240729\n",
|
||||
"20240730\n",
|
||||
"20240731\n",
|
||||
"20240801\n",
|
||||
"20240802\n",
|
||||
"20240803\n",
|
||||
"20240804\n",
|
||||
"20240805\n",
|
||||
"20240806\n",
|
||||
"20240807\n",
|
||||
"20240808\n",
|
||||
"20240809\n",
|
||||
"20240810\n",
|
||||
"20240811\n",
|
||||
"20240812\n",
|
||||
"20240813\n",
|
||||
"20240814\n",
|
||||
"20240815\n",
|
||||
"20240816\n",
|
||||
"20240817\n",
|
||||
"20240818\n",
|
||||
"20240819\n",
|
||||
"20240820\n",
|
||||
"20240821\n",
|
||||
"20240822\n",
|
||||
"20240823\n",
|
||||
"20240824\n",
|
||||
"20240825\n",
|
||||
"20240826\n",
|
||||
"20240827\n",
|
||||
"20240828\n",
|
||||
"20240829\n",
|
||||
"20240830\n",
|
||||
"20240831\n",
|
||||
"20240901\n",
|
||||
"20240902\n",
|
||||
"20240903\n",
|
||||
"20240904\n",
|
||||
"20240905\n",
|
||||
"20240906\n",
|
||||
"20240907\n",
|
||||
"20240908\n",
|
||||
"20240909\n",
|
||||
"20240910\n",
|
||||
"20240911\n",
|
||||
"20240912\n",
|
||||
"20240913\n",
|
||||
"20240914\n",
|
||||
"20240915\n",
|
||||
"20240916\n",
|
||||
"20240917\n",
|
||||
"20240918\n",
|
||||
"20240919\n",
|
||||
"20240920\n",
|
||||
"20240921\n",
|
||||
"20240922\n",
|
||||
"20240923\n",
|
||||
"20240924\n",
|
||||
"20240925\n",
|
||||
"20240926\n",
|
||||
"20240927\n",
|
||||
"20240928\n",
|
||||
"20240929\n",
|
||||
"20240930\n",
|
||||
"20241001\n",
|
||||
"20241002\n",
|
||||
"20241003\n",
|
||||
"20241004\n",
|
||||
"20241005\n",
|
||||
"20241006\n",
|
||||
"20241007\n",
|
||||
"20241008\n",
|
||||
"20241009\n",
|
||||
"20241010\n",
|
||||
"20241011\n",
|
||||
"20241012\n",
|
||||
"20241013\n",
|
||||
"20241014\n",
|
||||
"20241015\n",
|
||||
"20241016\n",
|
||||
"20241017\n",
|
||||
"20241018\n",
|
||||
"20241019\n",
|
||||
"20241020\n",
|
||||
"20241021\n",
|
||||
"20241022\n",
|
||||
"20241023\n",
|
||||
"20241024\n",
|
||||
"20241025\n",
|
||||
"20241026\n",
|
||||
"20241027\n",
|
||||
"20241028\n",
|
||||
"20241029\n",
|
||||
"20241030\n",
|
||||
"20241031\n",
|
||||
"20241101\n",
|
||||
"20241102\n",
|
||||
"20241103\n",
|
||||
"20241104\n",
|
||||
"20241105\n",
|
||||
"20241106\n",
|
||||
"20241107\n",
|
||||
"20241108\n",
|
||||
"20241109\n",
|
||||
"20241110\n",
|
||||
"20241111\n",
|
||||
"20241112\n",
|
||||
"20241113\n",
|
||||
"20241114\n",
|
||||
"20241115\n",
|
||||
"20241116\n",
|
||||
"20241117\n",
|
||||
"20241118\n",
|
||||
"20241119\n",
|
||||
"20241120\n",
|
||||
"20241121\n",
|
||||
"20241122\n",
|
||||
"20241123\n",
|
||||
"20241124\n",
|
||||
"20241125\n",
|
||||
"20241126\n",
|
||||
"20241127\n",
|
||||
"20241128\n",
|
||||
"20241129\n",
|
||||
"20241130\n",
|
||||
"20241201\n",
|
||||
"20241202\n",
|
||||
"20241203\n",
|
||||
"20241204\n",
|
||||
"20241205\n",
|
||||
"20241206\n",
|
||||
"20241207\n",
|
||||
"20241208\n",
|
||||
"20241209\n",
|
||||
"20241210\n",
|
||||
"20241211\n",
|
||||
"20241212\n",
|
||||
"20241213\n",
|
||||
"20241214\n",
|
||||
"20241215\n",
|
||||
"20241216\n",
|
||||
"20241217\n",
|
||||
"20241218\n",
|
||||
"20241219\n",
|
||||
"20241220\n",
|
||||
"20241221\n",
|
||||
"20241222\n",
|
||||
"20241223\n",
|
||||
"20241224\n",
|
||||
"20241225\n"
|
||||
"20241225\n",
|
||||
"20241226\n",
|
||||
"20241227\n",
|
||||
"20241228\n",
|
||||
"20241229\n",
|
||||
"20241230\n",
|
||||
"20241231\n",
|
||||
"20250101\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from datetime import datetime, timedelta\n",
|
||||
"\n",
|
||||
"start_date = datetime(2024, 12, 24)\n",
|
||||
"end_date = datetime(2024, 12, 26)\n",
|
||||
"start_date = datetime(2023, 8, 3)\n",
|
||||
"end_date = datetime(2025, 1, 2)\n",
|
||||
"\n",
|
||||
"while start_date < end_date:\n",
|
||||
" print(start_date.strftime('%Y%m%d'))\n",
|
||||
" start(start_date)\n",
|
||||
" # start_1(start_date)\n",
|
||||
" start_date += timedelta(days=1)\n",
|
||||
" \n",
|
||||
" "
|
||||
|
@ -2,7 +2,7 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@ -579,8 +579,8 @@
|
||||
" else:\n",
|
||||
" append_rows.append(\"\")\n",
|
||||
" save_xls(append_rows)\n",
|
||||
" optimize_Model()\n",
|
||||
" upload_data_to_system(token_push,date)\n",
|
||||
" # optimize_Model()\n",
|
||||
" # upload_data_to_system(token_push,date)\n",
|
||||
" # data_list.append(three_cols)\n",
|
||||
" # write_xls(data_list)\n",
|
||||
"\n",
|
||||
@ -788,140 +788,37 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"20241223\n"
|
||||
"20241231\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_2496\\2239815117.py:299: UserWarning:\n",
|
||||
"\n",
|
||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Using matplotlib backend: <object object at 0x0000027F8B613090>\n",
|
||||
"%pylab is deprecated, use %matplotlib inline and import the required libraries.\n",
|
||||
"Populating the interactive namespace from numpy and matplotlib\n",
|
||||
"Fitting 3 folds for each of 180 candidates, totalling 540 fits\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\IPython\\core\\magics\\pylab.py:162: UserWarning:\n",
|
||||
"\n",
|
||||
"pylab import has clobbered these variables: ['__version__', 'random', 'datetime', 'plot']\n",
|
||||
"`%matplotlib` prevents importing * from pylab and numpy\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Best score: 0.997\n",
|
||||
"Best parameters set:\n",
|
||||
"\tlearning_rate: 0.1\n",
|
||||
"\tmax_depth: 8\n",
|
||||
"\tn_estimators: 90\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_2496\\2239815117.py:239: UserWarning:\n",
|
||||
"\n",
|
||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||
"\n",
|
||||
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_2496\\2239815117.py:273: FutureWarning:\n",
|
||||
"\n",
|
||||
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"日期\n",
|
||||
"2024-12-23 3503.160645\n",
|
||||
"Name: 日度预测价格, dtype: float32\n",
|
||||
"{\"confirmFlg\":false,\"status\":true}\n",
|
||||
"新增数据: ['2024-12-23', 7957.0, 6904.0, 0.08, 0.25, 3650.0, 1.54, 0.0, 0.0, 3500.0, 7.9, 0.1, 0.2, 3500.0, 1.05, '', 3500.0, 72.6, '', '', 3538.0, 27.0525, '', '', '', '', 229522.1, 8639.74, 3463.8854, '', '', 40121.2216621, 7423.12, '']\n",
|
||||
"20241224\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_2496\\2239815117.py:299: UserWarning:\n",
|
||||
"\n",
|
||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Using matplotlib backend: QtAgg\n",
|
||||
"%pylab is deprecated, use %matplotlib inline and import the required libraries.\n",
|
||||
"Populating the interactive namespace from numpy and matplotlib\n",
|
||||
"Fitting 3 folds for each of 180 candidates, totalling 540 fits\n",
|
||||
"Best score: 0.997\n",
|
||||
"Best parameters set:\n",
|
||||
"\tlearning_rate: 0.1\n",
|
||||
"\tmax_depth: 10\n",
|
||||
"\tn_estimators: 100\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_2496\\2239815117.py:239: UserWarning:\n",
|
||||
"\n",
|
||||
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
|
||||
"\n",
|
||||
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_2496\\2239815117.py:273: FutureWarning:\n",
|
||||
"\n",
|
||||
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"日期\n",
|
||||
"2024-12-24 3499.874512\n",
|
||||
"Name: 日度预测价格, dtype: float32\n",
|
||||
"{\"confirmFlg\":false,\"status\":true}\n",
|
||||
"新增数据: ['2024-12-24', 7984.0, 6904.0, 0.08, 0.25, 3650.0, 1.71, 0.0, 0.0, 3500.0, 7.9, 0.1, 0.2, 3500.0, 1.15, '', 3500.0, 72.6, 72.67, '', 3521.0, 25.6158, '', '', '', 13.33799789, 229522.1, 5417.02, 3427.8064, '', 1000.0, 44319.2299367, '', 3650.0]\n"
|
||||
"ename": "PermissionError",
|
||||
"evalue": "[Errno 13] Permission denied: '沥青数据项.xls'",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[1;31mPermissionError\u001b[0m Traceback (most recent call last)",
|
||||
"Cell \u001b[1;32mIn[6], line 8\u001b[0m\n\u001b[0;32m 6\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m start_date \u001b[38;5;241m<\u001b[39m end_date:\n\u001b[0;32m 7\u001b[0m \u001b[38;5;28mprint\u001b[39m(start_date\u001b[38;5;241m.\u001b[39mstrftime(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m%\u001b[39m\u001b[38;5;124mY\u001b[39m\u001b[38;5;124m%\u001b[39m\u001b[38;5;124mm\u001b[39m\u001b[38;5;132;01m%d\u001b[39;00m\u001b[38;5;124m'\u001b[39m))\n\u001b[1;32m----> 8\u001b[0m start_3(start_date)\n\u001b[0;32m 9\u001b[0m time\u001b[38;5;241m.\u001b[39msleep(\u001b[38;5;241m1\u001b[39m)\n\u001b[0;32m 10\u001b[0m start_2(start_date)\n",
|
||||
"Cell \u001b[1;32mIn[5], line 548\u001b[0m, in \u001b[0;36mstart_3\u001b[1;34m(date)\u001b[0m\n\u001b[0;32m 546\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 547\u001b[0m append_rows\u001b[38;5;241m.\u001b[39mappend(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m--> 548\u001b[0m save_xls(append_rows)\n",
|
||||
"Cell \u001b[1;32mIn[5], line 723\u001b[0m, in \u001b[0;36msave_xls\u001b[1;34m(append_rows)\u001b[0m\n\u001b[0;32m 720\u001b[0m new_sheet\u001b[38;5;241m.\u001b[39mwrite(row_count, col, append_rows[col])\n\u001b[0;32m 722\u001b[0m \u001b[38;5;66;03m# 保存新的xls文件\u001b[39;00m\n\u001b[1;32m--> 723\u001b[0m new_workbook\u001b[38;5;241m.\u001b[39msave(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m沥青数据项.xls\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
|
||||
"File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python311\\site-packages\\xlwt\\Workbook.py:710\u001b[0m, in \u001b[0;36mWorkbook.save\u001b[1;34m(self, filename_or_stream)\u001b[0m\n\u001b[0;32m 707\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m CompoundDoc\n\u001b[0;32m 709\u001b[0m doc \u001b[38;5;241m=\u001b[39m CompoundDoc\u001b[38;5;241m.\u001b[39mXlsDoc()\n\u001b[1;32m--> 710\u001b[0m doc\u001b[38;5;241m.\u001b[39msave(filename_or_stream, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mget_biff_data())\n",
|
||||
"File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python311\\site-packages\\xlwt\\CompoundDoc.py:262\u001b[0m, in \u001b[0;36mXlsDoc.save\u001b[1;34m(self, file_name_or_filelike_obj, stream)\u001b[0m\n\u001b[0;32m 260\u001b[0m we_own_it \u001b[38;5;241m=\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(f, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mwrite\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 261\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m we_own_it:\n\u001b[1;32m--> 262\u001b[0m f \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mopen\u001b[39m(file_name_or_filelike_obj, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mw+b\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 263\u001b[0m f\u001b[38;5;241m.\u001b[39mwrite(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mheader)\n\u001b[0;32m 264\u001b[0m f\u001b[38;5;241m.\u001b[39mwrite(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpacked_MSAT_1st)\n",
|
||||
"\u001b[1;31mPermissionError\u001b[0m: [Errno 13] Permission denied: '沥青数据项.xls'"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from datetime import datetime, timedelta\n",
|
||||
"\n",
|
||||
"start_date = datetime(2024, 12, 23)\n",
|
||||
"end_date = datetime(2024, 12, 25)\n",
|
||||
"start_date = datetime(2024, 12, 31)\n",
|
||||
"end_date = datetime(2025, 1, 2)\n",
|
||||
"\n",
|
||||
"while start_date < end_date:\n",
|
||||
" print(start_date.strftime('%Y%m%d'))\n",
|
||||
|
Binary file not shown.
@ -41,9 +41,9 @@ plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
|
||||
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
|
||||
|
||||
# from config_jingbo_pro import *
|
||||
# from config_jingbo import *
|
||||
from config_jingbo import *
|
||||
# from config_yongan import *
|
||||
from config_juxiting import *
|
||||
# from config_juxiting import *
|
||||
|
||||
|
||||
|
||||
|
@ -127,6 +127,7 @@ def predict_main():
|
||||
modelsindex = modelsindex,
|
||||
data = data,
|
||||
is_eta=is_eta,
|
||||
end_time=end_time,
|
||||
)
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user